
Typedefs in MLIR
6/24/21

Motivation

● CIRCT’s main backend emits
System Verilog

● Output may include interfaces for
human consumption, may be
inspected during verification, etc.

● Complicated types lead to clutter
○ Often show up multiple times
○ Can make the output unreadable

● “This is quickly getting ridiculous”
- John Demme

interface IValidReady_Struct;

 logic valid;

 logic ready;

 struct packed {

 logic encrypted;

 logic [3:0] compressionLevel;

 logic [31:0][7:0] blob;

 } data;

…

endinterface

Motivation

● CIRCT’s main backend emits
System Verilog

● Output may include interfaces for
human consumption, may be
inspected during verification, etc.

● Complicated types lead to clutter
○ Often show up multiple times
○ Can make the output unreadable

● “This is quickly getting ridiculous”
- John Demme

module encode(

 input clk,

 input valid,

 input struct packed {

 logic encrypted;

 logic [3:0] compressionLevel;

 logic [31:0][7:0] blob;

 } data);

…

endmodule

Goals

● Use System Verilog typedef
statements to give names to
complicated types

● Refer to the declared type in
interfaces, modules, etc.

● Reason about declared types
○ Resolve name conflicts
○ Collect all type declarations to a

separate output
○ Etc.

typedef struct packed { … } MyStruct;

module encode(

 input MyStruct data,

…

endmodule

interface IValidReady_Struct;

 MyStruct data;

…

endinterface

Aside - MLIR type aliases

● Supported in printed IR syntax
● Sort of what we’re looking for
● But the !MyStruct name is gone

after the IR is parsed

!MyStruct = type !hw.struct<...>

hw.module(%arg0: !MyStruct) {

 …

}

https://mlir.llvm.org/docs/LangRef/#type-aliases

What we’ve tried - Attempt 1

● No problem, let’s just add a new
typedef op.

● Initial prototype here: PR 645
○ System Verilog exporter registered the

name of every typedef’ed type
○ Used the name when it encountered a

type
○ What if you want different names for the

same type in different places?
● Abandoned, and considered some

alternatives...

sv.typedef "MyStruct" : !hw.struct<...>

hw.module(%arg0: !hw.struct<...>) {

 ...

}

===>

typedef struct packed { … } MyStruct;

module encode(

 input MyStruct data,

…

endmodule

https://github.com/llvm/circt/pull/645

What we’ve tried - Attempt 1 alternatives

1. Specify which typedef to use as an attribute on
the using op

○ Pro: explicit typedef op in IR
○ Pro: doesn’t mess with type system
○ Con: requires attribute preservation
○ Con: requires knowing which ops print the type

2. Add a wrapper type that references the typedef
○ Pro: explicit typedef op in IR
○ Pro: no duplication of types
○ Con: need to resolve reference to know type
○ Con: need to see through type wrappers

3. Add a wrapper type that names a type and makes
the typedef implicit

○ Pro: type is known locally
○ Pro: simple to apply a name to any type
○ Con: typedef is implicit in IR
○ Con: duplicated types throughout IR
○ Con: need to see through type wrappers

hw.struct_get %0["field"] : !hw.struct<...>,

 { typealias = "MyStruct" }

!hw.typealias<@MyStruct>

!hw.typealias<"MyStruct", !hw.struct<...>>

What we’ve tried - Attempt 2

● Tried option 3 next, since it seemed
simple to implement

● Quickly realized the implicit typedef
makes life hard for System Verilog
exporter, and anything else that
wants to reason about these types

● Will discuss “seeing through” type
alias in a bit

hw.module(%arg0: !hw.typealias<"MyStruct",

 !hw.struct<...>>) {

…

}

===>

typedef struct packed { … } MyStruct;

module encode(

 input MyStruct data,

…

endmodule

What we’ve tried - Attempt 3

● Tried option 2 next
● Explicit typedef op is no problem

○ Landed in PR 1029
● But how do we get at the

referenced typedef during parsing
and verification?

○ Ops need to know the input types in
their verifiers, e.g. to ensure a Struct
access is indeed accessing a Struct

○ This may be possible, or possible with a
small tweak to OpAsmParser

sv.typedef @MyStruct : !hw.struct<...>

hw.module(%arg0: !hw.typealias<@MyStruct>) {

…

}

===>

typedef struct packed { … } MyStruct;

module encode(

 input MyStruct data,

…

endmodule

https://github.com/llvm/circt/pull/1029

What we’ve tried - Attempt 3

● Ended up putting the inner type into
the type alias, so now we have both
option 2 and option 3…

○ Implemented in PR 1076 and PR 1077
● Still need to “see through” type

alias

sv.typedef @MyStruct : !hw.struct<...>

hw.module(%arg0: !hw.typealias<@MyStruct,

 !hw.struct<...>>) {

…

}

===>

typedef struct packed { … } MyStruct;

module encode(

 input MyStruct data,

…

endmodule

https://github.com/llvm/circt/pull/1076
https://github.com/llvm/circt/pull/1077

What we’ve tried - “seeing through” type aliases

● What happens when an op
expecting a Struct sees a type alias
for a Struct?

● Have prototyped Clang-style
helpers to get canonical types

● Have prototyped a parallel set of
type_isa and type_cast
“operators”

● Experiments in PR 1143

operandType.isa<StructType>()

===>

operandType.cast<HWType>().isStructType()

operandType.isa<StructType>()

===>

type_isa<StructType>(operandType)

https://clang.llvm.org/docs/InternalsManual.html#canonical-types
https://github.com/llvm/circt/pull/1143

What we’ve tried - where to put typedefs in the IR?

● If they are Symbols, don’t want
them conflicting with other
Symbols, like module names

● Current approach is to have a
special type declaration op, which
is a Symbol itself (with a specific,
reserved name), and holds the
typedefs in a single block

● Also considered putting them as
attributes on the top-level
ModuleOp

○ Is this a bad idea?

sv.typedefs @__TYPEDEFS {

 sv.typedef @MyStruct : !hw.struct<...>

}

module {

 typedefs = {

 "MyStruct": !hw.struct<...>

 }

} {

…

}

What we’re hoping to achieve now

● Want to get back to option 2, where
type alias can refer to typedef op
without also duplicating the type

○ Can/should we resolve the symbol
reference during parsing and verification?

○ Is there a better way?
● Want to figure out the best place to put

the typedefs in the IR
○ Especially if they must be parsed before

any type aliases
● Want to standardize on how the type

alias is canonicalized
○ Either of the approaches outlined, or

something else we haven’t considered

sv.typedef @MyStruct : !hw.struct<...>

hw.module(%arg0: !hw.typealias<@MyStruct>) {

…

}

===>

typedef struct packed { … } MyStruct;

module encode(

 input MyStruct data,

…

endmodule

Thoughts?

