=t

MLIR
Typedefs in MLIR

6/24/21

Motivation

interface IValidReady_Struct;
logic valid;
logic ready;
struct packed {
logic encrypted;

logic [3:0] compressionLevel;

logic [31:0][7:0] blob;

} data;

endinterface

CIRCT’s main backend emits
System Verilog

Output may include interfaces for
human consumption, may be
inspected during verification, etc.

Complicated types lead to clutter

o Often show up multiple times
o Can make the output unreadable

“This is quickly getting ridiculous”
- John Demme

Motivation

module encode(
input clk,
input valid,
input struct packed {
logic encrypted;
logic [3:0] compressionLevel;

logic [31:0][7:0] blob;

} data);

endmodule

CIRCT’s main backend emits
System Verilog

Output may include interfaces for
human consumption, may be
inspected during verification, etc.

Complicated types lead to clutter

o Often show up multiple times
o Can make the output unreadable

“This is quickly getting ridiculous”
- John Demme

Goals

typedef struct packed { ... } MyStruct;

module encode(

input MyStruct data,

endmodule
interface IValidReady_Struct;

MyStruct data;

endinterface

Use System Verilog typedef
statements to give names to
complicated types

Refer to the declared type in
interfaces, modules, etc.

Reason about declared types
o Resolve name conflicts
o Collect all type declarations to a
separate output
o Etc.

Aside - MLIR type aliases

HMySERUCE = type CHi. structs. ..> e Supported in printed IR syntax

hw.module (%arg: IMyStruct) { e Sort of what we’re looking for

e Butthe !'MyStruct name is gone
after the IR is parsed

https://mlir.llvm.org/docs/LangRef/#type-aliases

What we've tried - Attempt 1

sv.typedef "MyStruct" : 'hw.struct<...> PY NO problem, Iet’s jUSt add a new
hw.module(%argd: 'hw.struct<...>) { tyDEdE'F Op

e Initial prototype here: PR 645
o System Verilog exporter registered the
name of every typedef’ed type
o Used the name when it encountered a
type
module encode(o What if you want different names for the
same type in different places?

e Abandoned, and considered some
alternatives...

=2==>

typedef struct packed { ... } MyStruct;

input MyStruct data,

endmodule

https://github.com/llvm/circt/pull/645

What we've tried - Attempt 1 alternatives

hw.struct_get %@["field"] : !hw.struct<...>, 1. Specify which typedef to use as an attribute on

the using op
o Pro: explicit typedef op in IR
o Pro: doesn’t mess with type system
o Con: requires attribute preservation
o Con: requires knowing which ops print the type

Add a wrapper type that references the typedef
o Pro: explicit typedef op in IR
o Pro: no duplication of types
o Con: need to resolve reference to know type
o Con: need to see through type wrappers

3. Add a wrapper type that names a type and makes
the typedef implicit

o Pro: type is known locally

Pro: simple to apply a name to any type
Con: typedef is implicit in IR

Con: duplicated types throughout IR
Con: need to see through type wrappers

{ typealias = "MyStruct" }

Ihw.typealias<@MyStruct> 2

'hw.typealias<"MyStruct"”, 'hw.struct<...>>

O O O O

What we've tried - Attempt 2

hw.module(%argd: !'hw.typealias<"MyStruct",

Thw.struct<...>>) {

=2==>
typedef struct packed { ... } MyStruct;
module encode(

input MyStruct data,

endmodule

Tried option 3 next, since it seemed
simple to implement

Quickly realized the implicit typedef
makes life hard for System Verilog
exporter, and anything else that
wants to reason about these types
Will discuss “seeing through” type
alias in a bit

What we've tried - Attempt 3

sv.typedef @MyStruct : 'hw.struct<...>

hw.module(%argd: !hw.typealias<@MyStruct>) {

=2==>
typedef struct packed { ... } MyStruct;
module encode(

input MyStruct data,

endmodule

Tried option 2 next

Explicit typedef op is no problem
o Landedin PR 1029

But how do we get at the

referenced typedef during parsing

and verification?

o Ops need to know the input types in
their verifiers, e.g. to ensure a Struct
access is indeed accessing a Struct

o This may be possible, or possible with a
small tweak to OpAsmParser

https://github.com/llvm/circt/pull/1029

What we've tried - Attempt 3

sv.typedef @MyStruct : 'hw.struct<...>
hw.module(%argd: !hw.typealias<@VMyStruct,

Thw.struct<...>>) {

=2==>

typedef struct packed { ... } MyStruct;

module encode(

input MyStruct data,

endmodule

Ended up putting the inner type into
the type alias, so now we have both

option 2 and option 3...
o Implemented in PR 1076 and PR 1077

Still need to “see through” type
alias

https://github.com/llvm/circt/pull/1076
https://github.com/llvm/circt/pull/1077

What we've tried - “seeing through” type aliases

operandType.isa<StructType>()

=2==>

operandType.cast<HWType>().isStructType()

operandType.isa<StructType>()

=2==>

type isa<StructType>(operandType)

What happens when an op
expecting a Struct sees a type alias
for a Struct?

Have prototyped Clang-style
helpers to get canonical types
Have prototyped a parallel set of
type_isa and type cast
“‘operators”

Experiments in PR 1143

https://clang.llvm.org/docs/InternalsManual.html#canonical-types
https://github.com/llvm/circt/pull/1143

What we’ve tried - where to put typedefs in the IR?

sv.typedefs @__TYPEDEFS {

sv.typedef @MyStruct : !hw.struct<...>

}

module {

typedefs = {

"MyStruct":

'hw.struct<...>

If they are Symbols, don’t want
them conflicting with other
Symbols, like module names
Current approach is to have a
special type declaration op, which
is a Symbol itself (with a specific,
reserved name), and holds the
typedefs in a single block

Also considered putting them as
attributes on the top-level
ModuleOp

o s this a bad idea?

What we're hoping to achieve now

sv.typedef @MyStruct : 'hw.struct<...>

hw.module(%argd: !hw.typealias<@MyStruct>) {

=2==>
typedef struct packed { ... } MyStruct;
module encode(

input MyStruct data,

endmodule

Want to get back to option 2, where
type alias can refer to typedef op
without also duplicating the type

o Can/should we resolve the symbol
reference during parsing and verification?
o s there a better way?
Want to figure out the best place to put

the typedefs in the IR
o Especially if they must be parsed before
any type aliases
Want to standardize on how the type

alias is canonicalized
o Either of the approaches outlined, or
something else we haven’t considered

Thoughts?

