From MHLO to Linalg on tensors
Learnings from transitioning to Linalg on tensors
Overview

- Quick overview of IREEs compilation flow
- Representational enhancements to Linalg/IREE that were needed
Current compilation flow from MHLO to Machine code

MHLO → TOSA

Linalg On Tensors → Dispatch Regions

Element-wise fusion → Tile + Distribute + fuse

Dispatch Regions

^bb0(...):
%2,%3,... = flow.dispatch.workgroups(%0,%1,...) {
...
} → tensor<..xf32>, tensor<xf32> ...
...
%5,%6,... = flow.dispatch.workgroups(%2,%4,...) {
...
} → tensor<..xf32>, tensor<xf32> ...
...

^bb1(...):
%8,%9,... = flow.dispatch.workgroups(%2,%5,...) {
...
} → tensor<..xf32>, tensor<xf32> ...

Tile + Distribute + fuse
Current compilation flow from MHLO to Machine code

%2,%3,... =
flow.dispatch.workgroups(%0,%1,...) {
...
} → tensor<..xf32>, tensor<xf32> ...

- Inter-kernel bufferization
- Stream formation
- Command buffer formation

hal.executable {
 hal.entry_point @entry_fn
 hal.executable.target vulkan-* {
 module {
 func @entry_fn() {...}
 }
 }
}

- Intra kernel bufferization
- Vectorize
- Memory promotion

Host side VM code → IREE Flat Buffer → Serialized Executable
Where we started: MHLO as front end

- Dispatch region formation based on rules on MHLO ops
 - Loosely these rules were based on “which operations can be fused”.

```
%3 = flow.dispatch.region(%a0 = %0, %a1 = %1) {
    %4 = “mhlo.dot”(%a0, %a1):
}
%4 = flow.dispatch.region(%a0 = %2, %a1 = %3) {
    %5 = “mhlo.broadcast”(%a0):
    %6 = “mhlo.add”(%a1, %4):
}
```

- Elementwise fusion and tile + fuse run within a dispatch region.
- Suboptimal dispatch region creation ([Github Issue](https://github.com))
Where we started: MHLO as front end

- Preferable to have
 - one dispatch region is lowered to one kernel
 - all memory needed for the dispatch to be explicit arguments to the dispatch region
 - Better scheduling and buffer allocation opportunities

```%
%res = "mhlo.pad"(%input, %v) {
  edge_padding_low = dense<[0, 1]>,
  edge_padding_high = dense<[1, 5]>
} : (tensor<2x3xi32>, tensor<i32>)
  -> tensor<3x9xi32>

%linalg.fill(%res, %v) : memref<3x9xi32>
%sv = memref.subview %res
  [0, 1] [2, 3] [1, 1] :
  memref<3x9xi32> into memref<2x4xi32>
linalg.copy(%input, %sv) : memref<2x3xi32>,
```
MHLO as front end: Phase ordering issue

- Grouping at MHLO level needed to guess what the backends could fuse into a single kernel
 - MHLO ops need to know if the Linalg ops can be fused using elementwise fusion or tile + fuse.
 - As we do more fusion using Linalg, needed to map it back to the MHLO operations that could now be grouped together

- Could be different for a backend
Linalg on tensors

- Create Linalg operations at tensor level that represent the final fused kernels

%3 = “mhlo.dot”(%0, %1) :
 (tensor<?x?xf32>, tensor<?x?xf32>) -> tensor<?x?xf32>
%4 = “mhlo.broadcast(%2) : tensor<?xf32> -> tensor<?x?xf32>
%5 = “mhlo.add”(%4, %2) :
 (tensor<?x?xf32>, tensor<?x?xf32>) -> tensor<?x?xf32>
%cst = constant 0.0 : f32
%3 = linalg.init_tensor [...]
%4 = linalg.fill(%cst, %3)
%5 = linalg.matmul ins(%0, %1 :) outs(%4 :) -> ...
%6 = linalg.init_tensor [...]
%7 = linalg.generic {
 indexing_maps = [affine_map<(d0, d1) -> (d0), affine_map<(d0, d1) -> (d0, d1)]
 ins(%2 :) outs(%6 :) {...}
%8 = linalg.init_tensor [...]
%9 = linalg.generic {
 indexing_maps = [affine_map(d0, d1) -> (d0, d1), affine_map(d0, d1) -> (d0, d1),
 affine_map(d0, d1) -> (d0, d1)]
 ins(%5, %7 :) outs(%8 :) {...}
After element-wise fusion

```plaintext
%cst = constant 0.0 : f32
%3 = linalg.init_tensor [...]  
%4 = linalg.fill(%cst, %3)  
%5 = linalg.matmul ins(%0, %1 : ) outs(%4 : ) -> ...  
%8 = linalg.init_tensor [...]  
%9 = linalg.generic {
    indexing_maps = [affine_map(d0, d1) -> (d0, d1),
                     affine_map(d0, d1) -> (d0),
                     affine_map(d0, d1) -> (d0, d1)]
    ins(%5, %2 : ) outs(%8 : ) {...}
```

Tile + Distribute using block-cyclic distribution

%id_y = flow.workgroup.workgroup_id[1] // id_y
%wgs_y = flow.workgroup.workgroup_count[1] // number_y
%nwg_y = flow.workgroup.workgroup_size[1] // same as %ts_M
%start = muli %id_y, %wgx_y
%step = muli %nwg_y, %wgs_y
scf.for %iv0 = %start to %M step %step {

}
%3 = flow.dispatch.workgroups[...] -> tensor<?x?xf32> {
 %wg_x = flow.dispatch.workgroup_size[0]
 %wg_y = flow.dispatch.workgroup_size[1]
 %y0 = scf.for %iv0 = %start_y to %M step %step_y
 %y1 = scf.for %iv1 = %start_x to %N step %step_x
 %4 = linalg.init_tensor [%wg_y, %wg_x] : tensor<?x?xf32>
 %5 = linalg.fill(..., %4)
 %6 = tensor.extract_slice %0[...,...] [%wg_y, %K] [1, 1] : ... // ...
 %7 = tensor.extract_slice %1[...,...] [%K, %wg_x] [1, 1] : ... // ...
 %8 = linalg.matmul ins(%6, %7 :) outs(%5 :)
 %9 = tensor.extract_slice %2[...] [%wg_y] [1]
 %10 = linalg.generic {...} ins(%8, %9 :) outs(%5) {...}
}
Representational enhancements to Linalg on tensors

- Adapt read-modify-write semantics

- Output Shape representation.

- Tile + distribute on Linalg on tensors.
Detour: Background on Linalg StructuredOps representation.

- Linalg on buffers for matmul

```python
outs(%result : memref<?x?xf32>)
```

- In loop form

```python
scf.for %iv0 = 0 to %m step 1
  scf.for %iv1 = 0 to %n step 1
    scf.for % %iv2 = 0 to %k step 1
      %0 = mulf %lhs[%iv0, %iv2], %rhs[%iv2, %iv1] : f32
      %1 = addf %0, %result[%iv0, %iv1] : f32
    store %1, %result[%iv0, %iv1] : f32, memref<?x?xf32>
```
Detour: Background on Linalg StructuredOps representation.

Named ops are pre-defined `linalg.generic` operations.

```cpp
linalg.generic {
  iterator_types = ["parallel", "parallel", "reduction"]} // M, N and K loops
indexing_maps = {[affine_map<(d0, d1, d2) -> (d0, d2)>, // LHS indexing
  affine_map<(d0, d1, d2) -> (d2, d1)>, // RHS indexing
  affine_map<(d0, d1, d2) -> (d0, d1)] // Output indexing
outs(%result : memref<?x?xf32> {^bb0(%arg0: f32, %arg1 : f32, %arg2 : f32) : // Loaded scalar values
  %0 = mulf %arg0, %arg1 : f32
  %1 = addf %0, %arg2 : f32
  linalg.yield %1 : f32
}
```
Detour: Background on Linalg StructuredOps representation.

Loop bounds are determined based on operand shapes

- **affine_map<(d0, d1, d2) -> (d0, d2)>**: ...
 - Outer loop bound: memref.dim %lhs, 0
 - Inner loop bound: memref.dim %lhs, 1

- **affine_map<(d0, d1, d2) -> (d2, d1)>**: ...
 - Inner loop bound: memref.dim %rhs, 0
 - Middle loop bound: memref.dim %rhs, 1

- **affine_map<(d0, d1, d2) -> (d0, d1)>**: ...
 - Outer loop bound: memref.dim %result, 0
 - Middle loop bound: memref.dim %result, 1
Detour: Background on Linalg StructuredOps representation.

Elementwise operations representation (with memref operands)

```c
linalg.generic {
  indexing_maps = {
    affine_map<(d0, d1) -> (d0, d1)>,
    affine_map<(d0, d1) -> (d0)>, // Broadcast access
    affine_map<(d0, d1) -> (d0, d1)>, // Output indexing
  }
  iterator_types = ["parallel", "parallel"] // No reduction loops
  ins(%lhs, %rhs : memref<?x?xf32>, memref<?xf32>)
  outs(%result : memref<?x?xf32> {
    ^bb0(%arg0: f32, %arg1 : f32, %arg2 : f32) :
      %0 = addf %arg0, %arg1 : f32
    linalg.yield %0 : f32 // No output reads (only writes)
  }
```
Adapt Read-Modify-Write abstraction

- **Tensor are SSA values**
 - All elements “defined” simultaneously and not mutable.
- **One solution**
 - Different computation than representation in buffer
 - Make the initial value an explicit operand

```
%result = linalg.matmul
```

```
%result = linalg.matmul
    ins(%lhs, %rhs : tensor<?x?xf32>, tensor<?x?xf32>),
    outs(%init : tensor<?x?xf32>) -> tensor<?x?xf32>
```
Output shape representation

- Without reduction do not need initial value

```plaintext
%result = linalg.generic {
    indexing_maps = [affine_map<(d0, d1) -> (d0)>,
                     affine_map<(d0, d1) -> (d0, d1)>]
    iterator_types = ["parallel", "parallel"]
} ins(%source: tensor<?xf32>) -> tensor<?x?xf32> {
    ^bb0(%arg0 : f32):
        linalg.yield %arg0 : f32
}
```

- Only the result value carries loop bounds of one of the loops
Output shape representation

- Add a “dummy” initial value just for shape information

```plaintext
%d0 = ... // Some computation generated by the producer of this IR
%d1 = ... // Some computation generated by the producer of this IR
%init = linalg.init_tensor [%d0, %d1] : tensor<?x?xf32> // Output shape
%result = linalg.generic {...}
    ins(%source: tensor<?xf32>), outs(%init : tensor<?x?xf32>)
```

- Each operation carries all the information needed to compute the result (including the shape) in its operands
- Dynamic shape code-generation without any external shape information
Detour Tiling with Linalg on memref operands

- Tiling is one of the core transformations in Linalg
 - Tile + fuse is tile the consumer and compute the operands of the tile in-place.

```python
  outs(%result : memref<?x?xf32>
```

- Linalg tiling algorithm uses the indexing maps to generate the tiled implementation
 - Any operation that implements the structured op interface can be tiled (any named ops and linalg.generic)
Detour Tiling with Linalg on memref operands

- Tiling is done using parametric tile sizes.

```cpp
scf.for %iv0 = 0 to %M step %ts_M
    scf.for %iv1 = 0 to %N step %ts_N
        scf.for %iv2 = 0 to %K step %ts_K
            %tile_lhs = memref.subview %lhs[%iv0, %iv2] [%ts_M, %ts_K]
            %tile_rhs = memref.subview %rhs[%iv2, %iv1] [%ts_K, %ts_N]
            %tile_output = memref.subview %result[%iv0, %iv1] [%ts_M, %ts_N]
        linalg.matmul ins(%tile_lhs, %tile_rhs: ...) outs(%tile_output: ...)
```
Detour Tiling with Linalg on memref operands with Parallel loops

- Generate tiled loops while maintaining information about parallel inter-tile loops

```python
scf.parallel (%iv0, %iv1) = (0, 0) to (%M, %N) step (%ts_M, %ts_k)
scf.for %iv2 = 0 to %K step %ts_K
    %tile_lhs = memref.subview %lhs[%iv0, %iv2] [%ts_M, %ts_K]
    %tile_rhs = memref.subview %rhs[%iv2, %iv1] [%ts_K, %ts_N]
    %tile_output = memref.subview %result[%iv0, %iv1] [%ts_M, %ts_N]
    linalg.matmul ins(%tile_lhs, %tile_rhs : ...) outs(%tile_output : ...)
```
Detour: Structured Control Flow on tensors

Each iteration of a loop is an iteration as a function

- Arguments are induction variable and values from previous iteration
- The body of the loop computes the result of current iteration and “yields” it which gets forwarded to the next iteration of the loop
- The value yielded by the last iteration is the result of the loop.

```
%result = scf.for %iv0 = ... init (%arg1 = %init) {
  %0 = ... %arg1 ...
  %yield = ...
  scf.yield %yield
}
```
Tiling for Linalg on tensors: Using Destructive updates

%result = scf.for %iv0 = 0 to %M step %ts_M init(%arg1 = %init) {
 %0 = scf.for %iv1 = 0 to %N step %ts_N init(%arg2 = %arg1) {
 %1 = scf.for %iv2 = 0 to %K step %ts_K init (%arg3 = %arg2) {
 %tile_lhs = tensor.extract_slice %lhs[%iv0, %iv2] [%ts_M, %ts_K]
 %tile_rhs = tensor.extract_slice %rhs[%iv2, %iv1] [%ts_K, %ts_N]
 %tile_init = tensor.extract_slice %arg3[%iv0, %iv1] [%ts_M, %ts_N]
 %tile_result = linalg.matmul ins(%tile_lhs, %tile_rhs : ...)
 outs(%tile_init : ...)
 %2 = tensor.insert_slice %tile_result into %arg3[%iv0, %iv1] [%ts_M, %ts_N]
 scf.yield %2
 }
 scf.yield %1
 }
 scf.yield %0
Representational issue with tiling for Linalg on tensors

- In tensors, each loop iteration value is forwarded to the next iteration
 - Cannot represent parallel inter-tile loops at this level.
 - Tile + Distribute that worked with memref operands, doesn’t work anymore

- Essentially this is an abstraction gap
 - You eventually have to go from a tensor representation to a memref-based representation, at that time you can get back to the same semantics as before.
 - Issue is the destructive updates.
Avoiding destructive updates during tile + distribute

- Recap: IREE does tile + distribute (+fuse) during dispatch region formation
- Create two new operations within the dispatch region
 - `flow.dispatch.tensor.load`: Load a tile of the input to the dispatch region
 - `flow.dispatch.tensor.store`: Store a tile of into the result of the dispatch region.
- Across workgroups there is no synchronization between loads/stores
 - If multiple workgroups overlap in reads/writes, then it is a race condition.
Avoiding destructive updates

%result = flow.dispatch.workgroups[%N, %M, 1] (%lhs, %rhs, %init) -> tensor<?x?xf32> =
(%arg0 : !flow.tensor<readonly:?x?xf32>, %arg1 : !flow.tensor<readonly:?x?xf32>,
%arg2 : !flow.tensor<readonly:?x?xf32>, %arg3 : !flow.tensor<writeonly:?x?xf32>) {
 %wg_y, %wg_x = ...
 scf.for %iv0 = %start_y to %M step %step_y
 scf.for %iv1 = %start_x to %N step %step_x
 %lhs_tile = flow.tensor.load %arg0 [...][%wg_y, %K]
 %rhs_tile = flow.tensor.load %arg1 [...][%K, %wg_x]
 %init_tile = flow.tensor.load %arg2 [...][%wg_y, %wg_x]
 %result_tile = linalg.matmul ins(%lhs_tile, %rhs_tile :) outs(%init_tile :)
 flow.tensor.store %result_tile into %arg3 [...][%wg_y, %wg_x]
}
Bridging the abstraction gap

- The “runtime” does not need to do anything special.
 - Conversion to memref should give back the old semantics
 - `flow.tensor.load` becomes a `tensor.extract_slice`

```plaintext
hal.executable {
  hal.interface @io {
    hal.interface.binding @arg0, access = "Read"
    hal.interface.binding @arg1, access = "Read"
    hal.interface.binding @arg2, access = "Read"
    hal.interface.binding @arg3, access = "Write"
  }
  hal.executable.target dylib-llvm-* {
    hal.executable.entry_point @entry_fn
    module { ... }
  }
```
Bridging the abstraction gap

- Intra-executable bufferization has to update results in-place
- Extra copy here is because
 - Flow → Hal lowering creates a buffer for all inputs and outputs
 - `linalg.matmul` on tensors has initial value and extra operand

```cpp
func @entry_fn() {
  scf.for %iv0 = %start_y to %M step %step_y
    scf.for %iv1 = %start_x to %N step %step_x
      %lhs_tile = memref.subview %arg0 [\ldots][%wg_y, %K]
      %rhs_tile = memref.subview %arg1 [\ldots][%K, %wg_x]
      %init_tile = memref.subview %arg2 [\ldots][%wg_y, %wg_x]
      %result_tile = memref.subview %arg3 [\ldots][%wg_y, %wg_x]
      linalg.copy(%init_tile, %result_tile)
      linalg.matmul ins(%lhs_tile, %rhs_tile : ) outs(%result_tile : )
```
In-place updates

Marking operands of flow.dispatch.workgroups as read-write

%result = flow.dispatch.workgroups[%N, %M, 1](%lhs, %rhs, %init) -> %init =
(%arg0 : !flow.tensor<readonly:?x?xf32>, %arg1 : !flow.tensor<readonly:?x?xf32>,
 %arg2 : !flow.tensor<readwrite:?x?xf32>) {
 %wg_y, %wg_x = ...
 scf.for %iv0 = %start_y to %M step %step_y
 scf.for %iv1 = %start_x to %N step %step_x
 %lhs_tile = flow.tensor.load %arg0 [...][%wg_y, %K]
 %rhs_tile = flow.tensor.load %arg1 [...][%K, %wg_x]
 %init_tile = flow.tensor.load %arg2 [...][%wg_y, %wg_x]
 %result_tile = linalg.matmul ins(%lhs_tile, %rhs_tile :) outs(%init_tile :)
 flow.tensor.store %result_tile into %arg2 [...][%wg_y, %wg_x]
}
In-place updates

```python
hal.executable {
    hal.interface @io {
        hal.interface.binding @arg0, access = "Read"
        hal.interface.binding @arg1, access = "Read"
        hal.interface.binding @arg2, access = "Read|Write"
    }
    ...
    func @entry_fn() {
        ...
        scf.for %iv0 = %start_y to %M step %step_y
        scf.for %iv1 = %start_x to %N step %step_x
        %lhs_tile = memref.subview %arg0 [...][%wg_y, %K]
        %rhs_tile = memref.subview %arg1 [...][%K, %wg_x]
        %result_tile = memref.subview %arg2 [...][%wg_y, %wg_x]
        linalg.matmul ins(%lhs_tile, %rhs_tile : ) outs(%result_tile : )
    }
```
Intra-dispatch bufferizations

- Useful to think of bufferization in IREE as two phases
 - Inter-dispatch region bufferization
 - Intra-dispatch region bufferization

- Intra-dispatch region bufferization has different constraints
 - No additional heap allocations
 - Try to compute results in place (using readwrite annotations on dispatch region operands)