
MLIR data visualization using 
PassInstrumentation
MLIR Open Design Meeting July 22, 2021

Scott Todd

Context: 
https://llvm.discourse.group/t/data-visualizations-and-correlating-data-between-passinstrumentations/3870

https://llvm.discourse.group/t/data-visualizations-and-correlating-data-between-passinstrumentations/3870


Overview

● Intro to "MLIR Pipeline Visualizer Prototype"

● Background: similar tools and motivation for making other visualizations

● Deeper dive into pipeline visualizer prototype

● Open questions around implementation, discussion



MLIR Pipeline Visualizer Prototype

https://scotttodd.github.io/iree-llvm-sandbox/web-tools/pipeline-visualizer/ (interactive and includes more samples)

https://scotttodd.github.io/iree-llvm-sandbox/web-tools/pipeline-visualizer/


Background - IR Printing

On the left: 
https://gist.github.com/ScottTodd/d0fe0f735f7533bc09692227f56e944b
https://github.com/google/iree/blob/main/scripts/ir_to_markdown.py

Compiler work involves looking at lots of IR:
● Working on a specific component
● Inspecting the behavior of a larger pipeline
● Teaching new developers about system architecture

Syntax highlighting helps with viewing and printing options 
help slice the IR in different ways, but you can still end up 
with 100MB+ text files which are difficult to spot patterns in.

-mlir-disable-threading
-mlir-elide-elementsattrs-if-larger=N
-print-ir-after-*
-print-ir-after-change

(see https://mlir.llvm.org/docs/PassManagement/#ir-printing)

https://gist.github.com/ScottTodd/d0fe0f735f7533bc09692227f56e944b
https://github.com/google/iree/blob/main/scripts/ir_to_markdown.py
https://mlir.llvm.org/docs/PassManagement/#ir-printing


Background - Tracing with frame/sampling profilers

For analyzing performance or viewing execution characteristics, run under a profiler like https://github.com/wolfpld/tracy

● Frames (on the left) require recording pass start/stop times (e.g. by using PassInstrumentation like in 
iree/compiler/Utils/TracingUtils.cpp)

● Sampling (on the right) can work without source modifications

https://github.com/wolfpld/tracy
https://github.com/google/iree/blob/main/iree/compiler/Utils/TracingUtils.cpp


IREE simple_abs (LLVM CPU)



IREE simple_abs (LLVM CPU)

Input legalization, 
shapes, enter into 
linalg + flow

HAL, 
prep for 
LLVM

Flow -> HAL, 
LLVM codegen

Serialize 
executables, 
cleanup

HAL -> VM, 
finalize



IREE bert_encoder (LLVM CPU)

DispatchLinalgOnTensors, 
DeduplicateExecutables

LLVM codegen
(parallel across functions)

ConvertAffineToStandard

bert_encoder_unrolled_fake_weights.mlir (transformer-based 
machine learning model for natural language processing)

ConvertToHAL

Canonicalize

15 dialects!

https://github.com/google/iree/blob/main/iree/test/e2e/models/bert_encoder_unrolled_fake_weights.mlir


sample

Implementation - MLIR C++ to generate JSON

source

https://github.com/ScottTodd/iree-llvm-sandbox/blob/web-tools/web-tools/pipeline-visualizer/data/simple_abs_llvmaot.json
https://github.com/scotttodd/llvm-project/tree/dataviz


Implementation - Webpage with interactive chart

~200 lines of code (source) split between HTML and JS

● Load JSON
● Process data into chart series
● Create chart using canvasJS and set styling

https://github.com/ScottTodd/iree-llvm-sandbox/tree/web-tools/web-tools/pipeline-visualizer
https://canvasjs.com


Limitations / Open Questions

● PassInstrumentation instances operate on PassManager instances. A single compilation may use 
multiple (nested or not) PassManagers. IREE even splits between several binaries (iree-import-tf, 

iree-translate).
● Linking from the chart to IR would help dig deeper, ideally with before → after for a highlighted pass

○ IRPrinterInstrumentation almost works for this, but nested passes are tricky

Ideas:

● Maybe add a monotonically increasing identifier and/or a timestamp identifying each pass for 
runBeforePass/runAfterPass? Then could write multiple JSON files and join them together.

● Other metadata would be nice to access somehow and write into the JSON: compiler tool version 
number / commit hash, input flags, source location where pass is added (disambiguate Canonicalize)



Contribute upstream?

C++ instrumentation that outputs JSON seems straightforward enough to contribute

● Could expand with other metrics and use to drive other visualizations or data analyses

What about the HTML/JS visualization code / possible hosted webpage?

Could adapt in some way to fit within editor extensions (like the VSCode one)

https://github.com/llvm/llvm-project/tree/main/mlir/utils/vscode

