High Performance GPU Tensor Core Code Generation for Matmul Using MLIR

Navdeep Katel and Uday Bondhugula
PolyMage Labs & Indian Institute of Science
Outline

● Motivation

● GPUs
 ○ Hardware
 ○ Programming Model
 ○ Compilation Path

● Matrix Multiplication on GPUs

● Code Generation for Tensor Core Matmul
 ○ Performance Guidelines
 ○ Pipeline for Efficient Codegen

● Results
 ○ Matmul
 ○ Fusion

● Conclusion, Collaborations and Future Directions
Motivation

- The state of the art in high-performance deep learning is driven by highly tuned libraries.
- Often hand-optimized and tuned by expert programmers using low-level languages and models with significant effort.
- Lot of effort may need to be repeated for similar hardware.

What can be done?

- Make the process modular, systematic and automatic as much as possible.
- Build a set of abstractions, transformations and optimizations to generate code automatically. Possible using MLIR.
Outline

● Motivation
● GPUs
 ○ Hardware
 ○ Programming Model
 ○ Compilation Path
● Matrix Multiplication on GPUs
● Code Generation for Tensor Core Matmul
 ○ Performance Guidelines
 ○ Pipeline for Efficient Codegen
● Results
● What else?
 ○ Matmul
 ○ Fusion
● Conclusion, Collaborations and Future Directions
GPUs: Hardware (Compute Units)

- GPU (Graphics Processing Unit) is a highly parallel specialized piece of hardware. Primarily used for accelerating Deep Learning and Machine learning workloads. Volta -> Turing -> Ampere, are some recent architectures.

- It is a collection of Streaming Multiprocessors (SMs).

- SM is further partitioned into processing blocks.

- L1-D cache shared among all processing blocks.

- Each processing block has:
 - Warp schedulers + Dispatch Units.
 - CUDA cores for general math instructions.
 - Tensor Cores for MMA instructions.
 - SFUs for special math functions like \(\log_2f\), \(\sin f\), \(\cos f\).
 - Dedicated LD/ST units.
 - A register file.
 - L0-I cache.
GPUs: Hardware (Memory Hierarchy)

- GPU memory can be described as a 4-level memory hierarchy.
- Additionally, Each level has restrictions on what entity can access that memory.
- 4-Levels of the hierarchy:-
 - Registers.
 - L1-cache/Scratchpad memory.
 - L2-cache, shared among all the SMs.
 - Global memory (DRAM), Shared among all the SMs.
- L1-cache can be partitioned to have a programmer controlled scratchpad memory, called Shared Memory. Useful to store frequently accessed data.
GPUs: Tensor Cores

- Tensor cores are special units for **matrix multiply accumulate**.
- Performs a small matrix matrix multiplications in one cycle.
- Have very high performance as compared to regular CUDA cores.
- They operate on FP16 inputs, while accumulation can be in FP16 or FP32 (new data types also supported now).

<table>
<thead>
<tr>
<th></th>
<th>Turing RTX 2080 Ti</th>
<th>Ampere RTX 3090</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>FP16</td>
<td>FP32</td>
</tr>
<tr>
<td>Non TC (TFLOPS)</td>
<td>28.5</td>
<td>14.2</td>
</tr>
<tr>
<td>TC (TFLOPS)</td>
<td>113.8</td>
<td>56.9</td>
</tr>
</tbody>
</table>
GPUs: Programming the Tensor Cores

- Tensor Cores can be programmed/accessed in three ways:-
 - Use High level vendor libraries like cuBLAS, CuDNN.
 - Usually the fastest.
 - Limited support for operator fusion.
 - Program tensor cores using the (Warp Matrix Multiply Accumulate) WMMA API.
 - Provides utility functions for loading and storing matrix fragments.
 - Cannot totally avoid bank-conflicts.
 - Fused kernels can be implemented.
 - Offload the lowering to target instructions on NVIDIA's compiler.
 - Program the explicitly using `mma_sync` PTX instruction.
 - No utility functions for loading and storing matrices.
 - Different versions for devices of different compute capabilities.
 - Better control over bank conflicts by using swizzled layouts in shared memory.
Outline

● Motivation
● MLIR: A Brief Introduction
● GPUs
 ○ Hardware
 ○ Programming Model
 ○ Compilation Path
● Matrix Multiplication on GPUs
● Code Generation for Tensor Core Matmul
 ○ Performance Guidelines
 ○ Pipeline for Efficient Codegen
● Results
 ○ Matmul
 ○ Fusion
● Conclusion, Collaborations and Future Directions
GPUs: Programming Model

- Basic executing entity on a GPU is a thread.
- 32 threads are grouped together into a warp.
- A warp executes in a lock-step manner.
- Warps are further grouped into thread blocks. Bound to a single SM.
- Registers belonging to a thread are private to it.
- Threads in same thread block can communicate using the shared memory.
- Threads form different thread blocks need to communicate using the global memory.
- Synchronizations present at thread block and warp level.
Outline

- Motivation
- GPUs
 - Hardware
 - Programming Model
 - Compilation Path
- Matrix Multiplication on GPUs
- Code Generation for Tensor Core Matmul
 - Performance Guidelines
 - Pipeline for Efficient Codegen
- Results
 - Matmul
 - Fusion
- Conclusion, Collaborations and Future Directions
GPUs: Compilation Path

- Compilation path when using MLIR goes through LLVM.
- MLIR is converted into LLVM IR.
- LLVM NVPTX backend emits PTX code for given LLVM IR.
- PTX taken up by NVIDIA’s assembler to convert it into SASS and subsequently CUBIN.
Outline

● Motivation

● GPUs
 ○ Hardware
 ○ Programming Model
 ○ Compilation Path

● Matrix-Matrix Multiplication on GPUs

● Code Generation for Tensor Core Matmul
 ○ Performance Guidelines
 ○ Pipeline for Efficient Codegen

● Results
 ○ Matmul
 ○ Fusion

● Conclusion, Collaborations and Future Directions
Matrix-Matrix Multiplication on GPUs

- Matmul in a general form is represented by the equation, \(D = \alpha.A.B + \beta.C \), where \(\alpha \) and \(\beta \) are scalars and dimensions of \(A \), \(B \) and \(C \) are \(M \times K \), \(K \times N \) and \(M \times N \) respectively.
- Has \(O(n^3) \) computation on \(O(n^2) \) data. Roughly \(O(n) \) reuse.
- At the heart of many Deep learning models such as BERT.
- GPU vendor libraries like cuBLAS, usually provide the fastest implementations.
- Other works like CUTLASS achieve performance comparable/better than cuBLAS.
- CUTLASS highlights the recipe for efficient matmul on GPUs.
Matrix-Matrix Multiplication on GPUs

Figure 7. Recipe for efficient matmul on GPUs. *Fig. courtesy CUTLASS*
Outline

- Motivation
- GPUs
 - Hardware
 - Programming Model
 - Compilation Path
- Matrix-Matrix Multiplication on GPUs
- Code Generation for Tensor Core Matmul
 - Performance Guidelines
 - Pipeline for Efficient Codegen
- Results
 - Matmul
 - Fusion
- Conclusion, Collaborations and Future Directions
Code Generation for Tensor Core Matmul

Performance Guidelines:-

- **Two-level tiling:**
 - Thread Block Tiling
 - Warp Tiling

- **Parallelize independent tasks,** i.e. calculate independent tiles of the output matrix using different thread blocks.

- Efficient access to global memory by ensuring **coalesced accesses.**

- Efficient accesses to shared memory by reducing **bank conflicts.**

- **Overlap memory transfers with compute,** i.e. hide latency of global memory loads.

- Use **vectorized** memory accesses.
Outline

- Motivation
- GPUs
 - Hardware
 - Programming Model
 - Compilation Path
- Matrix-Matrix Multiplication on GPUs
- Code Generation for Tensor Core Matmul
 - Performance Guidelines
 - Pipeline for Efficient Codegen
- Evaluation
 - Matmul
 - Fusion
- Conclusion, Collaborations and Future Directions
Figure 8. MLIR Code generation Pipeline for tensor core matmul.
Code Generation for Tensor Core Matmul

WMMA Ops in MLIR:

- WMMA ops in MLIR were introduced in `gpu` dialect.
- To complete the code generation path, ops also introduced in `nvvm` dialect.
- Ops model the WMMA intrinsics present in `NVPTX` backend.
- A supporting opaque type `gpu.mma_matrix`, for WMMA to operate on was also introduced.
- Ops introduced include `gpu.subgroup_mma_load_matrix`, `gpu.subgroup_mma_store_matrix`, and `gpu.subgroup_mma_compute`.
Code Generation for Tensor Core Matmul

// Load operands for WMMA operation.
%a = gpu.subgroup_mma_load_matrix %A[%c0, %c0] {leadDimension = 1024 : index} : <-memref<1024x1024xf16> -> !gpu.mma_matrix<16x16xf16, "AOp">
...

// Perform the WMMA operation.
%res = gpu.subgroup_mma_compute %a, %b, %c : !gpu.mma_matrix<16x16xf16, "AOp">, <-!gpu.mma_matrix<16x16xf16, "BOp"> -> !gpu.mma_matrix<16x16xf32, "COp">

// Store back the result.
gpu.subgroup_mma_store_matrix %res, %C[%c0, %c0] {leadDimension = 1024 : index}: <-!gpu.mma_matrix<16x16xf32, "COp">, memref<1024x1024xf32>
Code Generation for Tensor Core Matmul

The beginning

```c
affine.for %i = 0 to %M {
    affine.for %j = 0 to %N {
        affine.for %l = 0 to %K {
            %a = affine.load %gpu_A[%i, %l] : memref<8192x8192xf16>
            %b = affine.load %gpu_B[%l, %j] : memref<8192x8192xf16>
            %c = affine.load %gpu_C[%i, %j] : memref<8192x8192xf32>
            %aq = fpext %a : f16 to f32
            %bq = fpext %b : f16 to f32
            %p = mulf %aq, %bq : f32
            %co = addf %c, %p : f32
            affine.store %co, %gpu_C[%i, %j] : memref<8192x8192xf32>
        }
    }
}
```
Code Generation for Tensor Core Matmul
Shared Memory and Register Blocking

- Matmul involves redundant accesses to the input matrices to calculate different elements of output matrices.
- Tile and distribute the computation among different thread blocks and warps. All proceed in parallel.
- Move the relevant tiles of input matrices into shared memory and registers.
- Redundant accesses are eliminated.
- Multi-level tiling using the affineLoopTiling, followed by affineDataCopyGenerate to create copy nests for global to shared data copy.
Code Generation for Tensor Core Matmul

Key: Naive - N | Shared Memory Tiling - ST | Register Tiling - RT | Padding - P | Load Store Vectorization - LSV | Latency Hiding - LH

![Bar chart showing performance improvements with various optimizations](chart.png)
Code Generation for Tensor Core Matmul

Bank Conflicts and Padding

- Shared memory is arranged in banks, usually 32 banks each 4-byte wide.
- 32 Threads from a warp can access shared memory in parallel.
- Conflict occurs when two or more threads in the same warp access different 4-byte words in the same bank.
- The accesses in a conflict are serialized, hence reduction in bandwidth.
- Padding is an effective technique to reduce shared memory bank conflicts.
- Padding done by changing the leading dimension of shared memory memref from `(leadingDimension)` to `(leadingDimension + paddingFactor)`.
Code Generation for Tensor Core Matmul

Key: Naive - N | SharedMemoryTiling - ST | RegisterTiling - RT | Padding - P | LoadStoreVectorization - LSV | LatencyHiding - LH

<table>
<thead>
<tr>
<th>Optimizations</th>
<th>Perf (TFLOPS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Naive</td>
<td>3.967101</td>
</tr>
<tr>
<td>N + ST</td>
<td>5.866879</td>
</tr>
<tr>
<td>N + ST + RT</td>
<td>10.342946</td>
</tr>
<tr>
<td>N + ST + RT + P</td>
<td>8.927097</td>
</tr>
<tr>
<td>N + ST + RT + LSV</td>
<td>60.266678</td>
</tr>
<tr>
<td>N + ST + RT + P + LSV</td>
<td>71.061672</td>
</tr>
<tr>
<td>N + ST + RT + P + LSV + LH</td>
<td>60.266678</td>
</tr>
<tr>
<td>CUBLAS</td>
<td>71.061672</td>
</tr>
<tr>
<td>Peak</td>
<td></td>
</tr>
</tbody>
</table>
Code Generation for Tensor Core Matmul

Global to Shared Copy Vectorization:-

- Tiles of A and B being copied from global to shared to shared memory, element by element.
- Vector load-stores often help in utilizing the available bandwidth efficiently.
- Vector width upto 128-bit supported on NVIDIA GPUs.
- Experimenting with different vector widths, 32, 64, 128-bit revealed that 128-bit works the best.
- Vectorization utility borrowed from MLIRX.
Code Generation for Tensor Core Matmul

affine.for %arg21 = 0 to 32 {
 affine.for %arg22 = 0 to 256 {
 %138 = affine.load %B[%arg21, %arg22] : memref<8192x8192xf16>
 affine.store %138, %frag_B_padded[%arg21 - %arg4, %arg22 - %arg1] :
 memref<32x264xf16, 3>
 }
}

Scalar copy loop

%7 = memref_vector_cast %memref_0 : memref<8192x8192xf16> to
 memref<8192x1024xvector<8xf16>>
%15 = memref_vector_cast %13 : memref<32x264xf16, 3> to memref<32x33xvector<8xf16>, 3>>
affine.for %arg21 = 0 to 32 {
 affine.for %arg22 = 0 to 256 step 8 {
 %147 = affine.load %7[%arg21, %arg22 floordiv 8] :
 memref<8192x1024xvector<8xf16>>
 affine.store %147, %15[%arg21 - %arg4, (%arg22 - %arg1) floordiv 8] :
 memref<32x33xvector<8xf16>, 3>>
 }
}

Vectorized copy loop
Code Generation for Tensor Core Matmul

Key: Naive - N | Shared Memory Tiling - ST | Register Tiling - RT | Padding - P | Load Store Vectorization - LSV | Latency Hiding - LH

Perf (TFLOPS)

Optimizations

- N
- ST
- ST + RT
- ST + RT + P
- ST + RT + LSV
- ST + RT + P + LSV
- ST + RT + P + LSV + LH
- CUBLAS
- Peak
Code Generation for Tensor Core Matmul - Knobs

Key: Naive - N | SharedMemoryTiling - ST | RegisterTiling - RT | Padding - P | LoadStoreVectorization - LSV | LatencyHiding - LH

![Bar chart showing performance (TFLOPS) for different optimizations.

Optimizations

- N
- N + ST
- N + RT
- N + RT + P
- N + LSV
- N + ST + RT + P + LSV
- N + ST + RT + P + LSV + LH
- CUDAAS
- Peak]
Global Memory Load Latency Hiding:

Main K-Loop of Matmul Kernel.

Main k-Loop with Latency Hiding.
Code Generation for Tensor Core Matmul

Key: Naive - N | SharedMemoryTiling - ST | RegisterTiling - RT | Padding - P | LoadStoreVectorization - LSV | LatencyHiding - LH

Optimizations

Perf (TFLOPS)
Code Generation for Tensor Core Matmul - Knobs

Key: Naive - N | Shared Memory Tiling - ST | Register Tiling - RT | Padding - P | Load Store Vectorization - LSV | Latency Hiding - LH

Optimizations

Perf (TFLOPS)
Code Generation for Tensor Core Matmul - Knobs

Key: Naive - N | Shared Memory Tiling - ST | Register Tiling - RT | Padding - P | Load Store Vectorization - LSV | Latency Hiding - LH

Optimizations

Percent (TFLOPS)
Code Generation for Tensor Core Matmul - Knobs

Key: Naive - N | SharedMemoryTiling - ST | RegisterTiling - RT | Padding - P | LoadStoreVectorization - LSV | LatencyHiding - LH

Optimizations

PERF (TFLOPS)
Code Generation for Tensor Core Matmul - What else?

- In deep learning models, a commonly occurring patterns is matmul followed by some pointwise operation such as ReLU.
- Usually the operations that follow are $O(n^2)$ and have RAW dependency on the result of matmul.
- When using frameworks such as PyTorch, the following thing happens:

```
Matmul -> Store result to GMEM -> Load Result from GMEM -> Pointwise Op -> Store result to GMEM
```

High latency operations. Can be avoided!

- By avoiding this, we can get real benefits on smaller kernels.
Code Generation for Tensor Core Matmul - What else?

- Because we are automatically generating our kernels we can take the opportunity to do **Operator Fusion**.

- **Idea** - Do not store the intermediate result of matmul to GMEM, instead keep them in the registers and apply the pointwise operation. Redundant loads-stores avoided.

```
Matmul ➔ Pointwise Op ➔ Store result to GMEM

Pointwise operation fused with matmul in registers.
```
Outline

● Motivation

● GPUs
 ○ Hardware
 ○ Programming Model
 ○ Compilation Path

● Matrix-Matrix Multiplication on GPUs

● Code Generation for Tensor Core Matmul
 ○ Performance Guidelines
 ○ Pipeline for Efficient Codegen

● Evaluation
 ○ Matmul
 ○ Fusion

● Conclusion, Collaborations and Future Directions
Evaluation

- Evaluation on two devices:-
 - Ampere based RTX 3090.
 - Turing based RTX 2080 Ti.
- The SM clocks were set to the boost frequency mentioned in the whitepaper for all the experiments.
- Only statically allocated shared memory used.
- The maximum number of registers per thread is set to 255.
- We consider matmul of the form \(C = AB + C \).
- All three matrices are stored in a row-major layout.
- Square problem sizes ranging from 1024 to 16384 with step of 256.
- Raw kernel execution times used for calculating TFLOPS.
Evaluation

- In general, Results are on par with CuBLAS.
- Comparison against CuBLASLt for fusion with ReLU op.
- Significantly better in FP16 mode than cuBLAS on large sizes on Ampere, we attribute this to:-
 - cuBLAS kernels were using slightly smaller tile sizes in shared memory and might not be well tuned.
 - Had more stalls on global memory loads.
- Better perf in FP32 mode on Ampere than Turing when compared with cuBLAS:-
 - cuBLAS is better tuned for Turing than Ampere. Almost hits the Peak.
 - Optimal tile sizes found had bank conflicts on Turing.
 - Comparing with absolute device peak we hit 90% on Turing and 94% on Ampere.
- Better perf in FP32 mode than FP16 version on Turing, we attribute this to:-
 - FP16 Version - Large warp-tiles for better reuse in the register lead to register spills, and degraded performance. Same warp-tiles worked on Ampere without register spills.
Evaluation

<table>
<thead>
<tr>
<th></th>
<th>Mixed Precision</th>
<th>Half Precision</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MIN</td>
<td>MAX</td>
</tr>
<tr>
<td>Ampere</td>
<td>95.34%</td>
<td>119.15%</td>
</tr>
<tr>
<td>Turing</td>
<td>86.78%</td>
<td>111.24%</td>
</tr>
</tbody>
</table>

Figure 11. Summary of Matmul Perf Against CuBLAS v11.2

<table>
<thead>
<tr>
<th>Fused ReLU Vs. CuBLASLt</th>
<th>Fused Constant Addition Vs. CUBLAS + CUDA</th>
<th>Fused Matrix Addition Vs. CUBLAS + CUDA</th>
<th>Fused matrix addition + ReLU Vs. CUBLAS + CUDA</th>
</tr>
</thead>
<tbody>
<tr>
<td>MIN</td>
<td>MAX</td>
<td>MIN</td>
<td>MAX</td>
</tr>
<tr>
<td>Ampere</td>
<td>95.32%</td>
<td>118.77%</td>
<td>99.5%</td>
</tr>
</tbody>
</table>

Figure 12. Summary of Ops Fused with Matmul in Mixed Precision
Outline

● Motivation
● Contributions
● GPUs
 ○ Hardware
 ○ Programming Model
 ○ Compilation Path
● Matrix-Matrix Multiplication on GPUs
● Code Generation for Tensor Core Matmul
 ○ Performance Guidelines
 ○ Pipeline for Efficient Codegen
● Evaluation
 ○ Matmul
 ○ Fusion
● Conclusion
Mixed-Precision Performance on Ampere
Half-Precision Performance on Ampere

![Graph showing performance vs problem size for MLIR, PEAK, and CUBLAS-11.2]
Mixed-Precision Performance on Turing
Half-Precision Performance on Turing

![Graph showing performance against problem size for CUBLAS-11.2, PEAK, and MLIR.]
Outline

● Motivation

● GPUs
 ○ Hardware
 ○ Programming Model
 ○ Compilation Path

● Matrix-Matrix Multiplication on GPUs

● Code Generation for Tensor Core Matmul
 ○ Performance Guidelines
 ○ Pipeline for Efficient Codegen

● Evaluation
 ○ Matmul
 ○ Fusion

● Conclusion, Collaborations and Future Directions
Mixed-Precision Fusion with ReLU on Ampere

![Graph showing performance (TFLOPS) vs. problem size (W) for CUBLASLt-11.2, MLIR, and PEAK.]
Mixed-Precision Fusion with Constant Add on Ampere

![Graph showing performance in TFLOPS vs problem size (W)]
Mixed-Precision Fusion with matrix Add on Ampere
Mixed-Precision Fusion with matrix Add + ReLU on Ampere
Mixed precision Fusion with input from ReLU on Ampere
Outline

- Motivation
- GPUs
 - Hardware
 - Programming Model
 - Compilation Path
- Matrix-Matrix Multiplication on GPUs
- Code Generation for Tensor Core Matmul
 - Performance Guidelines
 - Pipeline for Efficient Codegen
- Evaluation
 - Matmul
 - Fusion
- Conclusion, Collaborations and Future Directions
Conclusion, Collaborations and Future Directions

- Automatic code generation for GPU tensor cores using MLIR appears promising.
- Basic operations required to program tensor cores were contributed upstream.
- Plan to work and contribute other layers starting from the lower ones.
- Discuss to add a general `scf` to `gpu` mapping with warp level support.
- Mapping Affine operations to GPU WMMA operations.
- Plan to generalize operator fusion to handle a variety of fusion scenarios.
- Ultimately, modular, and reusable code generation building blocks (beyond just GEMM).
Thanks!