
High Performance GPU Tensor Core
Code Generation for Matmul Using

MLIR

Navdeep Katel and Uday Bondhugula
PolyMage Labs & Indian Institute of Science

Outline
● Motivation
● GPUs

○ Hardware
○ Programming Model
○ Compilation Path

● Matrix Multiplication on GPUs
● Code Generation for Tensor Core Matmul

○ Performance Guidelines
○ Pipeline for Efficient Codegen

● Results
○ Matmul
○ Fusion

● Conclusion, Collaborations and Future Directions

Motivation
● The state of the art in high-performance deep learning is driven by highly

tuned libraries.
● Often hand-optimized and tuned by expert programmers using low-level

languages and models with significant effort.
● Lot of effort may need to be repeated for similar hardware.

What can be done?

● Make the process modular, systematic and automatic as much as possible.
● Build a set of abstractions, transformations and optimizations to generate

code automatically. Possible using MLIR.

Outline
● Motivation
● GPUs

○ Hardware
○ Programming Model
○ Compilation Path

● Matrix Multiplication on GPUs
● Code Generation for Tensor Core Matmul

○ Performance Guidelines
○ Pipeline for Efficient Codegen

● Results
● What else?

○ Matmul
○ Fusion

● Conclusion, Collaborations and Future Directions

● GPU (Graphics Processing Unit) is a highly parallel specialized

piece of hardware. Primarily Used for accelerating Deep Learning

and Machine learning workloads. Volta -> Turing -> Ampere, are

some recent architectures.

● It is a collection of Streaming Multiprocessors (SMs).

● SM is further partitioned into processing blocks.

● L1-D cache shared among all processing blocks.

● Each processing block has:-
○ Warp schedulers + Dispatch Units.

○ CUDA cores for general math instructions.

○ Tensor Cores for MMA instructions.

○ SFUs for special math functions like __log2f(), __sinf(), __cosf().

○ Dedicated LD/ST units.

○ A register file.

○ L0-I cache.

GPUs: Hardware (Compute Units)

Figure 6. SM on GA102(Ampere).
Fig. courtesy GA102 whitepaper.

● GPU memory can be described as a 4-level memory hierarchy.

● Additionally, Each level has restrictions on what entity can access that memory.

● 4-Levels of the hierarchy:-
○ Registers.

○ L1-cache/Scratchpad memory.

○ L2-cache, shared among all the SMs.

○ Global memory (DRAM), Shared among all the SMs.

● L1-cache can be partitioned to have a programmer controlled scratchpad memory,

called Shared Memory. Useful to store frequently accessed data.

GPUs: Hardware (Memory Hierarchy)

● Tensor cores are special units for matrix multiply accumulate.

● Performs a small matrix matrix multiplications in one cycle.

● Have very high performance as compared to regular CUDA cores.

● They operate on FP16 inputs, while accumulation can be in FP16 or FP32(new data

types also supported now).

GPUs: Tensor Cores

Turing RTX 2080 Ti Ampere RTX 3090

FP16 FP32 FP16 FP32

Non
TC(TFLOPS)

28.5 14.2 35.6 35.6

TC(TFLOPS) 113.8 56.9 142 71

● Tensor Cores can be be programmed/accessed in three ways:-
○ Use High level vendor libraries like cuBLAS, CuDNN.

■ Usually the fastest.

■ Limited support for operator fusion.

○ Program tensor cores using the (Warp Matrix Multiply Accumulate)WMMA API.

■ Provides utility functions for loading and storing matrix fragments.

■ Cannot totally avoid bank-conflicts.

■ Fused kernels can be implemented.

■ Offload the lowering to target instructions on NVIDIA's compiler.

○ Program the explicitly using mma_sync PTX instruction.

■ No utility functions for loading and storing matrices.

■ Different versions for devices of different compute capabilities.

■ Better control over bank conflicts by using swizzled layouts in shared memory.

GPUs: Programming the Tensor Cores

Outline
● Motivation
● MLIR: A Brief Introduction
● GPUs

○ Hardware
○ Programming Model
○ Compilation Path

● Matrix Multiplication on GPUs
● Code Generation for Tensor Core Matmul

○ Performance Guidelines
○ Pipeline for Efficient Codegen

● Results
○ Matmul
○ Fusion

● Conclusion, Collaborations and Future Directions

● Basic executing entity on a GPU is a thread.

● 32 threads are grouped together into a warp.

● A warp executes in a lock-step manner.

● Warps are further grouped into thread blocks. Bound to a single SM.

● Registers belonging to a thread are private to it.

● Threads in same thread block can communicate using the shared memory.

● Threads form different thread blocks need to communicate using the global

memory.

● Synchronizations present at thread block and warp level.

GPUs: Programming Model

Outline
● Motivation
● GPUs

○ Hardware
○ Programming Model
○ Compilation Path

● Matrix Multiplication on GPUs
● Code Generation for Tensor Core Matmul

○ Performance Guidelines
○ Pipeline for Efficient Codegen

● Results
○ Matmul
○ Fusion

● Conclusion, Collaborations and Future Directions

GPUs: Compilation Path

LLVM IR NVPTX Backend PTX
NVIDIA’s
Compiler

Cubin

● Compilation path when using MLIR goes through LLVM.

● MLIR is converted into LLVM IR.

● LLVM NVPTX backend emits PTX code for given LLVM IR.

● PTX taken up by NVIDIA’s assembler to convert it into SASS and subsequently

CUBIN.

Outline
● Motivation
● GPUs

○ Hardware
○ Programming Model
○ Compilation Path

● Matrix-Matrix Multiplication on GPUs
● Code Generation for Tensor Core Matmul

○ Performance Guidelines
○ Pipeline for Efficient Codegen

● Results
○ Matmul
○ Fusion

● Conclusion, Collaborations and Future Directions

● Matmul in a general form is represented by the equation, D = 𝝰.A.B + 𝝱.C, where 𝛂

and β are scalars and dimensions of A, B and C are M⨉K, K⨉N and M⨉N

respectively.

● Has O(n^3) computation on O(n^2) data. Roughly O(n) reuse.

● At the heart of many Deep learning models such as BERT.

● GPU vendor libraries like cuBLAS, usually provide the fastest implementations.

● Other works like CUTLASS achieve performance comparable/better than cuBLAS.

● CUTLASS highlights the recipe for efficient matmul on GPUs.

Matrix-Matrix Multiplication on GPUs

Figure 7. Recipe for efficient matmul on GPUs. Fig. courtesy CUTLASS

Matrix-Matrix Multiplication on GPUs

Outline
● Motivation
● GPUs

○ Hardware
○ Programming Model
○ Compilation Path

● Matrix-Matrix Multiplication on GPUs
● Code Generation for Tensor Core Matmul

○ Performance Guidelines
○ Pipeline for Efficient Codegen

● Results
○ Matmul
○ Fusion

● Conclusion, Collaborations and Future Directions

Code Generation for Tensor Core Matmul
Performance Guidelines:-

● Two-level tiling:
○ Thread Block Tiling

○ Warp Tiling

● Parallelize independent tasks, i.e. calculate independent tiles of the output

matrix using different thread blocks.

● Efficient access to global memory by ensuring coalesced accesses.

● Efficient accesses to shared memory by reducing bank conflicts.

● Overlap memory transfers with compute, i.e. hide latency of global memory

loads.

● Use vectorized memory accesses.

● Motivation
● GPUs

○ Hardware
○ Programming Model
○ Compilation Path

● Matrix-Matrix Multiplication on GPUs
● Code Generation for Tensor Core Matmul

○ Performance Guidelines
○ Pipeline for Efficient Codegen

● Evaluation
○ Matmul
○ Fusion

● Conclusion, Collaborations and Future Directions

Outline

Code Generation for Tensor Core Matmul

Figure 8. MLIR Code generation Pipeline for tensor core matmul.

WMMA Ops in MLIR:-

● WMMA ops in MLIR were introduced in gpu dialect.

● To complete the code generation path, ops also introduced in nvvm dialect.

● Ops model the WMMA intrinsics present in NVPTX backend.

● A supporting opaque type gpu.mma_matrix, for WMMA to operate on was

also introduced.

● Ops introduced include gpu.subgroup_mma_load_matrix,
gpu.subgroup_mma_store_matrix, and gpu.subgroup_mma_compute.

Code Generation for Tensor Core Matmul

// Load operands for WMMA operation.

%a = gpu.subgroup_mma_load_matrix %A[%c0, %c0] {leadDimension = 1024 : index} : ←-

memref<1024x1024xf16> -> !gpu.mma_matrix<16x16xf16, "AOp">

...

// Perform the WMMA operation.

%res = gpu.subgroup_mma_compute %a, %b, %c : !gpu.mma_matrix<16x16xf16, "AOp"> , ←-

!gpu.mma_matrix<16x16xf16, "BOp"> -> !gpu.mma_matrix<16x16xf32, "COp">

// Store back the result.

gpu.subgroup_mma_store_matrix %res, %C[%c0, %c0] {leadDimension = 1024 : index}: ←-

!gpu.mma_matrix<16x16xf32, "COp"> , memref<1024x1024xf32>

Code Generation for Tensor Core Matmul

The beginning
 affine.for %i = 0 to %M {

 affine.for %j = 0 to %N {

 affine.for %l = 0 to %K {

 %a = affine.load %gpu_A[%i, %l] : memref<8192x8192xf16>

 %b = affine.load %gpu_B[%l, %j] : memref<8192x8192xf16>

 %c = affine.load %gpu_C[%i, %j] : memref<8192x8192xf32>

 %aq = fpext %a : f16 to f32

 %bq = fpext %b : f16 to f32

 %p = mulf %aq, %bq : f32

 %co = addf %c, %p : f32

 affine.store %co, %gpu_C[%i, %j] : memref<8192x8192xf32>

 }

 }

 }

Code Generation for Tensor Core Matmul

Code Generation for Tensor Core Matmul

Shared Memory and Register Blocking

● Matmul involves redundant accesses to the input matrices to calculate

different elements of output matrices.

● Tile and distribute the computation among different thread blocks and warps.

All proceed in parallel.

● Move the relevant tiles of input matrices into shared memory and registers.

● Redundant accesses are eliminated.

● Multi-level tiling using the affineLoopTiling, followed by

affineDataCopyGenerate to create copy nests for global to shared data copy.

Code Generation for Tensor Core Matmul

Code Generation for Tensor Core Matmul

Code Generation for Tensor Core Matmul
Bank Conflicts and Padding

● Shared memory is arranged in banks, usually 32 banks each 4-byte wide.

● 32 Threads from a warp can access shared memory in parallel.

● Conflict occurs when two or more threads in the same warp access different

4-byte words in the same bank.

● The accesses in a conflict are serialized, hence reduction in bandwidth.

● Padding is an effective technique to reduce shared memory bank conflicts.

● Padding done by changing the leading dimension of shared memory memref

from (leadingDimension) to (leadingDimension + paddingFactor).

Code Generation for Tensor Core Matmul

Code Generation for Tensor Core Matmul
Global to Shared Copy Vectorization:-

● Tiles of A and B being copied from global to shared to shared memory,

element by element.

● Vector load-stores often help in utilizing the available bandwidth efficiently.

● Vector width upto 128-bit supported on NVIDIA GPUs.

● Experimenting with different vector widths, 32, 64, 128-bit revealed that

128-bit works the best.

● Vectorization utility borrowed from MLIRX.

affine.for %arg21 = 0 to 32 {
 affine.for %arg22 = 0 to 256 {
 %138 = affine.load %B[%arg21, %arg22] : memref<8192x8192xf16>

 affine.store %138, %frag_B_padded[%arg21 - %arg4, %arg22 - %arg1] :
 memref<32x264xf16, 3>

 }
}

Code Generation for Tensor Core Matmul

%7 = memref_vector_cast %memref_0 : memref<8192x8192xf16> to
 memref<8192x1024xvector<8xf16>>

%15 = memref_vector_cast %13 : memref<32x264xf16, 3> to memref<32x33xvector<8xf16>, 3>>
affine.for %arg21 = 0 to 32 {

affine.for %arg22 = 0 to 256 step 8 {
 %147 = affine.load %7[%arg21, %arg22 floordiv 8] :

memref<8192x1024xvector<8xf16>>
 affine.store %147, %15[%arg21 - %arg4, (%arg22 - %arg1) floordiv 8] :

memref<32x33xvector<8xf16>, 3>>
 }
}

Scalar copy loop

Vectorized copy loop

Code Generation for Tensor Core Matmul

Code Generation for Tensor Core Matmul - Knobs

Code Generation for Tensor Core Matmul
Global Memory Load Latency Hiding:-

Comp(0) Comp(1) Comp(2)

Main K-Loop of Matmul Kernel.

LDG(0)STS(0)[S]

Comp(0)

LDG(1) Comp(1)

LDG(2)

Main k-Loop with Latency Hiding.

SYNC SYNC SYNC SYNC

Comp(2)

LDG(3)

Comp(3)LDG(0)STS(0)

[S]LDG(1)STS(1)[S
]

[S]LDG(2)STS(2)[S
]

STS(i)

gpu.launch blocks(...) {
%28 = gpu.subgroup_mma_load_matrix %C[%26, %27] {leadDimension = 8192 : index}

: memref<8192x8192xf32> -> !gpu.mma_matrix<16x16xf32, "COp">
%30 = gpu.subgroup_mma_load_matrix %C[%29, %27] {leadDimension = 8192 : index} :

memref<8192x8192xf32> -> !gpu.mma_matrix<16x16xf32, "COp">
...
// Copy loops for iteration 0 of k-loop.
scf.for %arg14 = %c0 to %c4 step %c1 {

%62 = memref.load %B[%53, %61] : memref<8192x1024xvector<8xf16>>
memref.store %62, %b_smem_cast[%53, %68] : memref<64x17xvector<8xf16>, 3>

}
...
gpu.barrier
// Thread block k-loop.
%49#2 = scf.for %arg14 = %c0 to %c8128 step %c64 iter_args(%arg14 = %28, %arg15 = %30)

-> (!gpu.mma_matrix<16x16xf32, "COp">, !gpu.mma_matrix<16x16xf32, "COp"> {
gpu.barrier
// Global memory loads for iteration i + 1 of k-loop.
%82 = memref.load %A[%74, %81] : memref<8192x1024xvector<8xf16>>
%102 = memref.load %B[%94, %101] : memref<8192x1024xvector<8xf16>>
…
// Compute for iteration i of k-loop.
scf.for %arg31 = %c0 to %c64 step %c32 iter_args(%arg16 = %arg14, %arg17 = %arg15)

-> (!gpu.mma_matrix<16x16xf32, "COp">, !gpu.mma_matrix<16x16xf32, "COp"> {...}
gpu.barrier
// Shared memory stores for iteration i + 1 of k-loop.
memref.store %102, %b_smem_cast[%51, %68] : memref<64x17xvector<8xf16>, 3>
memref.store %82, %a_smem_cast[%150, %167] : memref<128x9xvector<8xf16>, 3>
...

}
// Compute loop for iteration n-1 of k-loop.
scf.for %arg14 = %c0 to %c64 step %c32 {

...
}
gpu.subgroup_mma_store_matrix %49#0, %C[%26, %27] {leadDimension = 8192 : index} :

!gpu.mma_matrix<16x16xf32, "COp">, memref<8192x8192xf32>
gpu.subgroup_mma_store_matrix %49#1, %C[%29, %27] {leadDimension = 8192 : index} :

!gpu.mma_matrix<16x16xf32, "COp">, memref<8192x8192xf32>
}

Code Generation for Tensor Core Matmul - Skeleton of Generated Kernel

Code Generation for Tensor Core Matmul

Code Generation for Tensor Core Matmul - Knobs

Code Generation for Tensor Core Matmul - Knobs

Code Generation for Tensor Core Matmul - Knobs

Code Generation for Tensor Core Matmul - What else?
● In deep learning models, a commonly occurring patterns is matmul followed

by some pointwise operation such as ReLU.

● Usually the operations that follow are O(n^2) and have RAW dependency on

the result of matmul.

● When using frameworks such as PyTorch, the following thing happens:-

● By avoiding this, we can get real benefits on smaller kernels.

Matmul
Store result

to GMEM
Pointwise Op

Load Result
from GMEM

High latency operations. Can be
avoided!

Store result
to GMEM

Code Generation for Tensor Core Matmul - What else?
● Because we are automatically generating our kernels we can take the

opportunity to do Operator Fusion.

● Idea - Do not store the intermediate result of matmul to GMEM, instead keep

them in the registers and apply the pointwise operation. Redundant

loads-stores avoided.

Matmul Pointwise Op

Pointwise operation fused with
matmul in registers.

Store result
to GMEM

Outline
● Motivation
● GPUs

○ Hardware
○ Programming Model
○ Compilation Path

● Matrix-Matrix Multiplication on GPUs
● Code Generation for Tensor Core Matmul

○ Performance Guidelines
○ Pipeline for Efficient Codegen

● Evaluation
○ Matmul
○ Fusion

● Conclusion, Collaborations and Future Directions

● Evaluation on two devices:-
○ Ampere based RTX 3090.

○ Turing based RTX 2080 Ti.

● The SM clocks were set to the boost frequency mentioned in the whitepaper

for all the experiments.

● Only statically allocated shared memory used.

● The maximum number of registers per thread is set to 255.

● We consider matmul of the form C = AB + C.

● All three matrices are stored in a row-major layout.

● Square problem sizes ranging from 1024 to 16384 with step of 256.

● Raw kernel execution times used for calculating TFLOPS.

Evaluation

Evaluation
● In general, Results are on par with CuBLAS.
● Comparison against CuBLASLt for fusion with ReLU op.
● Significantly better in FP16 mode than cuBLAS on large sizes on Ampere, we

attribute this to:-
○ cuBLAS kernels were using slightly smaller tile sizes in shared memory and might not be well tuned.
○ Had more stalls on global memory loads.

● Better perf in FP32 mode on Ampere than Turing when compared with cuBLAS:-
○ cuBLAS is better tuned for Turing than Ampere. Almost hits the Peak.
○ Optimal tile sizes found had bank conflicts on Turing.
○ Comparing with absolute device peak we hit 90% on Turing and 94% on Ampere.

● Better perf in FP32 mode than FP16 version on Turing, we attribute this to:-
○ FP16 Version - Large warp-tiles for better reuse in the register lead to register spills, and degraded

performance. Same warp-tiles worked on Ampere without register spills.

Evaluation
Mixed Precision Half Precision

MIN MAX MIN MAX

Ampere 95.34% 119.15% 80.21% 160.24%

Turing 86.78% 111.24% 72.09% 89.06%

Figure 11. Summary of Matmul Perf Against
CuBLAS v11.2

Fused ReLU Vs.
CuBLASLt

Fused Constant
Addition Vs.
CUBLAS + CUDA

Fused Matrix
Addition Vs.
CUBLAS + CUDA

Fused matrix
addition + ReLU

Vs. CUBLAS + CUDA

MIN MAX MIN MAX MIN MAX MIN MAX

Ampere 95.32% 118.77% 99.5% 140.45% 100.97% 145.12% 103.63% 167.19%

Figure 12. Summary of Ops Fused with Matmul
in Mixed Precision

Outline
● Motivation
● Contributions
● GPUs

○ Hardware
○ Programming Model
○ Compilation Path

● Matrix-Matrix Multiplication on GPUs
● Code Generation for Tensor Core Matmul

○ Performance Guidelines
○ Pipeline for Efficient Codegen

● Evaluation
○ Matmul
○ Fusion

● Conclusion

Mixed-Precision Performance on Ampere

Half-Precision Performance on Ampere

Mixed-Precision Performance on Turing

Half-Precision Performance on Turing

Outline
● Motivation
● GPUs

○ Hardware
○ Programming Model
○ Compilation Path

● Matrix-Matrix Multiplication on GPUs
● Code Generation for Tensor Core Matmul

○ Performance Guidelines
○ Pipeline for Efficient Codegen

● Evaluation
○ Matmul
○ Fusion

● Conclusion, Collaborations and Future Directions

Mixed-Precision Fusion with ReLU on Ampere

Mixed-Precision Fusion with Constant Add on Ampere

Mixed-Precision Fusion with matrix Add on Ampere

Mixed-Precision Fusion with matrix Add + ReLU on Ampere

Mixed precision Fusion with input from ReLU on Ampere

● Motivation
● GPUs

○ Hardware
○ Programming Model
○ Compilation Path

● Matrix-Matrix Multiplication on GPUs
● Code Generation for Tensor Core Matmul

○ Performance Guidelines
○ Pipeline for Efficient Codegen

● Evaluation
○ Matmul
○ Fusion

● Conclusion, Collaborations and Future Directions

Outline

● Automatic code generation for GPU tensor cores using MLIR appears
promising

● Basic operations required to program tensor cores were contributed
upstream.

● Plan to work and contribute other layers starting from the lower ones.
● Discuss to add a general scf to gpu mapping with warp level support.
● Mapping Affine operations to GPU WMMA operations.
● Plan to generalize operator fusion to handle a variety of fusion scenarios.
● Ultimately, modular, and reusable code generation building blocks

(beyond just GEMM).

Conclusion, Collaborations and Future Directions

Thanks!

