
An ML-Driven Autoconfigurator 
for Sparse Tensor Kernels in 

MLIR
Gus Smith* w/ Aart Bik, Penporn Koanantakool, and 

Mangpo Phothilimthana (Google)

*on internship from UW



“cat”

1. Input
    Naturally sparse, embedding lookups, 
     sparse projection tensors, etc.

2. Activation
    ReLU, dropout, etc.

3. Weight
    Pruning, regularization, 
     non-cuboid filters, etc.
    

4. Gradient 
      Pruning, gradually sending updates

sparsity is everywhere!

(from Penporn Koanantakool)



sparsity takes many forms!

The tensor algebra compiler. Kjolstad et. al. 2017.



256x256 Matrix Multiplication

but, if we can exploit sparity, it’s immensely beneficial!
(from Penporn Koanantakool)



How do we exploit sparsity?

With sparsity formats!



6 9 8 5 7Values: 

(0, 0) (0, 2) (0, 3) (2, 0) (2, 3)Indices: 

Values: 

Column indices: 

6 9 8 5 7

0 2 3 0 3

0 3 3 5Row pointers: 

Coordinate (COO)
Compressed Sparse 

Row (CSR)

Values: 

Row indices: 

6 5 9 8 7

0 2 0 0 2

Column pointers: 0 2 2 3 5

Compressed Sparse 
Column (CSC)

plus DIA, ELL, and more…



…and then along came TACO…



Dimension-wise Specification

● Each dimension can be sparse or dense

● Define traversal order: (1st dim, 2nd dim, …)

● For a kth-order tensor, this covers k!2k formats

Dense: All elements in that 
dimension are stored (e.g., 
dense row pointers in 
CSR).
Sparse: Zeros in that 
dimension aren’t stored.

(from Penporn Koanantakool)



Dense
Rowmajor

CSR

CSC

DCSR

DCSCDense
Colmajor

Row-slicing

Col-slicing

The tensor algebra compiler. Kjolstad et. al. 2017.

Many possible formats for a 
matrix…many more for 

higher-dimensional tensors!



 #CSR = #sparse_tensor.encoding<{
   dimLevelType = [ "dense", "compressed" ],
   dimOrdering = affine_map<(d0, d1) -> (d0, d1)>
 }>

 func @kernel(%a: tensor<?x?xf64, #CSR>,
              %b: tensor<?x?xf64>,
              %c: tensor<?x?xf64>) -> tensor<?x?xf64> {

   ...kernel implementation...

   return %d : tensor<?x?xf64>
 }

thanks to Aart and others, we can now easily configure sparse kernels in MLIR!



Goal: given a kernel, can we 
configure its sparse format?

couldn’t you just brute force it?



Goal: given any kernel, can we 
quickly configure its sparse 

format?so we could use it in a JIT!



We use a “standard” ML-for-ML approach:

1. Train a cost model
2. Use the cost model in a search procedure

A Learned Performance Model for Tensor Processing Units (Kaufman et. al.)
Learning to Optimize Halide with Tree Search and Random Programs (Adams et. al.)

Learning to Optimize Tensor Programs (Chen et. al.)( )



Training a Cost Model



Configuration Features Sparse Tensor Features+

Network

Prediction

What features should we 
extract from the 
configuration?

How should we extract 
features from sparse tensors?

What network should we use? 
How should we train it?



Configuration Features

What features should we 
extract from the 
configuration?



Configuration Features

● Entire sparse kernel configuration is easily featurized by packing into 

fixed-length vector

● Per-dimension sparse formats, dimension ordering, plus other settings e.g. 

parallelization and vectorization levels
For sparse-dense matmul 
kernel: ~9k configurations



Configuration Features Sparse Tensor Features+

How should we extract 
features from sparse tensors?



Features Features

Manual 
Feature 

Extractor
CNNShape, rank, # of 

nonzeros

Bridging the Gap between Deep Learning and Sparse Matrix Format Selection, Zhao et. al 2018
Sparse Matrix Classification on Imbalanced Datasets Using Convolutional Neural Networks, Pichel et. al. 2019
IA-SpGEMM: an input-aware auto-tuning framework for parallel sparse matrix-matrix multiplication, Xie et. al. 2019

See Zhao et. al. 
2018, Pichel et. 

al. 2019, etc



IA-SpGEMM: an input-aware auto-tuning framework for parallel sparse matrix-matrix multiplication, Xie et. al. 2019

Variable-sized sparse input matrix

Fixed-sized dense output matrix

Now we can perform dense 2D 
convolution!



Configuration Features Sparse Tensor Features+

Network

Prediction

What network should we use? 
How should we train it?



CNN

Multilayer perceptron over 
concatenated features

Feature vector generated from inputs

Feature vector generated from parameterization

Prediction

Density representation of tensor input



9k parameterizations 3k tensor inputsx = 27M points!

From sparse ResNet50 dataset 
(Sparse GPU Kernels for Deep 

Learning, Gale et. al. 2020)

Randomly sample and benchmark the runtimes of 
50k (parameterization, input) points

Benchmarked on an Intel Xeon 
6154 (Skylake), 72 CPUs

model.compile(
      optimizer='adam',
      loss='mean_squared_error') 
model.fit(...)



Search



In related works, search 
follows similar structure

(Chen et. al.)

(Adams et. al.)



1. Randomly select test inputs
2. Randomly sample initial 

parameterizations
3. For each search round:

a. Use the cost model to filter the set of 
candidates (fast)

b. Benchmark the filtered set of candidates 
(slow)

c. Record top benchmarked candidates
d. Construct next generation of 

parameterizations

samplesamplesamplesamplesampletensor

samplesamplesamplesamplesampleparameterization

Model

samplesamplesampleparameterization

Benchmarker

sampleparameterization

S
am

pl
er



Sampler Given p0 and p1, randomly forms a new 
parameterization from the fields of p0 and p1.

Al
l p

ar
am

et
er

iz
at

io
ns

samplesamplesamplesamplesampleparameterization

Initial parameterizations 
from start of iteration

samplesamplesampleparameterization

Parameterizations 
filtered by cost model

sampleparameterization

Parameterizations 
filtered after 

benchmarking

samplesamplesamplesamplesampleparameterization



Future work

● Parameterize cost model over kernels
○ Generate features from kernels, e.g. via manual feature extraction or GNN

● Train on data from multiple kernels (SDDMM; random sparse kernels)



Thank you!


