Torch-MLIR

Sean Silva (Google/IREE) & Anush Elangovan (nod.ai)
IREE Team At Google

- Started the Torch-MLIR (nee npcomp) team because of the pressing need to have inbound connections from PyTorch → MLIR broadly.
- Dedicated to keeping this effort independent from a project perspective (i.e. IREE needs a good connection to PyTorch, but so does everyone)
- Torch-MLIR Team members:
 - Sean Silva
 - Yi Zhang
 - Stella Laurenzo (emeritus)
- Complements other frontend integrations (TFLite, TOSA, TF, etc)
- Most investment right now going to Torch-MLIR and TFLite/TOSA
- **What we do:** Turnkey A.I Silicon Enablement, complementing your internal teams
- **How we do it:** MLIR + Custom Codegen / Auto-scheduling for your silicon
- Been around for 8+yrs with last 4+ focused on A.I performance
- If you build A.I Silicon talk to us
 - We work with a lot of you on this call from edge to large clusters. Thank you for your support.
- If working at the intersection of ML, CS, Math and HW excites you talk to us stdin@nod.com

- Anush Elangovan - Founder / CEO
 - Built Chromebooks at Google previously, @Agnilux, Network Security @FireEye, DC Networking @ Cisco
 - anush@nod.com
- Harsh Menon - CTO
 - Built flying cars at KittyHawk
 - harsh@nod.com
- Nod.ai contributors: Ramiro, George, Dan, Stan and more ramping up
Outline

- What/Why/Roadmap
- The `torch` dialect
- Frontends
- Backends
- Demo
What is Torch-MLIR?

Confluence of two large ecosystems - PyTorch and LLVM/MLIR
What is Torch-MLIR?
What is Torch-MLIR?

- Aim to centralize PyTorch/MLIR interop code paths into a single project
 - Downstreams focus on their unique value instead of building yet another PyTorch/MLIR frontend.
 - Native import for popular PyTorch model hubs - torchvision, Huggingface NLP etc
- LLVM incubator project (upstream parts into PyTorch if it makes sense)
- Dual licensed (LLVM + PyTorch BSD) to facilitate code movement upstream
- https://github.com/llvm/torch-mlir or #torch-mlir on LLVM discord
- RFC to build with PyTorch Upstream:
 - https://github.com/pytorch/pytorch/pull/65880
Why Torch-MLIR?

● Lets Silicon Vendors focus on their differentiation and their backend without a need to keep up with the Frameworks.

● I have seen more than five custom implementations of mapping from PyTorch to MLIR. All redundant.
 ○ Like writing Clang C++ frontend for every LLVM backend / ISA.

● There is a need. Most viewed post this month. 7 vendors expressed support.
 ○ Express your support too:
 https://discuss.pytorch.org/t/torch-mlir-bridging-pytorch-and-mlir-ecosystems/133151

● Every platform needs the same building blocks and torch-mlir provides a clean abstraction for the backends
The Future:

- Validated Model/Op Support
 - Huggingface, torchvision etc
- Tighter integration with PyTorch
 - Solidify LazyTensorCore, TorchFX path
 - Potentially have a native LTC->MLIR plugin, like LTC->XLA (in torch_xla)
- First class training and inference support
- Compatibility test suite for Silicon Vendors
 - Push button qualification of PyTorch integration
 - Benchmarks as part of CTS
- Example dialects for customers to introduce custom functionality.
- Silicon Vendors: What would make your life easier?
The `torch` dialect
The `torch` dialect

- Auto-generated from source-of-truth Torch op registry
 - All Torch programs bottom out on the same set of dispatchable kernels

- A few hand-defined ops for modeling program structures, such as class types, instances, etc. (relevant for advanced features of TorchScript)

- Types for faithfully modeling Torch/Python type system.
 - `!torch.tensor` + `!torch.vtensor` (value-semantic tensor)
 - E.g. `!torch.tensor<[3,4,?],unk>`, `!torch.vtensor<*,f32>`, ...
 - Builtin tensor does not:
 - Model non-value semantics
 - Have first-class support for unknown dtype (element type)
 - `!torch.int`, `!torch.float`, `!torch.list<T>`, `!torch.dict<K, V>`
 - class types
Op autogeneration: `torch.aten.relu`

Info extracted from Torch registry

JitOperator 'aten::relu : (Tensor) -> (Tensor)'
MLIR op name = torch.aten.relu
MLIR td def name = Torch_AtenReluOp
namespace = aten
unqualified_name = relu
overload_name =
is_c10_op = True
is_vararg = False
is_varret = False
is_mutable = False
arguments:
 arg: {'name': 'self', 'type': 'Tensor', 'pytype': 'Tensor'}
returns:
 ret: {'name': '', 'type': 'Tensor', 'pytype': 'Tensor'}

 let summary = "Generated op for `aten::relu : (Tensor) -> (Tensor)`";
 let arguments = (ins
 AnyTorchTensorType:$self
);
 let results = (outs
 AnyTorchTensorType:$result
);
 let assemblyFormat = "$self attr-dict `:` type($self) `->` type($result)";
}
Op autogeneration: `torch.aten.relu_`

```
JitOperator 'aten::relu_ : (Tensor) -> (Tensor)':
  MLIR op name = torch.aten.relu_
  MLIR td def name = Torch_AtenRelu_Op
  namespace = aten
  unqualified_name = relu_
  overload_name =
  is_c10_op = True
  is_vararg = False
  is_varret = False
  is_mutable = True
  arguments:
    arg: {'name': 'self', 'type': 'Tensor',
          'pytype': 'Tensor',
          'alias_info': {'is_write': True, 'before': ['alias::a'], 'after': ['alias::a']}}
  returns:
    ret: {'name': '', 'type': 'Tensor',
          'pytype': 'Tensor',
          'alias_info': {'is_write': True, 'before': ['alias::a'], 'after': ['alias::a']}}

def Torch_AtenRelu_Op : Torch_Op<"aten.relu_", [
  IsTrailingUnderscoreInplaceVariant,
  AllowsTypeRefinement
]> {
  let summary = "Generated op for `aten::relu_ : (Tensor) -> (Tensor)`;"
  let arguments = (ins
    AnyTorchTensorType:$self
  );
  let results = (outs
    AnyTorchTensorType:$result
  );
  let assemblyFormat = "$self attr-dict `:`
  type($self) `->` type($result)";
}
```
Key `torch` Dialect Transformations

- **ReduceOpVariants**
 - Reduce similar ops to a smaller canonical set of ops

- **MaximizeValueSemantics**
 - Convert as much of the program as possible to value semantics

- **RefineTypes**
 - Propagate types throughout the program (including dtypes)

- **GlobalizeObjectGraph**
 - Turn TorchScript object graph into flat list of globals.
ReduceOpVariants: value-semantic ops

```
func @f(%arg0: !torch.tensor<[],f32>) -> !torch.tensor<[],f32> {  
  %0 = torch.aten.tanh %arg0 : !torch.tensor<[],f32> -> !torch.tensor<[],f32>  
  return %0 : !torch.tensor<[],f32>
}

⇒

func @f(%arg0: !torch.tensor<[],f32>) -> !torch.tensor<[],f32> {  
  %0 = torch.copy.to_vtensor %arg0 : !torch.vtensor<[],f32>  
  %1 = torch.aten.tanh %0 : !torch.vtensor<[],f32> -> !torch.vtensor<[],f32>  
  %2 = torch.copy.to_tensor %1 : !torch.tensor<[],f32>  
  return %2 : !torch.tensor<[],f32>
}
```
ReduceOpVariants: trailing "_" inplace variants

```plaintext
func @f(
    %arg0: !torch.tensor<[2],f32>, %arg1: !torch.tensor<[2],f32>) -> (!torch.tensor<[2],f32>, !torch.tensor<[2],f32>) {
    %int1 = torch.constant.int 1
    %0 = torch.aten.add_.Tensor %arg0, %arg1, %int1 : !torch.tensor<[2],f32>, !torch.tensor<[2],f32>, !torch.int -> !torch.tensor<[2],f32>
    return %0, %arg0 : !torch.tensor<[2],f32>, !torch.tensor<[2],f32>
}
⇒

func @f(%arg0: !torch.tensor<[2],f32>, %arg1: !torch.tensor<[2],f32>) -> (!torch.tensor<[2],f32>, !torch.tensor<[2],f32>) {
    %int1 = torch.constant.int 1
    %0 = torch.copy.to_vtensor %arg0 : !torch.vtensor<[2],f32>
    %1 = torch.copy.to_vtensor %arg1 : !torch.vtensor<[2],f32>
    %2 = torch.aten.add.Tensor %0, %1, %int1 : !torch.vtensor<[2],f32>, !torch.vtensor<[2],f32>, !torch.int -> !torch.vtensor<[2],f32>
    %3 = torch.copy.to_tensor %2 : !torch.tensor<[2],f32>
    %4 = torch.copy.to_vtensor %3 : !torch.vtensor<[2],f32>
    torch.overwrite.tensor %4 overwrites %arg0 : !torch.vtensor<[2],f32>, !torch.tensor<[2],f32>
    return %arg0, %arg0 : !torch.tensor<[2],f32>, !torch.tensor<[2],f32>
}
```
Maximize Value Semantics: trivial example

```c
func @f(%arg0: !torch.vtensor, %arg1: !torch.vtensor) -> (!torch.vtensor, !torch.vtensor) {
  %0 = torch.copy.to_tensor %arg0 : !torch.tensor
  %equal_to_arg0 = torch.copy.to_vtensor %0 : !torch.vtensor
  torch.overwrite.tensor %arg1 overwrites %0 : !torch.vtensor, !torch.tensor
  %equal_to_arg1 = torch.copy.to_vtensor %0 : !torch.vtensor
  return %equal_to_arg0, %equal_to_arg1 : !torch.vtensor, !torch.vtensor
}
```

⇒

```c
func @f(%arg0: !torch.vtensor, %arg1: !torch.vtensor) -> (!torch.vtensor, !torch.vtensor) {
  return %arg0, %arg1 : !torch.vtensor, !torch.vtensor
}
```
MaximizeValueSemantics: view-like ops

```ocaml
func @f(%arg0: !torch.vtensor) -> !torch.vtensor {
  %int0 = torch.constant.int 0
  %0 = torch.copy.to_tensor %arg0 : !torch.tensor
  %1 = torch.aten.unsqueeze %0, %int0 : !torch.tensor, !torch.int -> !torch.tensor
  %2 = torch.aten.unsqueeze %1, %int0 : !torch.tensor, !torch.int -> !torch.tensor
  %3 = torch.copy.to_vtensor %2 : !torch.vtensor
  return %3 : !torch.vtensor
}

⇒

func @f(%arg0: !torch.vtensor) -> !torch.vtensor {
  %int0 = torch.constant.int 0
  %0 = torch.aten.unsqueeze %arg0, %int0 : !torch.vtensor, !torch.int -> !torch.vtensor
  %1 = torch.aten.unsqueeze %0, %int0 : !torch.vtensor, !torch.int -> !torch.vtensor
  return %1 : !torch.vtensor
}
```
class MyConvLayer(torch.nn.Module):
 def __init__(self):
 self.conv = torch.nn.Conv2d(2, 10, 3, bias=False)
 def forward(self, x):
 return torch.relu(self.conv(x))

(+ some annotations for input types) ⇒

func @forward(%arg0: !torch.vtensor<[?,?,?,?], f32>) -> !torch.vtensor<[?,?,?,?], f32> {%
%int1 = torch.constant.int 1
%int0 = torch.constant.int 0
%0 = torch.vtensor.literal(opaque"_", "0xDEADBEEF" : tensor<10x2x3x3xf32>) : !torch.vtensor<[10,2,3,3],f32>
%none = torch.constant.none
%1 = torch.prim.ListConstruct %int1, %int1 : (!torch.int, !torch.int) -> !torch.list<!torch.int>
%2 = torch.prim.ListConstruct %int0, %int0 : (!torch.int, !torch.int) -> !torch.list<!torch.int>
%3 = torch.prim.ListConstruct %int1, %int1 : (!torch.int, !torch.int) -> !torch.list<!torch.int>
%4 = torch.aten.conv2d %arg0, %0, %none, %1, %2, %3, %int1 : !torch.vtensor<[?,?,?,?], f32>, !torch.vtensor<[10,2,3,3],f32>, !torch.none, !torch.list<!torch.int>, !torch.list<!torch.int>, !torch.list<!torch.int>, !torch.list<!torch.int>, !torch.list<!torch.int>, !torch.list<!torch.int>, !torch.int -> !torch.vtensor<[?,?,?,?], f32>
%5 = torch.aten.relu %4 : !torch.vtensor<[?,?,?,?], f32> -> !torch.vtensor<[?,?,?,?], f32>
return %5 : !torch.vtensor<[?,?,?,?], f32>
}
Frontends & Backends
Frontends
Torch Frontends

- TorchScript - high fidelity Python subset (whole program compilation model)
 - A lot of early torch-mlir (nee npcomp) was done in the context of the TorchScript frontend
- TorchFX - symbolic Python-level graph tracing
 - In-progress support for a pure-python TorchFX importer using our Python bindings
- LazyTensorCore - device-level graph tracing
 - In-progress support for seamless under-the-hood graph tracing + dispatch to your backend
TorchScript to MLIR importer

- Well-defined TorchScript IR (torch::jit::{Node,Block})
 - Very similar to MLIR actually.
- Well-defined TorchScript runtime representation (c10::IValue)
- <1kLOC to systematically import entire representation
- Whole program capture (Python subset)
 - :) Great for generating standalone deployable artifacts
 - :(Not so great if you just want a graph of tensor ops, and don’t care about (/can’t handle) the rest of the program
- int, float, list<T>, dict<K,V>, class types
 - Accurately models Python (Torch) type ontology.
class TestModule(torch.nn.Module):
 def __init__(self):
 self.arange = torch.arange(4)
 def forward(self, x):
 return x * self.arange

func private @__torch__.TestModule.forward(%arg0: !torch.nn.Module"__torch__.TestModule"), %arg1: !torch.tensor) -> !torch.tensor {
 %2 = torch.prim.GetAttr %arg0["arange"] : !torch.nn.Module"__torch__.TestModule" -> !torch.tensor
 %3 = torch.aten.mul.Tensor %arg1, %2 : !torch.tensor, !torch.tensor -> !torch.tensor
 return %3 : !torch.tensor
}

torch.class_type @__torch__.TestModule {
torch.attr "arange" : !torch.tensor
 torch.method "forward", @__torch__.TestModule.forward
}

%0 = torch.tensor.literal(dense<[0, 1, 2, 3]> : tensor<4xsi64>) : !torch.tensor<4,si64>
%1 = torch.nn_module {
 torch.slot "arange", %0 : !torch.tensor<4,si64>
} : !torch.nn.Module"__torch__.TestModule"
func private @__torch__.TestModule.forward(
 %arg0: !torch.nn.Module"__torch__.TestModule"), %arg1: !torch.tensor) -> !torch.tensor {

 %2 = torch.prim.GetAttr %arg0["arange"] : !torch.nn.Module"torch .TestModule" -> !torch.tensor
 %3 = torch.aten.mul.Tensor %arg1, %2 : !torch.tensor, !torch.tensor -> !torch.tensor
 return %3 : !torch.tensor
}

%
%1 = torch.nn_module { // Identified as root module.
 torch.slot "arange", %0 : !torch.tensor<[4],si64>
} : !torch.nn.Module"__torch__.TestModule">
⇒

// Easy to inline @arange after this transformation - mutation/aliasing/etc. easy to analyze.
torch.global_slot @arange : !torch.tensor {
 %0 = torch.tensor.literal(dense<[0, 1, 2, 3]> : tensor<4xsi64>) : !torch.tensor<[4],si64>
 torch.global_slot.init %0 : !torch.tensor<[4],si64>
}

func @forward(%arg0: !torch.tensor) -> !torch.tensor {
 %0 = torch.global_slot.get @arange : !torch.tensor
 %1 = torch.aten.mul.Tensor %arg0, %0 : !torch.tensor, !torch.tensor -> !torch.tensor
 return %1 : !torch.tensor
}
Backends
Interop with builtin tensor type.

- `!torch.vtensor` converts trivially to builtin `tensor` if dtype is known
- Linalg-on-tensors lowering
 - 100% dynamic shapes + runtime error guards for mismatching dimensions!
 - Requires statically inferred rank
- TOSA, MHLO soon? Let's do this :)
- This also involves lowering `!torch.int` to i64 and `!torch.float` to f64.
- The TorchConversion (``torch_c``) dialect facilitates interop with builtin types.
- Hacky reference flow using linalg-on-tensors + bufferize + ctypes + PyExecutionEngine
 - Easy to plug in a real linalg-on-tensors capable backend compiler/runtime instead.
Linalg-on-tensors for Conv2D example from earlier

```plaintext
#map = affine_map<(d0, d1, d2, d3) -> (d0, d1, d2, d3)>
module {
    func @forward(%arg0: tensor<f32>) -> tensor<f32> {
        %cst = constant opaque"_;", "0xDEADBEEF" : tensor<f32>
        %c-2_i64 = constant -2 : i64
        %cst_0 = constant 0 : index
        %c0 = constant 0 : index
        %c2 = constant 2 : index
        %c3 = constant 3 : index
        %0 = tensor.dim %arg0, %c0 : tensor<f32>
        %1 = tensor.dim %arg0, %c2 : tensor<f32>
        %2 = tensor.dim %arg0, %c3 : tensor<f32>
        %3 = index_cast %1 : index to i64
        %4 = addi %3, %c-2_i64 : i64
        %5 = index_cast %4 : i64 to index
        %6 = index_cast %2 : index to i64
        %7 = index_cast %6 : i64 to index
        %9 = linalg.init_tensor [%0, 10, %5, %8] : tensor<f32>
        %10 = linalg.fill(%cst_0, %9) : tensor<f32>
        %11 = linalg.conv_2d_nchw_fchw {dilations = dense<1>, strides = dense<1>} ins(%arg0, %cst : tensor<f32>) outs(%10 : tensor<f32>)
        %12 = linalg.generic {indexing_maps = [#map, #map], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%11 : tensor<f32>) outs(%9 : tensor<f32>)
```
```
E2E testing framework

- Op-level correctness test suite
- Larger models correctness tests (ResNet, BERT, …)
- Plug in your compiler+runtime with a small Python file
  - Can live in your downstream repo – does not need to be made public / pushed upstream.
- Supports complex flows like running on prototype hardware, remote lab devices, etc.
- XFAIL support for incremental bringup
- Excellent error handling/diagnostics for when things don’t go as expected
Demos
Join us:
#torch-mlir on LLVM discord
https://github.com/llvm/torch-mlir