
Frontend Pattern Language

PDLL

River Riddle



Proprietary + Confidential

This presentation assumes some background on PDL:

● 2021-04-15: Pattern Descriptor Language ; slides - recording
● 2019-12-19: Interpreted Pattern Match Execution ; slides - recording

Background: PDL, Pattern Descriptor Language 

https://drive.google.com/file/d/17WYUvlmCzNTiqLaxWf_uz4GiLm3QVoEV/view?usp=sharing
https://drive.google.com/file/d/1b8F1GHRPgCXGASZ7fhccU-xZZstLQ2Fi/view?usp=sharing
https://docs.google.com/presentation/d/1U3AHtvn_ONR2D4-ENbghYjqsgocu0VPw_2LLYj_A7Sc/edit
https://drive.google.com/file/d/1c_GfPfLVtew-Kg25pJayJM9qrlI1hxR-/view


Introduction



Proprietary + Confidential

● Frontend DSL for writing MLIR pattern rewrites

What is PDLL?



Proprietary + Confidential

● Frontend DSL for writing MLIR pattern rewrites

○ Codegens to PDL patterns (i.e. no C++ patterns, but allows C++/native code injection)

■ PDLL patterns can be compiled at runtime

What is PDLL?



Proprietary + Confidential

● Frontend DSL for writing MLIR pattern rewrites

○ Codegens to PDL patterns (i.e. no C++ patterns, but allows C++/native code injection)

■ PDLL patterns can be compiled at runtime

● Designed as a high-level representation of MLIR and PatternRewriter constructs

○ Support for all MLIR constructs; Optional, Variadic, Region, Successor, etc.

What is PDLL?



Proprietary + Confidential

● Frontend DSL for writing MLIR pattern rewrites

○ Codegens to PDL patterns (i.e. no C++ patterns, but allows C++/native code injection)

■ PDLL patterns can be compiled at runtime

● Designed as a high-level representation of MLIR and PatternRewriter constructs

○ Support for all MLIR constructs; Optional, Variadic, Region, Successor, etc.

● Built with modern language tooling in mind

○ Code completion, go-to-definition, formatting, etc.

What is PDLL?



Proprietary + Confidential

● Provide a declarative rewrite infrastructure that is easy and pleasant to use

Why PDLL?



Proprietary + Confidential

● Provide a declarative rewrite infrastructure that is easy and pleasant to use

● What about Tablegen-DRR?

Why PDLL?



Proprietary + Confidential

● Provide a declarative rewrite infrastructure that is easy and pleasant to use

● What about Tablegen-DRR?

○ Tablegen is not an ideal host language for MLIR constructs

■ Problems have arose with multi-result operations, replacing multi operations, 

constraint application, …

Why PDLL?



Proprietary + Confidential

● Provide a declarative rewrite infrastructure that is easy and pleasant to use

● What about Tablegen-DRR?

○ Tablegen is not an ideal host language for MLIR constructs

■ Problems have arose with multi-result operations, replacing multi operations, 

constraint application, …

Why PDLL?



Proprietary + Confidential

● Provide a declarative rewrite infrastructure that is easy and pleasant to use

● What about Tablegen-DRR?

○ Tablegen is not an ideal host language for MLIR constructs

■ Problems have arose with multi-result operations, replacing multi operations, 

constraint application, …

Why PDLL?



Proprietary + Confidential

● Provide a declarative rewrite infrastructure that is easy and pleasant to use

● What about Tablegen-DRR?

○ Tablegen is not an ideal host language for MLIR constructs

■ Problems have arose with multi-result operations, replacing multi operations, 

constraint application, …

Why PDLL?



Proprietary + Confidential

● Provide a declarative rewrite infrastructure that is easy and pleasant to use

● What about Tablegen-DRR?

○ Tablegen is not an ideal host language for MLIR constructs

■ Problems have arose with multi-result operations, replacing multi operations, 

constraint application, …

● Why not X language?

○ Yes and No

Why PDLL?



Proprietary + Confidential

● Provide a declarative rewrite infrastructure that is easy and pleasant to use

● What about Tablegen-DRR?

○ Tablegen is not an ideal host language for MLIR constructs

■ Problems have arose with multi-result operations, replacing multi operations, 

constraint application, …

● Why not X language?

○ No

■ Extra dependencies, environment, performance, tooling, subset of language to 

support, etc. considerations

Why PDLL?



Proprietary + Confidential

● Provide a declarative rewrite infrastructure that is easy and pleasant to use

● What about Tablegen-DRR?

○ Tablegen is not an ideal host language for MLIR constructs

■ Problems have arose with multi-result operations, replacing multi operations, 

constraint application, …

● Why not X language?

○ No

■ Extra dependencies, environment, performance, tooling, subset of language to 

support, etc. considerations

○ Yes

■ PDL (the underlying infra) was designed with multiple frontends in mind

■ Different users have different constraints

Why PDLL?



Language Demo



Status



Roadmap

● Current Status

○ Everything in the demo

○ Focusing on useful initial feature set (e.g. what is needed to delete TDRR)



Roadmap

● Current Status

○ Everything in the demo

○ Focusing on useful initial feature set (e.g. what is needed to delete TDRR)

● Next steps

○ Support Blocks and Regions, DialectConversion type conversions, etc.

○ Performance improvements and optimizations for PDL



Roadmap

● Current Status

○ Everything in the demo

○ Focusing on useful initial feature set (e.g. what is needed to delete TDRR)

● Next steps

○ Support Blocks and Regions, DialectConversion type conversions, etc.

○ Performance improvements and optimizations for PDL

○ Formalize RFC and develop upstream



Proprietary + Confidential

Thanks


