IREE’s Input Dialect

Interfacing to ML Frontends

Who we are

Preferred ML Compilation Pipeline

TensorElow “Input Waistline”
TFLite LCc,
Torch At ggg fam > C(I)Fr{niﬁer Binary
JAX ML
P Extensions

Why does a defined waistline matter?

e Ultimately desire some degree of program portability and stability guarantees

e \ersioning/serialization/extension management requires a defined set

e Keeps the door accessible for top-level retargetability of entire compiler
stacks

e Allows decoupling of system components and layers of the stack

What we actually have today — more of a kitchen sink

TOSA
Focusing on this one today
MHLO
TensorFlow
: iree_input L
TFLite
linal IREE .
Torch g Gon Binary
JAX linalg_ext
TMTensor
builtin / arith / tensor /
math / cf / scf

It's not that dire — progress has been made

TFLite fully legalizes to TOSA + iree_input *
TensorFlow fully legalizes to MHLO + iree_input *
JAX fully legalizes to MHLO + iree_input *

Torch is growing legalizations to TOSA

Rumors of better alignment with ONNX ...

Once you see what iree_input is, you will understand that there isn’t much left.
If we can agree on these final bits, we’re almost at completeness for the current
generation of frontends.

* Plus builtin.module and builtin.func, but that is getting easier to abstract

What is the iree_input dialect?

e Frontends used to just target IREE'’s internal dialects directly.

e We boiled out the minimal useful set of things that didn’t exist elsewhere and
were needed for completeness.

e We wish we didn’t need it and that there was just a common dialect upstream.

e \Would also like “internal” upstream dialects to be distinguished from
“interchange” dialects, which have stronger guarantees around versioning,

serialization, etc.
o Some of the things in iree_input are passingly similar to MLIR internal dialect constructs but
we want them stabilized and specified concretely with different guarantees

Source Links

e iree-dialects/Dialect/Input/InputDialect.td
e iree-dialects/Dialect/Input/InputOps.td

Types

Types

e buffer — Reference counted, bag of bits (no dtype or shape) *

e buffer view — Reference counted, view over a buffer, adding dtype and shape
metadata

e Jist — Reference counted linear list, parameterized to contain either:
ref-objects, primitives, or variants

e variant — Holds any value or ref-object

e plr— Parameterized to point to a type (currently used to support global
indirection).

* Not yet in input dialect, only in internal, but needed for some calling conventions.

Ops

Global Ops

IREE globals store a value type or ref-counted object, which includes
BufferViews. At the high level, they support tensor-types, which can be
thought of as unique BufferViews whose contents are never modified (the
compiler relaxes this constraint if able).

A reference to a global can be taken, supporting indirect access.

Globals are either initialized with an inline value or can have an initial store
performed in a module initializer.

Global Ops — continued

global : Defines a module-level, symbolic global

global.address : Converts a global-symbol into a reference (Ptr)
global.load : Loads a value from a global

global.store : Stores a value into a global

global.load.indirect : Loads a value from a global reference
global.store.indirect . Stores a value into a global reference

BufferView Ops

e buffer view.rank : Returns the rank of a BufferView
e buffer view.dim : Returns the dim of a BufferView

Upstream Recommendation:

Model reference-counted types in MLIR core and make BufferView an
implementation of them.

List Ops

list.create : Creates a list with an initial capacity
list.size : Current size of a list

list.resize : Resizes a list

list.get : Gets an element in a list

list.set : Sets an element in a list

Upstream Recommendation:

Define reference-counted types upstream (lists are ref-counted here).

Tensor Ops

e Sometimes mirrors ops in core dialects, but often in a more specific way.

e All ops in this category are parameterized with explicit rank and values for any
dynamic dims (i.e. they exist as the result of lowering a program requiring
shape inference to discover all shape relationships and make them concrete).

e All shape dims are loose scalars passed in variadics.

e Externally, IREE allows commingling of implicit-shape dialects, so long as
they have enough notion of shape inference built-in to concretize. Internally,
IREE’s invariant is that all tensor ops carry, self contained explicit shapes, and
these ops bridge the divide in user programs we have discovered.

Tensor Ops — continued

e tensor.reshape : Reshapes to a new shape without modifying contents

e tensor.load : Loads an element from a tensor into a scalar or vector

e tensor.store : Returns a tensor with the element at the given index set to the
given value.

e tensor.splat : Returns a tensor with all elements initialized to a given value.

e tensor.clone : Clones the input tensor to a tensor with an identical value (used
in various boundary/interop cases to introduce explicit shape).

e tensor.slice : Slices out a sub-region of a tensor.

e tensor.update : Updates a sub-region of tensor, returning the resuilt.

e tensor.trace : Logs/traces a set of tensors with an identifying key

Tensor Ops — continued

Recommendation:

Define explicit “ranked tensor” ops as first order concepts and ensure that they
capture explicit dimensions (in parallel to the higher level, implicit dimension,
generic tensor ops).

Concurrency Ops

e |IREE directly exposes concurrency as dispatch of a SIMT program across an
nd-grid.

e Subset of “GPU” programming model exposed in the “gpu” dialect.

e Suitable for GPU and CPU.

Recommendation:

Define a new “simt” dialect as a higher level abstraction suitable for both
GPU/CPU and lower the user programming model into it.

General Recommendations

Dialect upstream?

e \Wouldn't just “move” iree_dialects upstream:
o Itis an amalgam which was derived experimentally by reducing multiple ML frontends and
working to compile real programs from them
e |t (and IREE generally) highlights some general purpose gaps upstream:
o No modeling of reference-counted types
o Explicit shaped, ranked tensor manipulators solve important problems
o List types and transformations would be really valuable
o Generalized SIMT concurrency primitives have been useful

e Even if every op/type here existed in a core dialect, we probably want a
dedicated dialect to represent present-day ML program modules.
o All current frontends reduce to a reasonable subset

o In combination with serialization/versioning of TOSA, could provide a complete waistline
o Would promote ops from iree_input, evaluating as we go

Define an “ml_program” dialect?

e ML frontends have moved fast in the past but have largely converged in terms
of top-level constructs.

e Having a stable target for them would help further convergence and sharing
when connecting them to the compiler ecosystem.

e There will always be a next thing, but that thing can have its own dialect when
it emerges.

e If “ml_program” brought common structural elements, this would nicely
complement more op-centric dialects like TOSA/MHLO/etc, driving further
convergence.

e \Would give us a place to work on other features (i.e. out-of-line constants,
mechanisms of program sharding, whole program analyses, etc).

Extra bits

e There are still some bits that are inherited from core dialects or not fully
mirrored in IREE’s input dialect.

e An “ml_program” dialect could also include:

o module / func / call : Allowing ML programs to bring their own module/func would aid in making
them self contained, also allowing further differentiation with respect to different kinds of code
units (graph vs cfg, etc).

o initializer : IREE internally has a FunctionLike initializer op, which is a () -> () function run at
module initialization time. This has not yet been mirrored in the input dialect.

Where to place it?

e Assuming that repository re-layout happens:
https://discourse.llvm.org/t/rfc-restructuring-of-the-mlir-repo/4927/50

e \We already have “targets” that represent defined egress points in terms of
self-contained dialects that bridge out.

e Can have “sources” that represent ingress points and are held to standards of

compatibility, serializability, etc in line with higher expectations.
o sources/MIProgram
o sources/Tosa
o sources/MIPrimitives? (hunting for a name for structured ops that form the basis for higher
order ops and augment the more algebraic kernel centric ops focused on in dialects like Tosa
— contractions, sort, scan, etc)

e [f defined right, we could start to get stable interchange points for sourcing
programs from present day ML systems.

