
IREE’s Input Dialect
Interfacing to ML Frontends



Who we are



Preferred ML Compilation Pipeline

TOSA

ML Program 
Ops

ML 
Extensions

“Input Waistline”TensorFlow

TFLite

Torch

JAX

ONNX

IREE 
Compiler Binary



Why does a defined waistline matter?

● Ultimately desire some degree of program portability and stability guarantees
● Versioning/serialization/extension management requires a defined set
● Keeps the door accessible for top-level retargetability of entire compiler 

stacks
● Allows decoupling of system components and layers of the stack



What we actually have today – more of a kitchen sink

TOSA

iree_input

TensorFlow

TFLite

Torch

JAX

IREE 
Compiler Binary

MHLO

linalg

linalg_ext

TMTensor

builtin / arith / tensor / 
math / cf / scf

Focusing on this one today



It’s not that dire – progress has been made

● TFLite fully legalizes to TOSA + iree_input *
● TensorFlow fully legalizes to MHLO + iree_input *
● JAX fully legalizes to MHLO + iree_input *
● Torch is growing legalizations to TOSA
● Rumors of better alignment with ONNX …

* Plus builtin.module and builtin.func, but that is getting easier to abstract

Once you see what iree_input is, you will understand that there isn’t much left.
If we can agree on these final bits, we’re almost at completeness for the current 

generation of frontends.



What is the iree_input dialect?

● Frontends used to just target IREE’s internal dialects directly.
● We boiled out the minimal useful set of things that didn’t exist elsewhere and 

were needed for completeness.
● We wish we didn’t need it and that there was just a common dialect upstream.
● Would also like “internal” upstream dialects to be distinguished from 

“interchange” dialects, which have stronger guarantees around versioning, 
serialization, etc.

○ Some of the things in iree_input are passingly similar to MLIR internal dialect constructs but 
we want them stabilized and specified concretely with different guarantees



Source Links

● iree-dialects/Dialect/Input/InputDialect.td
● iree-dialects/Dialect/Input/InputOps.td



Types



Types

● buffer – Reference counted, bag of bits (no dtype or shape) *
● buffer_view – Reference counted, view over a buffer, adding dtype and shape 

metadata
● list – Reference counted linear list, parameterized to contain either: 

ref-objects, primitives, or variants
● variant – Holds any value or ref-object
● ptr – Parameterized to point to a type (currently used to support global 

indirection).

* Not yet in input dialect, only in internal, but needed for some calling conventions.



Ops



Global Ops

● IREE globals store a value type or ref-counted object, which includes 
BufferViews. At the high level, they support tensor-types, which can be 
thought of as unique BufferViews whose contents are never modified (the 
compiler relaxes this constraint if able).

● A reference to a global can be taken, supporting indirect access.
● Globals are either initialized with an inline value or can have an initial store 

performed in a module initializer.



Global Ops – continued

● global : Defines a module-level, symbolic global
● global.address : Converts a global-symbol into a reference (Ptr)
● global.load : Loads a value from a global
● global.store : Stores a value into a global
● global.load.indirect : Loads a value from a global reference
● global.store.indirect : Stores a value into a global reference



BufferView Ops

● buffer_view.rank : Returns the rank of a BufferView
● buffer_view.dim : Returns the dim of a BufferView

Upstream Recommendation:

Model reference-counted types in MLIR core and make BufferView an 
implementation of them.



List Ops

● list.create : Creates a list with an initial capacity
● list.size : Current size of a list
● list.resize : Resizes a list
● list.get : Gets an element in a list
● list.set : Sets an element in a list

Upstream Recommendation:

Define reference-counted types upstream (lists are ref-counted here).



Tensor Ops

● Sometimes mirrors ops in core dialects, but often in a more specific way.
● All ops in this category are parameterized with explicit rank and values for any 

dynamic dims (i.e. they exist as the result of lowering a program requiring 
shape inference to discover all shape relationships and make them concrete).

● All shape dims are loose scalars passed in variadics.
● Externally, IREE allows commingling of implicit-shape dialects, so long as 

they have enough notion of shape inference built-in to concretize. Internally, 
IREE’s invariant is that all tensor ops carry, self contained explicit shapes, and 
these ops bridge the divide in user programs we have discovered.



Tensor Ops – continued

● tensor.reshape : Reshapes to a new shape without modifying contents
● tensor.load : Loads an element from a tensor into a scalar or vector
● tensor.store : Returns a tensor with the element at the given index set to the 

given value.
● tensor.splat : Returns a tensor with all elements initialized to a given value.
● tensor.clone : Clones the input tensor to a tensor with an identical value (used 

in various boundary/interop cases to introduce explicit shape).
● tensor.slice : Slices out a sub-region of a tensor.
● tensor.update : Updates a sub-region of tensor, returning the result.
● tensor.trace : Logs/traces a set of tensors with an identifying key



Tensor Ops – continued

Recommendation:

Define explicit “ranked tensor” ops as first order concepts and ensure that they 
capture explicit dimensions (in parallel to the higher level, implicit dimension, 
generic tensor ops).



Concurrency Ops

● IREE directly exposes concurrency as dispatch of a SIMT program across an 
nd-grid.

● Subset of “GPU” programming model exposed in the “gpu” dialect.
● Suitable for GPU and CPU.

Recommendation:

Define a new “simt” dialect as a higher level abstraction suitable for both 
GPU/CPU and lower the user programming model into it.



General Recommendations



Dialect upstream?

● Wouldn’t just “move” iree_dialects upstream:
○ It is an amalgam which was derived experimentally by reducing multiple ML frontends and 

working to compile real programs from them
● It (and IREE generally) highlights some general purpose gaps upstream:

○ No modeling of reference-counted types
○ Explicit shaped, ranked tensor manipulators solve important problems
○ List types and transformations would be really valuable
○ Generalized SIMT concurrency primitives have been useful

● Even if every op/type here existed in a core dialect, we probably want a 
dedicated dialect to represent present-day ML program modules.

○ All current frontends reduce to a reasonable subset
○ In combination with serialization/versioning of TOSA, could provide a complete waistline
○ Would promote ops from iree_input, evaluating as we go



Define an “ml_program” dialect?

● ML frontends have moved fast in the past but have largely converged in terms 
of top-level constructs.

● Having a stable target for them would help further convergence and sharing 
when connecting them to the compiler ecosystem.

● There will always be a next thing, but that thing can have its own dialect when 
it emerges.

● If “ml_program” brought common structural elements, this would nicely 
complement more op-centric dialects like TOSA/MHLO/etc, driving further 
convergence.

● Would give us a place to work on other features (i.e. out-of-line constants, 
mechanisms of program sharding, whole program analyses, etc).



Extra bits

● There are still some bits that are inherited from core dialects or not fully 
mirrored in IREE’s input dialect.

● An “ml_program” dialect could also include:
○ module / func / call : Allowing ML programs to bring their own module/func would aid in making 

them self contained, also allowing further differentiation with respect to different kinds of code 
units (graph vs cfg, etc).

○ initializer : IREE internally has a FunctionLike initializer op, which is a () -> () function run at 
module initialization time. This has not yet been mirrored in the input dialect.



Where to place it?

● Assuming that repository re-layout happens: 
https://discourse.llvm.org/t/rfc-restructuring-of-the-mlir-repo/4927/50

● We already have “targets” that represent defined egress points in terms of 
self-contained dialects that bridge out.

● Can have “sources” that represent ingress points and are held to standards of 
compatibility, serializability, etc in line with higher expectations.

○ sources/MlProgram
○ sources/Tosa
○ sources/MlPrimitives? (hunting for a name for structured ops that form the basis for higher 

order ops and augment the more algebraic kernel centric ops focused on in dialects like Tosa 
– contractions, sort, scan, etc)

● If defined right, we could start to get stable interchange points for sourcing 
programs from present day ML systems.


