
Alex Zinenko, <zinenko@google.com>
2022-03-17

Transform Interfaces RFC

mailto:zinenko@google.com

Motivation

Halide (Ragan-Kelley et.al. 2013)

TVM (Chen et.al. 2018)

TC (Vasilache et.al. 2018)

Fireiron (Hagedorn et.al. 2020)

Motivation

URUK (Girbal et.al. 2006) Omega (Pugh, 1991)

- Multiple projects have consistently demonstrated state-of-the-art performance results
by using schedule representations separated from computation.

- Schedules allow for precise targeting of transformation: transform specific operations
or operations with certain properties, e.g., loops with known large trip-count.

- Schedules reified as code or other exchange format allow for externalization of
heuristics.

- Reified schedules can easily be generated via autotuning or composed by experts.

Motivation

- Provide a mechanism similar to schedules in MLIR to reap the same benefits as
previous work at a larger scale.

- Must be extensible in presence of custom (out-of-tree) dialects.
- Reuse existing MLIR concepts.
- Minimally intrusive in the infrastructure.

Goal of the proposal

- Chaining transformations / communicating between them, e.g., “tile the loop then
unroll the resulting loops”.

- Possibility to analyze and simplify transformation “recipes”.

- Open set of transformations and rules (as opposed to parameterized heuristics).

Challenges

Transformations as IR

 %initial = xform.match @pattern

 %one:2 = xform.affine.tile %initial {sizes = [32,32]}

 %two:2 = xform.affine.tile %one {sizes = [4,8]}

pdl.pattern @pattern : benefit(1) {

 %0 = // arbitrary matching of affine.for

 rewrite %0 with @xform

}PDL pattern matching operations

Handle to matched operations

“Main” transformation result

Specific transform
Target

Transform properties

- Reproducible: can be stored, pre-computed outside the compilation flow, replayed, …
- Verifiable: op verifiers just work, e.g., chained tile sizes are always decreasing.
- Simplifiable: canonicalizers just work, e.g., tile by 0/1 or unroll by 1 are no-ops.
- Better error reporting: pinpoint a transformation step that failed.

Benefits of Transformations as IR

module @transform {

 xform.sequence {

 %0 = xform.match …
 xform.transform %0 {options …}

 ^~~~~~~~~~~~~~~

 // error: could not apply transformation

 // note: "attribute" prevents the transformation

 }

}

module @payload {

 "payload.op"() : () -> ()

 "payload.op"() {attribute} : () -> ()

 ^~~~~~~~~~~~

 // note: targeted at this op

}

Structure of Transformations as IR

module @payload {

 affine.for %i = ... { }

 affine.for %j = ... { }

}

module @transform {

 %initial = xform.match @pattern

 %one:2 = xform.affine.tile %initial {sizes = [32,32]}

 %two:2 = xform.affine.tile %one {sizes = [4,8]}

}

- Nested in the same
top-level module.

- Or two separate modules
consumed by a tool.

Some possibilities: combinators

%0 = xform.match @pattern

%1 = xform.try {

 %2 = xform.one.transformation %0

 xform.yield %2

// If any previous step failed, fallthrough.

} else {

 %2 = xform.another.transformation %0

 xform.yield %2

// If any previous step failed, fallthrough.

} else {

 xform.yet.another %0

 xform.yield %2

}

Similar to LIFT/RISE

Some possibilities: typed handles

%0 = xform.match @pattern : !xform.loop

%1 = xform.loop.tile %0 // okay

%2 = xform.func.outline %0 // error

Organization

- A dialect, “xform” or “transform” containing common ops and utilities.
- An interface `TranfsormOpInterface` in this dialect with:

virtual LogicalResult apply(TransformState &state) = 0;

struct TransformState {
 void setPayload(OpResult handle, ArrayRef<Operation *> payloadIROps);
 ArrayRef<Operation *> getPayload(Value operand) const;

 // Listeners?
};

- Traits to handle common cases such as single-operand single-result ops.

Layering: help wanted!

- Having “xform” dialect depend on all possible dialects / their transforms creates
unnecessary coupling.

- So does having every dialect depend on “xform”.

- Create new dialects to contain transformations?
- Somehow inject operations into the “xform” dialect without build-time dependency?

