Google

Poison Semantics for MLIR

Jakub Kuderski <kubak@google.com>
(@kuhar on Discourse & Phabricator & GitHub)

MLIR Open Meeting, 2022-11-03

Public RFC:
https://discourse.llvm.org/t/rfc-poison-semantics-for-mlir/66245

mailto:kubak@google.com
https://discourse.llvm.org/t/rfc-poison-semantics-for-mlir/66245

Agenda

e Motivating Example

e Goals

e Undefined Behavior & Speculation
e Poison Semantics

e Implementation Strategy

Google

Motivation

Example from Wide Integer Emulation

Implementing 8-bit arithmetic 'shift left' using 4-bit ops

%X =

arith.shli %x, 3

arith.shli %x, 5

* |

L

——

L

L

- |

(shrui LOW, 1)
(shli HIGH, 3)

<

L

L

0 |

shli LOW,

(shli HIGH, 5)

1

Google

Example from Wide Integer Emulation

Implementing 8-bit arithmetic shift left using 4-bit ops

%X

%y
%z

arith.shli %a, %p : i4
arith.shrui %a, %q : i4
arith.select %cond, %x, %y : i4

e Isthis safe knowing that either %p or %q is >= 4?
e Do we need to introduce 'runtime checks'?

o Control flow?

o Clamp shift values?

o Use saturating shifts?

Undefined Behavior
& Speculation

Examples: Defined and Undefined Behavior

arith.addi %x, %y

Well-defined for all inputs

i4

arith.divui %x, 0 : i4

Undefined behavior:
e Program can do nothing or
anything
e We assume it does not happen
e Cannot always speculate

arith.shrui %x, 5

Not well-defined for all inputs:

Also undefined behavior?
Undefined result but safe?
If safe, how to use it?
Consistent results?

i4

Examples: Continued

unsigned x0 = a >> b;

if (x@ '= 0) {
unsigned x1 = a >> b;
unsigned r =y / x1;
foo(r);

}

arith.shrui %x, 5 : i4

Not well-defined for all inputs:

Also undefined behavior?
Undefined result but safe?
If safe, how to use it?
Consistent results?

Goals

Goal 1: Define op semantics

e Differentiate between different classes of 'illegal' inputs
e We need precise language to talk about 'undefined' results
e Define how ops produce, propagate, and consume them

e Make op behavior consistent and intuitive

10

Goal 2: Provide building
blocks for analyses

Enable reasoning about illegal outputs and undefined results

General enough to support open set of types and ops

11

Poison Semantics

Poison in LLVM

e Closed set of types and instructions, simple type system
e poisonisanextravalue e.g.:i8 := {0..255} U poison
e Alvirtual' value separate from the bitvector representation

e Instructions can:
o Produce poison
o Propagate poison
o Stop poison propagation
o Trigger immediate Undefined Behavior

13

Taming Undefined Behavior in LLVM

Juneyoung Lee Sanjoy Das
Azul Systems, USA Google, USA

Yoonseung Kim
Youngju Song
Chung-Kil Hur

Seoul National University, Korea

{juneyoung.lee, yoonseung kim,
youngju.song, gilhur}@sf.snu.ac.kr

Abstract

A central concern for an optimizing compiler is the design of
its intermediate representation (IR) for code. The IR should
make it easy to perform transformations, and should also
afford efficient and precise static analysis.

In this paper we study an aspect of IR design that has re-
ceived little attention: the role of undefined behavior. The IR
for every optimizing compiler we have looked at, including
GCC, LLVM, Intel’s, and Microsoft’s, supports one or more
forms of undefined behavior (UB), not only to reflect the
semantics of UB-heavy programming languages such as C
and C++, but also to model inherently unsafe low-level oper-
ations such as memory stores and to avoid over-constraining
IR semantics to the point that desirable transformations be-
come illegal. The current semantics of LLVM’s IR fails to
justify some cases of loop unswitching, global value number-
ing, and other important “textbook” optimizations, causing
long-standing bugs.

‘We present solutions to the problems we have identified
in LLVM’s IR and show that most optimizations currently in
LLVM remain sound, and that some desirable new transfor-
mations become permissible. Our solutions do not degrade
compile time or performance of generated code.

sanjoy@azul.com

John Regehr
University of Utah, USA
regehr@cs.utah.edu

David Majnemer
majnemer@google.com

Nuno P. Lopes
Microsoft Research, UK
nlopes@microsoft.com

1. Introduction
Some ing languages, i
and hardware platforms define a set of erroneous operations
that are untrapped and that may cause the system to behave
badly. These operations, called undefined behaviors, are the
result of design choices that can simplify the implementation
of a platform, whether it is implemented in hardware or soft-
ware. The burden of avoiding these behaviors is then placed
upon the platform’s users. Because undefined behaviors are
untrapped, they are insidious: the unpredictable behavior that
they trigger often only shows itself much later.

The AVR32 processor architecture document [2, p. 51]
provides an example of hardware-level undefined behavior:

If the region has a size of 8 KB, the 13 lowest bits in
the start address must be 0. Failing to do so will result
in UNDEFINED behaviour.

The hardware developers have no obligation to detect or
handle this condition. ARM and x86 processors (and, indecd,
most CPUs that we know of) also have undefined behaviors.

At the programming language level, Scheme R6RS [24,
p. 54] mentions that “The effect of passing an inappropri-
ate number of values to such a continuation is undefined.”

Taming Undefined Behavior in LLVM, PLDI'17

https://www.cs.utah.edu/~regehr/papers/undef-pldi17.pdf

Poison in LLVM -- poison and freeze

e New constant: poison - creates a poison value of a given type

e freeze ty %x- stops poison propagation:

o noop if %x is a well-defined value
o produces a nondeterministic (arbitrary) value if poison

e Translation validation tool: https://alive2.llvm.org/ce/
o Alive2: Bounded Translation Validation for LLVM, PLDI'21

14

https://alive2.llvm.org/ce/
https://www.cs.utah.edu/~regehr/alive2-pldi21.pdf

Poison in LLVM -- Example

define i8 @src(i8 %arg@) {
%x = ashr 18 %arg@, 9
%y = add 18 %x, %argo
%z = select i1 false, i8 42,
%r = freeze i8 %z
ret i8 %r

define i8 @tgt(i8 %argd) {
%r = freeze i8 %arg®
ret i8 %r

i8 %y

)

poison
poison
poison
nondet

15

Poison semantics for MLIR -- Requirements

e Needs to support an open set of types and ops

e Opt-in:

o By default, types and ops do not have poison semantics

° New dialect: 'ub’
o Newops:ub.poison,ub.freeze, ub.unreachable

o Ops available for types that opted in

16

Poison semantics for MLIR -- Scalar Case

Similar to LLVM, a value can either be well-defined or poison

e ub.poison : ty --creates avalue of type 'ty' in its poison state

e ub.freeze %x : ty-noop for well-defined values, arbitrary value when %x is poison

A use of a poison value can result in one of the following, depending on the op:
1. Another poison, e.g., arith.addi %x, poison : 132
2. Awell-defined non-poison value, e.g., arith.select false, poison, 1 : i32

3. Immediate UB, e.g., arith.divui poison, ©: i32

17

18
Poison semantics for MLIR -- Vector Case

Similar to LLVM, one bit of poison per vector element

° Enables scalarization/vectorization:

%x = arith.add %arg@, %arg@ : vector<2xi32> %v = ub.poison : vector<2xi32>

%y = vector.extract %x [0] : vector<2xi32> %c = arith.constant 6 : 132

%z = vector.extract %x [1] : vector<2xi32> %y = vector.insert %c into %v [0] : vector<2xi32>
<==> %z = vector.extract %v [0] : vector<2xi32>

%a = vector.extract %argd [0] : vector<2xi32> ==>

%b = vector.extract %argd [1] : vector<2xi32> %z = arith.constant 6 : 132

%y = arith.add %a, %a : 132

%z arith.add %b, %b : i32

Poison semantics for MLIR -- Compound Types

e Ahypothetical type: pair.pair<tyl1, ty2>
e How to combine poison semantics of both element types?

e Some options:
o Per-element poison semantics
o Lowest common denominator of element types

o Whole-value poison semantics

19

Implementation

Semantics

e Should be detailed enough to write an interpreter
e Caveat: must be consistent without over-relying on
poison state

o Virtual and does not exist
o Valid to replace poison with a well-defined value

21

Implementation

e Used for analyses and transforms in the compiler
e Should allow for efficient sparse representation
o E.g., for selected tensor elements

e Should stay close to the semantics but allow for

over-approximation
o E.g., shared poison state for scalable vector dimensions

e Two types of analyses: may-be-poison, may-not-be-poison

Google

Implementation Strategy

e Bottom up:

o Start with lowest-level dialects first: 'LLVM, ‘arith’, 'vector'
o Gradually generalize the implementation

m Allow for custom types/dialects to opt in

m Addthe'ub' dialect

e Do not break existing dialects:
o If none of the ops produce poison, there is nothing to update

22

Google

Implementation Strategy -- When to Opt-in?

e Lowering must be a refinement

o Can only remove undefinedness, but not make defined behavior undefined

e Tradeoffs:
o Semantic mismatch leads to 'runtime checks'
o Poison allows to exploit undefinedness in the name of performance

o Poison adds significant semantics complexity

23

Implementation: Type and op interfaces

e Not 100% clear to me
e Typeinterface - to what extent type supports poison semantics
e Opinterface -- given a list of input poison states, what are the output poison states

A possible type interface:
1. bool canBePoison() — whether the type is poisonable and ub.poison can be used on this type
2. bool canBeFrozen() — whether the type is freezable and ub.freeze can be used on this type

24

Thank You

Questions?

oooooo

Bonus Slides

27
Refinement

When lowering, we can only make the program behavior more defined (or same)

Defined Values Undefined Values Poison Undefined Behavior

Google

Example from Wide Integer Emulation

Is this transform correct knowing some elements may be shifted by >= bitwidth?

%r
%e0
%el
<==
%X0
%X 1
%y 0
%y 1
%e0
%e

arith.shrui %x, %y

vector.
vector.

vector.
vector.
vector.
vector

extract
extract

extract
extract
extract

.extract

%r[0]
%r[1]

%x[0]
%x[1]
%y [0]
%y [1]

arith.shrui %x0, %y@
arith.shrui %x1, %y1

. vector<2xi32>
. vector<2xi32>
. vector<2xi32>

. vector<2xi32z>
. vector<2xi32>
. vector<2xi32z>
. vector<2xi32>

132
132

28

