
Integrating Convolution 
Optimization into MLIR to Improve 

Performance Beyond Im2Col+GEMM

Victor Ferrari
v187890@dac.unicamp.br

University of Campinas (Unicamp)
Institute of Computing (IC)
Computer Systems Laboratory (LSC)

MLIR Open Meeting, 2023-03-09



Agenda

● Motivation

● Optimizing Convolutions in MLIR

● Experimental Results

● Next Steps



Model Inference Results



Motivation



Convolution



Optimizing Convolutions for CPUs

● Cache-Tiling Macro-Kernel

● Optimized Micro-Kernel

 

● Fast Packing

 

● Similar to how BLAS handles matrix-multiplications



Optimizing Convolutions in MLIR



Optimizing Convolutions in MLIR

● 1 analysis pass
○ Convolution Slicing Analysis (CSA): responsible for calculating tile size and distribution (Tiling 

Strategy).

● 1 data transformation pass*
○ Filter Packing: if the conv. filters are static, they can be pre-packed for the computation at 

compile time.

● 1 lowering pass
○ Convolution Slicing Optimization (CSO): responsible for lowering a conv. operation to an 

optimized implementation using CSA's tiling strategy.



Current Compilation Flow



INT

FST

OUTT

INT
0 FST

0 OUTT0,0

INT
0

FST
0 FST

1 FST
K2-1 OUTT0,0 OUT

T
0,1 OUTT0,K2-

1

INT
0 FST

0 FST
1 FST

K2-1

OUTT0,0 OUT
T
0,1 OUTT0,K2-

1

OUTTK3-1,
0

OUTTK3-1,1OUT
T
K3-1,K2-1

INT
1 INT

K3-1

L1

L2

L3

1 2 3

4 5

6

7

Convolution Slicing Analysis (CSA)

K2

K3



Convolution Slicing Analysis (CSA)

● Tiling on the channel dimension

 

● Tile size and distribution determined by heuristic

● Scheduling order determined by cost model
○ Takes DRAM bursts into consideration



Convolution Slicing
Optimization (CSO)



…



Optimized Micro-Kernel

● We use an outer-product micro-kernel

 

● Can be the same as matrix-multiplication

 

● Next step: move micro-kernel to one of these alternatives (feedback please!)
○ llvm.matrix.multiply.* intrinsic
○ MLIR-centric alternative



Micro-Kernel: access 
pattern

15

ACCKernel 0

Kernel 1

Repeat for all channels… 

.....

Window 0 Window 1

VSR0

VSR1

VSR2

VSR3



Micro-Kernel: outer product

16

ACCKernel 0

Kernel 1

Window 0

Repeat for all channels… 

.....

Window 1

VSR0

VSR1

VSR2

VSR3



Packing



Useful Observation



Vector-Based Packing (using the Vector dialect)



Experimental Results



Experimental Setup

● IBM POWER10 E1050 CPU @ 4.00 GHz
○ Single-threaded single-precision computations peak at 256 GFLOPS/s
○ MMA Matrix Engine: 2 outer-products + accumulation per cycle

● Intel Xeon Silver 4208 CPU @ 2.10 GHz
○ Single-threaded single-precision computations peak at 67.2 GFLOPS/s
○ AVX-512 SIMD: 1 fma operation per cycle, 2 operations on 16 f32

● 100 measurements, with low variability
● ONNX-MLIR environment

○ Full machine-learning model inference

● Measured against Im2Col + OpenBLAS GEMM



Model Inference Results



Individual Convolution Result



Why it Works



Packing Improvements



Next Steps
We want to contribute!



Next Steps (Micro-Kernel Lowering)

● Today: implemented as a separate library

● Next: suggestions?
○ llvm.matrix.multiply.* intrinsic
○ MLIR-centric alternative



Next Steps (Macro-Kernel Lowering)

● Today: lowered from ONNX Dialect to
○ Affine
○ Memref
○ Vector
○ Arith

 

● Next: what are the suggestions?
○ Linalg?
○ Torch-MLIR?
○ TOSA (not NCHW)
○ …



More Information

● V. Ferrari, R. Sousa, M. Pereira, J. P. L. de Carvalho, J. N. Amaral, J. Moreira, G. 
Araujo. Advancing Direct Convolution using Convolution Slicing Optimization 
and ISA Extensions. 2023.
○ https://arxiv.org/abs/2303.04739

● R. Sousa, B. Jung, J. Kwak, M. Frank, G. Araujo. Efficient Tensor Slicing for 
Multicore NPUs using Memory Burst Modeling. 2021 IEEE 33rd International 
Symposium on Computer Architecture and High Performance Computing 
(SBAC-PAD)
○ https://ieeexplore.ieee.org/document/9651605



A little bit of code navigation



Thank You!


