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Model Inference Results



Motivation



Convolution



Optimizing Convolutions for CPUs

● Cache-Tiling Macro-Kernel

● Optimized Micro-Kernel

 

● Fast Packing

 

● Similar to how BLAS handles matrix-multiplications



Optimizing Convolutions in MLIR



Optimizing Convolutions in MLIR

● 1 analysis pass
○ Convolution Slicing Analysis (CSA): responsible for calculating tile size and distribution (Tiling 

Strategy).

● 1 data transformation pass*
○ Filter Packing: if the conv. filters are static, they can be pre-packed for the computation at 

compile time.

● 1 lowering pass
○ Convolution Slicing Optimization (CSO): responsible for lowering a conv. operation to an 

optimized implementation using CSA's tiling strategy.



Current Compilation Flow
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Convolution Slicing Analysis (CSA)

● Tiling on the channel dimension

 

● Tile size and distribution determined by heuristic

● Scheduling order determined by cost model
○ Takes DRAM bursts into consideration



Convolution Slicing
Optimization (CSO)



…



Optimized Micro-Kernel

● We use an outer-product micro-kernel

 

● Can be the same as matrix-multiplication

 

● Next step: move micro-kernel to one of these alternatives (feedback please!)
○ llvm.matrix.multiply.* intrinsic
○ MLIR-centric alternative



Micro-Kernel: access 
pattern
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Micro-Kernel: outer product
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Packing



Useful Observation



Vector-Based Packing (using the Vector dialect)



Experimental Results



Experimental Setup

● IBM POWER10 E1050 CPU @ 4.00 GHz
○ Single-threaded single-precision computations peak at 256 GFLOPS/s
○ MMA Matrix Engine: 2 outer-products + accumulation per cycle

● Intel Xeon Silver 4208 CPU @ 2.10 GHz
○ Single-threaded single-precision computations peak at 67.2 GFLOPS/s
○ AVX-512 SIMD: 1 fma operation per cycle, 2 operations on 16 f32

● 100 measurements, with low variability
● ONNX-MLIR environment

○ Full machine-learning model inference

● Measured against Im2Col + OpenBLAS GEMM



Model Inference Results



Individual Convolution Result



Why it Works



Packing Improvements



Next Steps
We want to contribute!



Next Steps (Micro-Kernel Lowering)

● Today: implemented as a separate library

● Next: suggestions?
○ llvm.matrix.multiply.* intrinsic
○ MLIR-centric alternative



Next Steps (Macro-Kernel Lowering)

● Today: lowered from ONNX Dialect to
○ Affine
○ Memref
○ Vector
○ Arith

 

● Next: what are the suggestions?
○ Linalg?
○ Torch-MLIR?
○ TOSA (not NCHW)
○ …
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Multicore NPUs using Memory Burst Modeling. 2021 IEEE 33rd International 
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○ https://ieeexplore.ieee.org/document/9651605



A little bit of code navigation



Thank You!


