
Nelli - a lightweight, 
Pythonic, frontend for 

MLIR
Max Levental, Alok Kamatar, Ryan Chard, Kyle Chard, Ian Foster

(and, recently,  Nicolas Vasilache )



TL;DR

2

makslevental/nelli

https://github.com/makslevental
https://github.com/makslevental/nelli


TL;DR

3



TL;DR

4



TL;DR

5



TL;DR

6



TL;DR

7



TL;DR

8



Outline

9

1. Prologue
2. Goals
3. Non-goals
4. Four weird tricks (real) language designers hate

a. class PYBIND11_EXPORT PyObjectRef 
i. def __add__(self): return 
ArithValue(add(self).result)

b. ast.Expr(ast_call(self.endfor.__name__))
c. POP_JUMP_IF_FALSE, POP_JUMP_FORWARD_IF_FALSE

5. Upstreaming (~IREE) 
6. Discussion



“Standing on the shoulders of giants”

10



Prologue

11

Me ~12 
months 
ago

loop-fusion?

loop-normalize?

loop-tile?

loop-unroll-jam?

???



All roads too “royal”

12

Lei Zhang
https://www.lei.chat/posts/mlir-vecto
r-dialect-and-patterns/

https://www.lei.chat/posts/mlir-vector-dialect-and-patterns/
https://www.lei.chat/posts/mlir-vector-dialect-and-patterns/


E.g., Torch-MLIR

13

→



Disparate flows

14

Python “flow” C++ “flow”



Goals

15

1. Easy to use (not simple, not safe)
2. Simple to understand (implementation)
3. Easy to get (install, download, etc)
4. As close to MLIR as possible

Easy := “just works”
Simple := doable given a 
little effort (no monads, no 
λ-calculi, no quantum 
computers



Non-goals

16



Attempt 1: Build a whole-ass 
compiler (parsing, AST, type 
inference, control-flow, etc.)
● Pros:

○ Parsing and AST come 
free (import ast)

○ Own your whole destiny 
(e.g. custom syntax)

○ Can be faster?
● Cons:

○ Immense amount of work
○ Basically can’t reuse 

existing bindings 
because you’re analyzing 
the program, not running it

Attempt 2: Build a Python bytecode 
interpreter in Python that runs the 
Python program (overriding some of 
the opcodes, such as MAKE_FUNCTION) 
● Pros:

○ Own most of your destiny
○ Can reuse existing bindings 

(since you’re actually running the 
Python program)

● Cons:
○ Immense amount of unnecessary 

work (handling op codes that you 
don’t care about overriding)

How?

https://github.com/nod-ai/SharkPy/blob/6b412c7251b02a5f30e0fcee739ad5fe06e8ecff/shark/compiler/builders/module.py
https://github.com/nod-ai/SharkPy/blob/188f446112a86ee848cb13f3aecfefdf82a7ace4/shark/compiler/byte_code_interpreter/vm.py


Idea 1: Use sys.settrace and 
f_trace_opcodes to hook 
particular opcodes 
● Pros:

○ Most of the benefits of the 
bytecode interpreter 
approach with none of the 
extra gristle

● Cons:
○ Can’t override the opcodes 

(only instrument)
○ 3.11 removes 

f_valuestack (which you 
need for things like 
replacing induction vars) 

● Pros:
○ Override only the nodes you care about 

(e.g. ast.FunctionDef)
○ Stable across Python versions
○ Can reuse existing bindings (because 

you are running the Python program)
● Cons:

○ Really hard to get right (basically gotta 
implement macro expansion rules from 
Lisp)

● Crisis averted: Pyccolo (god blessed the 
full-timers for they are the patron saints of the 
weekend warriors)

Is there a better way?
Idea 2: Override execution at the 
AST node level at runtime.

https://explog.in/notes/settrace.html
https://explog.in/notes/settrace.html
https://github.com/smacke/pyccolo


Idea 3

19



Step 1

20

mlir/lib/Bindings/Python/IRModule.h

mlir/lib/Bindings/Python/*.cpp

cpp_ext/Pybind.h

nelli/mlir/arith.py



Step 2

21

overload __getitem__

fiddle with Parameter.annotation



“[where] art thou [block terminator]?”

22



“[where] art thou [block terminator]?”

23

nelli/mlir/func.py



Step 3

24

→



Step 3

25

Recall goal “simple to understand” → no/little source analysis



Non-deterministic TM?

26



No, just haxx

27



28

In summary

● As little metaprogramming as 
possible (fat)

● A whole lot of syntactic sugar
● Built on a strong (protein rich) 

foundation (i.e., the upstream 
bindings)



29

In summary



Upstreaming

30

Nelli as a “staging ground” for upstreaming IREE



Discussion

31

1. If this seems useful to you, can you 
articulate why?

a. “micro-kernels”?
2. Re “easy to get” goal: MLIR builder bot?
3. Knowledge transfer for bindings in other 

languages (Java/FFI)



Nelli - a lightweight, 
Pythonic, frontend for 

MLIR
Max Levental, Alok Kamatar, Ryan Chard, Kyle Chard, Ian Foster

(and, recently,  Nicolas Vasilache )


