Representing Dataflow with
MLIR

Pedro Ciambra

pedro.ciambraagic.unicamp.br

Advisors:

Hervé Yviquel (UNICAMP/IC/LSC)
Maxime Pelcat (INSA Rennes/IETR/Vaader)
Mickaél Dardaillon (INSA Rennes/IETR/Vaader)

UNICAMP

Introduction 2

e Two part presentation

e 1:An overview of the work | did on
a Dataflow compiler for my
Master's degree at UNICAMP.

e 2: Focus on MLIR dialect:

o needs & difficulties
o solutions

o discussion

o a proposal

e I'lltryto be quick to give time for
discussion afterwards.

Motivation

Part]_ Dataflow basics

My compiler
laRa SDF Compiler Results

Dataflow ecosystem 4

e Dataflow programming is a very mature research subject ('60s)
e It has been a successful approach for a diverse range of

applications
o Real-time systems, reactive systems, heterogenous networks, HSL, etc...

e Many different MoCs with different abstractions and constraints

e Solutions are generally built with specific
application/architecture/MoC/philosophy in mind

e Not much focus on intercompatibility between tools, even if
there is a good amount of overlap in the abstractions and
techniques used.

e MLIR for the rescue

e Enable Dataflow researchers to more easily access the state of
the art in compilers

e Facilitate collaboration and integration of projects

e Make the advantages of Dataflow more accessible to the
compilation community

e Enable reuse of components such as actor implementations,
schedulers, optimizations and runtimes

e Problem: what are the requirements for a common dataflow
format that is useful within MLIR's constraints?

Dataflow programming paradigm 6

e Models the algorithm as a directed graph

e Vertices (actors) are computation units that act on tokens of data

e Edges are FIFO data structures

e Parallelizable operations correspond to parallel paths in the graph

e Data dependencies are explicit

e Easier to analyse when scheduling for multicore / generating HSL
/ >N

A B

\ C E

Cycles and delays 7

Dataflow Models of Computation 8

e There are many Dataflow MoCs, with different levels of strictness
o Each level relaxes a constraint
o Constrained models are easier to schedule at compile time
o Unconstrained models are more expressive and easier to use

Dynamic
DPN KPN
Quasi-Static
Static
Interfaced
SDF pSDF
bSDF

Synchronous Dataflow (SDF) 9

e Data rates are constrained to a constant number.
e Schedule can be generated statically, with no runtime cost
e Can detect inadmissible graphs at compile time

Cyclo-static Dataflow (CSDF)

e Data rates are cyclic and predictable
e Still doesn't depend on runtime data

(2,1) L

Parameterized/Interfaced (piSDF)

f(x)

Dynamic MoCs (DPN, KPN)

f(x)

h(z)

\/

Terminology

kernel

graph

parameter

¥

parameter

edge

edge

edge

kernel

kernel

____________________________ [
B

Related works

e Preesm is a dataflow IDE

O O O O O

(w4 =] *
< B

Support for static and quasi-static MoC
Generates C code for multicore

Has a graphical interface for graph design
Has state-of-the-art optimizations

Stores graph in declarative XML format

runtime-EclipseApplication - platform:/resource/org.letr preesm.tutorials.tutorialL/Algo/TestCom. diagram#0 - Ectipse SOK

0 Q- iFv R @BIBA I i O

r | & - | Q - Quick Access B &

& Projectxpl 32| = B | T Testcom 3

[Properties] Tasks [£] Probiems | @ Console 3 HE B 0 -
DFocls Workfiow console

T TestCom.dlagram - org.letr.preesm. tutorials tutoriall/Algo

Dataflow Interchange Format (DIF)

Part of a Java-based library
Simple, human-readable grammar
No assumptions about the MoC
Custom "attributes"

o O O O

dif graphl 4 {

topology {
nodes = nl, n2, n3, né4;
edges = el (nl, n2),
e2 (n2, nl),
e3 (nl, n3),
e4 (nl, n3),
e5 (n4, n3),
e6 (n4, nd);
}

interface {
inputs = pl, p2:n2;
outputs = p3:n3, p4:n4;
}
parameter {
paraml;
param2 = 1;

The IaRa compiler

i MLIR
(OBJ) |
y
Scheduling & _ .
Bufferization | LLWMIR = Binary
SDF
Graph —>‘ Parsi@—> Graph (iara dialect)
(DIF)

[[] our contribution

Exploiting MLIR

1
|
| MLIR
|
1

Kernel @e'st Co-optimization e
ygel --I
© [Dead code elimination] ;
Scheduling & R]
v T Bufferization * LLVMIR = Blnary
GSDFh —’@in Graph + Kernel
(|:r)e|]|rr)) < (iara + builtin dialects)

|:| Our contribution

Dead code elimination for unused outputs

e Automatically remove operations that access only unused outputs
e Allows actor reuse and saves memory and cycles

X r
y cartesian_to_polar theta

void cartesian_to_polar(
float *x, float =y, // input ports
float *r, float xtheta) // output ports {
*r = sQrt(*x * *X + *y * xy);
xtheta = atan2f(xy, *x);

func @cartesian_to_polar(

%argd: llvm.ptr<f32>, %argl: llvm.ptr<f32>,
%arg2: llvm.ptr<f32>, %arg3: 1lvm.ptr<f32>){

%1 = 1lvm.load %argd : !llvm.ptr<f32>
%2 = arith.mulf %1, %1 : f32
%3 = llvm.load %argl : !llvm.ptr<f32>

%4 = arith.mulf %3, %3 : f32

%5 = arith.addf %2, %4 : 32

%6 = math.sqrt %5 : f32

1lvm.store %6, %arg2 : !llvm.ptr<f32>

%9 = call @atan2(%3, %1) : (f32, f32) — 32
llvm.store %9, %arg3 : !1lvm.ptr<f32>

return

* Ciambra, Yviquel, Dardaillon, Pelcat. Co-optimizing Dataflow Graphs and Actors with MLIR. 2022 IEEE Workshop on Signal Processing Systems (SiPS)

Results

e Compared against existing SDF applications available in Preesm
o Converted Preesm's XML graph format into DIF

e Compared performance with Preesm's single-core scheduler
e Got comparable results, except for very large graphs, where Preesm's
memory optimizations made a big difference.

Results: RGB to Grayscale

4 nodes, 3 edges, 4 kernels, 68 lines of code

New application

O

Developed to show DCE

PREESM does not support unused outputs

O

PREESM implementation writes into a scratch buffer

O

rgb2hsl
Preesm laRa (No DCE) laRa (With DCE)
Time [s] 4151 4.020 2.689
Max RSS [KB] 11,048 6,300 3,338
Speedup 1.0 1.03 1.54
Mem. Usage 1.0 0.56 0.34

Results: Sobel filter

e 3 nodes, 4 edges, 3 kernels, 644 lines of code
e Schedule is trivial

__

,"" Bz, TR T A BT,)
| e ™ FPS
| !

H i
])
I i ﬁ Max RSS [KB]
gl T display
| 1 [Read_vuv It ‘o height
> height 1Y >b width
S~ > width ~->pid Speedup

y >y

u U

- v Mem. Usage

' Display

Preesm
1,398
33,404
1.0

1.0

laRa

1,402

33,232

1.0

0.99

Results: Scale-invariant Feature Transform (SIFT)

57 nodes, 108 edges, 33 kernels, 5460 lines of code
Several hierarchical layers, feedback loops with delays

4x more memory usage, 50% speed

Many broadcast nodes, which are optimized out in PREESM.

Preesm

laRa

Time [s]

0.538

0.977

Max RSS [KB]

198,448

857,540

Speedup

1.0

0.55

Mem. Usage

1.0

4.32

Requirements

Part 2 Approach

Solution
Discussion

Dataflow dialect

Requirements to represent a declarative Dataflow graph =

e A list of actor interfaces (signatures)
o Name, parameters, input and output ports
o Each port has a name, type, and token rate information

e A list of nodes

o Instances of actors, respecting signature
o Reference to implementation (C function, link-time symbol, or sub-graph)

e A list of edges between ports

o [Edges may have extra data, such as delays
o Needs type checking to ensure that producing and consuming ports match.

e Extensibility for different MoCs
e Notice the separation between graph and kernel
e Not very MLIR-like (no SSA to encode the graph)

First approach

e Two dialects:
o Declarative: high-level topology that has same structure as the input languages
m Everything is referred to by name (using SymbolName attributes)
m Easy to generate directly from the AST of the input languages
m Should remain human-readable
e Keep the interface recognizable for debug purpuses
e No name mangling, no parameter indexing etc
o SSA: for middle-level dataflow analysis
m Using MLIR type system and SSA semantics
m Using MLIR's graph traversal utilities for analysis
m Enables using the pattern matching framework for transformation

Declarative dialect

module {
iara.graph amain : "dif" h

#iara.param<"width" = 640 : 132>,

#iara.param<"height" = 480 : 132>]

[iara.kernel @read_rgb_frame
params [#iara.param<"width" = <<NULL ATTRIBUTE>>>, #iara.param<"height" = <<NULL ATTRIBUTE>>>]
outputs [#iara.port<"rgb" : i8[921600 : i64]>] // width * height * 3
iara.kernel @rgb_to_hsl
params [#iara. param<"w1dth" = <<NULL ATTRIBUTE>>>, #iara.param<"height" = <<NULL ATTRIBUTE>>>]
inputs [#iara.port<"rgb" : 18[921600 : i64]>]
outputs [#iara.port<"h" : f32[307200 : i64]>, // width * height
#iara.port<"s" : f32[307200 : i64]>,
Kernels #iara.port<"l" : £32[307200 : i64]>]
iara.kernel @l_to_rgb
params [#iara.param<"width" = <<NULL ATTRIBUTE>>>, #iara.param<"height" = <<NULL ATTRIBUTE>>>]
inputs [#iara.port<"l" : f32[307200 : i64]>]
outputs [#iara.port<"rgb" : i8[921600 : i64]>]
iara.kernel @write_rgb_frame
params [#iara.param<"width" = <<NULL ATTRIBUTE>>>, #iara.param<"height" = <<NULL ATTRIBUTE>>>]
inputs [#iara.port<"rgb" : 18[921600 : i64]>]

[iara.node @n2 : a@rgb_to_hsl
iara.node an3 : al_to_rgb
iara.node an4 : awrite_rgh_frame
|_iara.node @anl : @read_rgb_frame

Nodes

[iara.edge @el : @ni::"rgb" — @n2::"rgb"
Edges iara.edge @e€2 : @n2::"1" — @n3::"1"
| iara.edge @e3 : @n3::"rgh" — an4:"rgb" // <delays=[1,2,3...]>

Hypothetical middle-level "MLIR-like" dialect

%rgh = iara.node () <sym_name="nl1", impl="read_rgb_frame", width=640, height=480> : ()—>(...);
%h, %s, %L = iara.node (%rgb) <sym_name="n2", impl="rgb_to_hsl", width=640, height=480> : (...)—>(...);
%gS = iara.node (%l) <sym_name="n3", impl="1_to_rgb", width=640, height=480> : (...)—>(...);
iara.node (%gs) <sym_name="n&", impl="write_rgb_frame", width=640, height=480> : (...)=>();
e Ports represented by values, not attributes
e Names of ports are not preserved between passes (won't preserve debug info)
e Need to represent rate information (which could be very complex) in a custom type
e Need some sort of parameter indexing for more complex type information

o For instance, reactive dataflow MoCs need to be able to represent associations
between different ports/parameters in the type signature of actors
e Loss of source code location information and names of edges
e Would need a new operation anyways to add delays

%b_o0l, %b_o02
%b_delay

iara.node : (%b_delay, %a_ol1)—>(...); // Node B
iara.delay (%b_ol) {delays=[1,2,3,4... 1};

Solutions chosen

e Used declarative IR directly
o Did type-checking manually
m Already had to walk the graph to check for SDF rate consistency
m Could only get away with this because of SDF's simplicity
m The ideal thing would be to find a way to use MLIR's type system.

e Notideal for DF models that don't have kernel and graph separation

o For instance, languages such as LUSTRE have the actor implementation mixed in with
the graph information and signature.

A small proposal

%l... = some.op : () -> (.a: 132, .b:i32);
some.other op (%l.a, %1.b);

// equivalent to

%1l a, %1 b = some.op : (
some.other op (%1 a, %1 b);

e Named outputs

o All outputs of an operation share the same "namespace"
Names defined by the operation and ensured by the type system
Don't have to keep the index of the output
Persistent syntax between passes
Would facilitate several abstractions, not only dataflow
m Would allow for struct-like abstractions
m Wouldn't need member access operations
o Any obvious reasons why it would be unfeasible/unnecessary?

o O O O

Thank you!

Questions or feedback?

UNICAMP

29

