
Representing Dataflow with
MLIR

Pedro Ciambra
pedro.ciambra@ic.unicamp.br

Advisors:

Hervé Yviquel (UNICAMP/IC/LSC)
Maxime Pelcat (INSA Rennes/IETR/Vaader)
Mickaël Dardaillon (INSA Rennes/IETR/Vaader)

● Two part presentation
● 1: An overview of the work I did on

a Dataflow compiler for my
Master's degree at UNICAMP.

● 2: Focus on MLIR dialect:
○ needs & difficulties
○ solutions
○ discussion
○ a proposal

● I'll try to be quick to give time for
discussion afterwards.

Introduction 2

Part 1
IaRa SDF Compiler

- Motivation
- Dataflow basics
- My compiler
- Results

3

Dataflow ecosystem 4

● Dataflow programming is a very mature research subject ('60s)
● It has been a successful approach for a diverse range of

applications
○ Real-time systems, reactive systems, heterogenous networks, HSL, etc…

● Many different MoCs with different abstractions and constraints
● Solutions are generally built with specific

application/architecture/MoC/philosophy in mind
● Not much focus on intercompatibility between tools, even if

there is a good amount of overlap in the abstractions and
techniques used.

● MLIR for the rescue

Motivation 5

● Enable Dataflow researchers to more easily access the state of
the art in compilers

● Facilitate collaboration and integration of projects
● Make the advantages of Dataflow more accessible to the

compilation community
● Enable reuse of components such as actor implementations,

schedulers, optimizations and runtimes
● Problem: what are the requirements for a common dataflow

format that is useful within MLIR's constraints?

Dataflow programming paradigm

● Models the algorithm as a directed graph
● Vertices (actors) are computation units that act on tokens of data
● Edges are FIFO data structures
● Parallelizable operations correspond to parallel paths in the graph
● Data dependencies are explicit
● Easier to analyse when scheduling for multicore / generating HSL

6

B

C E

F

A

D

Cycles and delays 7

BA C

Dataflow Models of Computation

● There are many Dataflow MoCs, with different levels of strictness
○ Each level relaxes a constraint
○ Constrained models are easier to schedule at compile time
○ Unconstrained models are more expressive and easier to use

8

Synchronous Dataflow (SDF)

● Data rates are constrained to a constant number.
● Schedule can be generated statically, with no runtime cost
● Can detect inadmissible graphs at compile time

9

B

C E

F

A

D

2 1
1

1

2

1

1 1

1 1
1

2

Cyclo-static Dataflow (CSDF)

● Data rates are cyclic and predictable
● Still doesn't depend on runtime data

10

B

C E

F

A

D

2 1
(1, 2)

(2, 1)

2

1

1 1

1 1
1

2

Parameterized/Interfaced (piSDF) 11

B

C E

F

A

D

x y

f(x)
g(y)

Dynamic MoCs (DPN, KPN) 12

B

C E

F

A

D

x y

f(x)

h(z)
z

g(y)

Terminology 13

B

C E

F

A

D

node node

graph

graph

kernel

kernel

kernel

kernel

node node

nodenode

kernel

kernel

parameter parameter

edge

edge

edge

edge

edge

edge

Related works 14

● Preesm is a dataflow IDE
○ Support for static and quasi-static MoC
○ Generates C code for multicore
○ Has a graphical interface for graph design
○ Has state-of-the-art optimizations
○ Stores graph in declarative XML format

dif graph1_4 {
topology {

 nodes = n1, n2, n3, n4;
 edges = e1 (n1, n2),
 e2 (n2, n1),
 e3 (n1, n3),
 e4 (n1, n3),
 e5 (n4, n3),
 e6 (n4, n4);

}
interface {

 inputs = p1, p2:n2;
 outputs = p3:n3, p4:n4;

}
parameter {
 param1;

 param2 = 1;
 ...

● Dataflow Interchange Format (DIF)
○ Part of a Java-based library
○ Simple, human-readable grammar
○ No assumptions about the MoC
○ Custom "attributes"

The IaRa compiler 15

Kernel
(OBJ)

SDF
Graph
(DIF)

Polygeist

Parsing Graph (iara dialect)

Co-optimization

Dead code elimination

Scheduling &
Bufferization LLVM IR Binary

MLIR

Our contribution

Linking

Exploiting MLIR 16

Kernel
(C)

SDF
Graph
(DIF)

Polygeist

Parsing Graph + Kernel
(iara + builtin dialects)

Co-optimization

Dead code elimination

Scheduling &
Bufferization LLVM IR Binary

MLIR

Our contribution

Linking

Dead code elimination for unused outputs

● Automatically remove operations that access only unused outputs
● Allows actor reuse and saves memory and cycles

17

void cartesian_to_polar(
 float *x, float *y, // input ports
 float *r, float *theta) // output ports {
 *r = sqrt(*x * *x + *y * *y);
 *theta = atan2f(*y, *x);
}

func @cartesian_to_polar(
 %arg0: llvm.ptr<f32>, %arg1: llvm.ptr<f32>,
 %arg2: llvm.ptr<f32>, %arg3: llvm.ptr<f32>){
 %1 = llvm.load %arg0 : !llvm.ptr<f32>
 %2 = arith.mulf %1, %1 : f32
 %3 = llvm.load %arg1 : !llvm.ptr<f32>
 %4 = arith.mulf %3, %3 : f32
 %5 = arith.addf %2, %4 : f32
 %6 = math.sqrt %5 : f32
 llvm.store %6, %arg2 : !llvm.ptr<f32>
 %9 = call @atan2(%3, %1) : (f32, f32) -> f32
 llvm.store %9, %arg3 : !llvm.ptr<f32>
 return
}

cartesian_to_polar

x r

thetay

* Ciambra, Yviquel, Dardaillon, Pelcat. Co-optimizing Dataflow Graphs and Actors with MLIR. 2022 IEEE Workshop on Signal Processing Systems (SiPS)

Results 18

● Compared against existing SDF applications available in Preesm
○ Converted Preesm's XML graph format into DIF

● Compared performance with Preesm's single-core scheduler
● Got comparable results, except for very large graphs, where Preesm's

memory optimizations made a big difference.

Results: RGB to Grayscale 19

● 4 nodes, 3 edges, 4 kernels, 68 lines of code
● New application

○ Developed to show DCE
● PREESM does not support unused outputs

○ PREESM implementation writes into a scratch buffer

Preesm IaRa (No DCE) IaRa (With DCE)

Time [s] 4.151 4.020 2.689

Max RSS [KB] 11,048 6,300 3,838

Speedup 1.0 1.03 1.54

Mem. Usage 1.0 0.56 0.34

Results: Sobel filter 20

● 3 nodes, 4 edges, 3 kernels, 644 lines of code
● Schedule is trivial

Preesm IaRa

FPS 1,398 1,402

Max RSS [KB] 33,404 33,232

Speedup 1.0 1.0

Mem. Usage 1.0 0.99

Results: Scale-invariant Feature Transform (SIFT) 21

● 57 nodes, 108 edges, 33 kernels, 5460 lines of code
● Several hierarchical layers, feedback loops with delays
● 4x more memory usage, 50% speed
● Many broadcast nodes, which are optimized out in PREESM.

Preesm IaRa

Time [s] 0.538 0.977

Max RSS [KB] 198,448 857,540

Speedup 1.0 0.55

Mem. Usage 1.0 4.32

Part 2
Dataflow dialect

- Requirements
- Approach
- Solution
- Discussion

22

Requirements to represent a declarative Dataflow graph 23

● A list of actor interfaces (signatures)
○ Name, parameters, input and output ports
○ Each port has a name, type, and token rate information

● A list of nodes
○ Instances of actors, respecting signature
○ Reference to implementation (C function, link-time symbol, or sub-graph)

● A list of edges between ports
○ Edges may have extra data, such as delays
○ Needs type checking to ensure that producing and consuming ports match.

● Extensibility for different MoCs
● Notice the separation between graph and kernel
● Not very MLIR-like (no SSA to encode the graph)

First approach 24

● Two dialects:
○ Declarative: high-level topology that has same structure as the input languages

■ Everything is referred to by name (using SymbolName attributes)
■ Easy to generate directly from the AST of the input languages
■ Should remain human-readable

● Keep the interface recognizable for debug purpuses
● No name mangling, no parameter indexing etc

○ SSA: for middle-level dataflow analysis
■ Using MLIR type system and SSA semantics
■ Using MLIR's graph traversal utilities for analysis
■ Enables using the pattern matching framework for transformation

Declarative dialect 25

module {
 iara.graph @main : "dif"
 param_defaults [

#iara.param<"width" = 640 : i32>,
#iara.param<"height" = 480 : i32>]

 {
iara.kernel @read_rgb_frame

 params [#iara.param<"width" = <<NULL ATTRIBUTE>>>, #iara.param<"height" = <<NULL ATTRIBUTE>>>]
 outputs [#iara.port<"rgb" : i8[921600 : i64]>] // width * height * 3

iara.kernel @rgb_to_hsl
 params [#iara.param<"width" = <<NULL ATTRIBUTE>>>, #iara.param<"height" = <<NULL ATTRIBUTE>>>]
 inputs [#iara.port<"rgb" : i8[921600 : i64]>]
 outputs [#iara.port<"h" : f32[307200 : i64]>, // width * height

 #iara.port<"s" : f32[307200 : i64]>,
 #iara.port<"l" : f32[307200 : i64]>]
iara.kernel @l_to_rgb

 params [#iara.param<"width" = <<NULL ATTRIBUTE>>>, #iara.param<"height" = <<NULL ATTRIBUTE>>>]
 inputs [#iara.port<"l" : f32[307200 : i64]>]
 outputs [#iara.port<"rgb" : i8[921600 : i64]>]

iara.kernel @write_rgb_frame
 params [#iara.param<"width" = <<NULL ATTRIBUTE>>>, #iara.param<"height" = <<NULL ATTRIBUTE>>>]
 inputs [#iara.port<"rgb" : i8[921600 : i64]>]

iara.node @n2 : @rgb_to_hsl
iara.node @n3 : @l_to_rgb
iara.node @n4 : @write_rgb_frame
iara.node @n1 : @read_rgb_frame

iara.edge @e1 : @n1::"rgb" -> @n2::"rgb"
iara.edge @e2 : @n2::"l" -> @n3::"l"
iara.edge @e3 : @n3::"rgb" -> @n4::"rgb" // <delays=[1,2,3...]>

 }
}

Kernels

Nodes

Edges

Hypothetical middle-level "MLIR-like" dialect 26

%rgb = iara.node () <sym_name="n1", impl="read_rgb_frame", width=640, height=480> : ()->(...);
%h, %s, %l = iara.node (%rgb) <sym_name="n2", impl="rgb_to_hsl", width=640, height=480> : (...)->(...);
%gs = iara.node (%l) <sym_name="n3", impl="l_to_rgb", width=640, height=480> : (...)->(...);
 iara.node (%gs) <sym_name="n4", impl="write_rgb_frame", width=640, height=480> : (...)->();

● Ports represented by values, not attributes
● Names of ports are not preserved between passes (won't preserve debug info)
● Need to represent rate information (which could be very complex) in a custom type
● Need some sort of parameter indexing for more complex type information

○ For instance, reactive dataflow MoCs need to be able to represent associations
between different ports/parameters in the type signature of actors

● Loss of source code location information and names of edges
● Would need a new operation anyways to add delays

%b_o1, %b_o2 = iara.node : (%b_delay, %a_o1)->(...); // Node B
%b_delay = iara.delay (%b_o1) {delays=[1,2,3,4...]};BA C

Solutions chosen 27

● Used declarative IR directly
○ Did type-checking manually

■ Already had to walk the graph to check for SDF rate consistency
■ Could only get away with this because of SDF's simplicity
■ The ideal thing would be to find a way to use MLIR's type system.

● Not ideal for DF models that don't have kernel and graph separation
○ For instance, languages such as LUSTRE have the actor implementation mixed in with

the graph information and signature.

A small proposal 28

● Named outputs
○ All outputs of an operation share the same "namespace"
○ Names defined by the operation and ensured by the type system
○ Don't have to keep the index of the output
○ Persistent syntax between passes
○ Would facilitate several abstractions, not only dataflow

■ Would allow for struct-like abstractions
■ Wouldn't need member access operations

○ Any obvious reasons why it would be unfeasible/unnecessary?

%1... = some.op : () -> (.a: i32, .b:i32);
some.other_op (%1.a, %1.b);

// equivalent to

%1_a, %1_b = some.op : () -> (i32, i32);
some.other_op(%1_a, %1_b);

Thank you!
Questions or feedback?

29

