Department name: Toronto Heterogeneous Compiler Lab
‘Author’s name: Frank (Fang) Gao

-~ bUd

V2 HUAWEI



Rational for a Dialect

* Focusing on Outer Product instructions - MOPA/MOPS

» Challenges in bridging the gap between tensor/vector and SME ZA tiles
> LLVM’s representation of ZA tiles is an immediate integer
> Some sort of Register Allocation necessary
> May be better suited to do in LLVM?

» Representation of outer-product accumulate (MOPA/MOPS instructions)

> Predication in two dimensions
- vector.mask can only handle take one masking vector
> Alternative: Directly translate vector.matrix_multiply to SME Intrinsics?

- How much do we want to abstract away from the hardware at this level?
- We would prefer to keep some flexibility of using MOPA instructions explicitly

&2 HuAWEI



Design

* By no means final, open to the use of vector ops

» Proposed

>

>

>

>

>

arm_sme.
arm_sme.
.store_tile // Frees Tile

.mopa // Outer Product Accumulate

arm_sme

arm_sme

arm_sme.

new operations
Zero // Allocates Tile
load_tile // Allocates Tile

mops // Outer Product Subtract

» Potential future additions

>

>

arm_sme.

arm_sme.

save // Spill tiles
restore // Re-load tiles

A2 HUAWEI



Allocating (Virtual) Tiles

» Lowering pass will keep an internal
mask for tiles currently in use

« Zero or Loading will allocate a tile
based on the type given

» Do we want to represent the tile as a
vector or an opaque construct?

> SSA with vectors could incur
unintentional copying and spilling

> ... but could also make it easier to
interface with other vector ops

// Since tiles should be initialized with either a sme.zero or a load,

// we can allocate tiles upon those operations
// Maps to 0x01 for tile enumeration. tilesInUse = 0x01
%tile® = arm sme.load tile %C[%1, %]], %hmask, %vmask

: memref<?x?xf64>, vector<[2]xil>, vector<[2x2]xf64>

Tries to map to @x11, failes because inUse
i 5

=~
&

¥ 5]

m

1]

ficn) 5
=

My A
L

// Tries next tiles 0x22, succeeds. tile
%tilel = arm sme.zero : vector<[4x4]xf32>

/S Try 0x81, 0x18, 6x02, 0x28... 1n sequence

// Gets ©x1@. tilesInlUse = @x33
%tile2 = arm_sme.zero : vector<[2x2]xfe4>

A2 HUAWEI



Use of (Virtual) Tiles

// Overwrites %tile® - use of Ftile® will be invalid past this op? Perhaps we
// may need to introduce a sme.copy which will need to allocate another tile?
%tile@ new = arm_sme.mopa %tile@, %lhs, %rhs, %hmask, %vmask

: vector<[2x2]xf64>, vector<[2]xf64>, vector<[2]xf6d>

// Emit error? - reference to ¥tile@ after it has already been overwritten
%tile® new_new = arm_sme.mopa %tile®, %lhs, %rhs, %hmask, %wvmask
: vector<[2x2]|xf64>, vector<[2]xf64>, vector<[2]xf64>

// Deallocates 0x81. tilesInllse = 0x32
arm_sme.store tile %C[%i, %j], %tile® new, %hmask, %vmask
: memref<?x?xf64>, vector<[2x2]xf64>

If using vector representation — Emit error after RAW (First iteration)

Stores releases tiles?

Would it make sense to introduce LLVM intrinsic to allocate tiles?

A2 HUAWEI



Summary

* Tradeoff in flexibility and “generality”
> MOPA/MOPS ops vs. outerproduct, matmul, etc.

« Allocation ops makes tile management easier, but not strictly necessary
> zero, load_tile, store_tile
> Slightly more complex translation but nothing too bad

» Challenges in tile allocation
> Pseudo RAin MLIR?

» Representation of tiles
> Vector type with restrictions vs. opaque type

6 &2 HuAWEI



