Targeting SME from MLIR

MLIR ODM

Andrzej Warzyński

June 2023
Intro

Key question: what’s the best way to target CPU “accelerators” from MLIR?

SME – Scalable Matrix Extension
- An outer-product engine
- Builds on the Scalable Vector Extensions (SVE and SVE2)
- Adds new capabilities to efficiently process matrices
- No hardware at the moment, but you can use QEMU

MLIR will most likely be one of major sources of code run on SME
- Good and ... scalable support are key.

Please use the specs as the ultimate source of truth:
- SME Instructions
- Arm Architecture Reference Manual Supplement

Thank you to my lovely arm colleagues and friends for help with these slides!
- Blame me (Andrzej) for all the mistakes.
SME extends SVE2

SME
- Streaming SVE
- Matrix tile transposition
- Matrix outer product
- Load, store, insert & extract matrix vectors
- Multi-vector instructions

SVE2
- NEON DSP ++
- Multi-precision arithmetic
- Match detect & histogram
- Non-temporal /SG
- Bitwise ternary logic
- Bitwise permute
- AES, SHA3, SM4 crypto

SVE
- Scalable vectors
- Per-lane predication
- Speculative vectorisation
- ML extensions (FP16 + DOT product)
- Gather-load & Scatter-store
- v8.6 BF16, FP & Int8 matmul

NEON DSP ++
- Multi-precision arithmetic
- Match detect & histogram
- Non-temporal /SG
- Bitwise ternary logic
- Bitwise permute
- AES, SHA3, SM4 crypto
Scalable Vector registers – SVE intro

+ 32 scalable vector registers ($z0$-$z31$):
 • 128-2048 bits vector length is decided by implementation
 • VL (vector length) is unknown at compile-time, but known at run-time

+ 16 scalable predicate registers ($p0$-$p15$):
 • 16-256 bits wide
Scalable vectors in LLVM and MLIR

LLVM

```llvm
define float @add_f32(<vscale x 8 x float> %a, <vscale x 4 x float> %b) {
  %r1 = call @llvm.vector.reduce.fadd.f32.nxv8f32(float -0.0, <vscale x 8 x float> %a)
  %r2 = call @llvm.vector.reduce.fadd.f32.nxv4f32(float -0.0, <vscale x 4 x float> %b)
  %r = fadd %r1, %r2
  ret float %r
}
```

MLIR

```mlir
llvm.func @vector_splat_1d_scalable() -> vector<[4]xf32> {
  %0 = llvm.mlir.constant(dense<0.000000e+00> : vector<[4]xf32>) : vector<[4]xf32>
  llvm.return %0 : vector<[4]xf32>
}
```

- The actual value of `vscale` is not known at compile time.
 - Use LLVM’s `llvm.vscale` or MLIR’s `vector.vscale` to get an SSA value that represents it.
SME Register state

Not only new instructions!

- **32 scalable SVE vector Z registers**
- **16 scalable SVE predicate P registers**
- **New! Scalable 2D ZA accumulator**
 - With horizontal & vertical “slice” access.
- **ZA contains virtual tiles depending on element size:**

<table>
<thead>
<tr>
<th>element</th>
<th># tiles</th>
<th>ZA virtual tile dims</th>
<th>tile names</th>
<th>Z reg dims</th>
</tr>
</thead>
<tbody>
<tr>
<td>i8</td>
<td>1</td>
<td>(16vscale) x (16vscale)</td>
<td>ZA0.B</td>
<td>16*vscale</td>
</tr>
<tr>
<td>i16</td>
<td>2</td>
<td>(8vscale) x (8vscale)</td>
<td>ZA0-ZA1.H</td>
<td>8*vscale</td>
</tr>
<tr>
<td>i32/f32</td>
<td>4</td>
<td>(4vscale) x (4vscale)</td>
<td>ZA0-ZA3.S</td>
<td>4*vscale</td>
</tr>
<tr>
<td>i64/f64</td>
<td>8</td>
<td>(2vscale) x (2vscale)</td>
<td>ZA0-ZA7.D</td>
<td>2*vscale</td>
</tr>
<tr>
<td>i128</td>
<td>16</td>
<td>(1vscale) x (1vscale)</td>
<td>ZA0-ZA15.Q</td>
<td>1*vscale</td>
</tr>
</tbody>
</table>

32-bit element tiles
(SVL = 512 bits, 16x16 tiles)
SME Virtual Tile
Spec diagram with my annotation

ZA0.s
• 8x8xi32 (256x256 bit SME)
 • .s -> single word (32 bit)
• 3 other “virtual” tiles for i32:
 • ZA1.s, ZA2.s, ZA3.s
• More views available!
SME – possible implementations

- The spec leaves some key details for implementations to define

- **Streaming Mode SVE (SSVE)** is introduced to differentiate from non-streaming SVE
 - Enabled/disabled through `smstart` and `smstop`
 - Also used to enable/disable ZA

```
// Enable/disable ZA
define void @toggle_pstate_za() {
  call void @llvm.aarch64.sme.za.enable()
  call void @llvm.aarch64.sme.za.disable()
  ret void
}
```

```
llc -mtriple=aarch64 -mattr=+sme
```

```
toggle_pstate_za:
  .cfi_startproc
  // %bb.0:
  smstart za
  smstop za
  ret
  .Lfunc_end0:
```
SVE vs SSVE

- VL (Vector Length) != SVL (Streaming Vector Length)
 - e.g. 128 bits vs 512 bits, or
 - 128 bits vs 128 bits

- SSVE != SVE 2 (at ISA level)
 - By default, some SVE 2 instructions are not supported in the streaming mode
 + Example: gather loads and scatter stores, NEON instructions
 - The list is relatively short and depends on implementation
 + There are architectural flags that you can query

- Streaming vs non-streaming mode
 - ZA and Z registers are cleared upon execution mode transition
 - Nested streaming mode kernels are supported
 - See LLVM intrinsics that model this:
 + aarch64_pstate_sm_enabled, aarch64_pstate_sm_compatible, aarch64_pstate_za_shared etc
 + Designed to enable ACLE (Arm C Language Extension). Can be re-used in MLIR if we want to.
An **outer product** of the source vectors
- Reads two SVE Z input vectors
- Updates an entire virtual ZA tile
- **Spec:** FMOPA (non-widening)

2-D predication:
- 1 predicate register per input vector
- masks individual row/column updates

Syntax:
- This variant operates on “single” words (z1.s)
- Uses “merging” predication (p1/m)
- Tile number is “0” (za0.s)

Usage:
- Matrix-matrix multiply, linear equation solvers, matrix inversion, 1D/2D filters, etc.
Multi-vector add (Z→Z)

- **Add** replicated single vector to multi-vector with multi-vector result
 - 2 x Z and 4 x Z vector variants
 - Spec: ADD (to vector)

- **Other multi-vector Z→Z insts:**
 - min/max, add/sub, shift, convert
 - Usage:
 - pre/post-processing of matrix data
 - Spec: SMAX, SMIN, SRSHL
Non-widening multi-vector multiply-add (Z→ZA)

- Multi-vector fused **multiply-add**
 - Results added to **ZA** single-vector group
 - **2 x Z** and **4 x Z** vector variants
 - Spec: **FMLA (multiple vectors)**
- Re-uses **ZA** array:
 - 64 additional vector registers at SVL=512
- Syntax:
 - For simplicity, I hard-coded the output vector group as "1" (za.s[1])
- Widening variants:
 - **BFMLAL, SMLALL**
Targeting SME from MLIR - proposal

Key design principles

+ **Goals:**
 • Prioritise re-use: vectorization, tiling, etc
 • Don’t leak any architectural constraints ...
 + ... beyond what’s unavoidable
 • End-to-end integration tests
 + Introduce early, use for e.g. validation
 • Support TOSA and VOSA:
 + VOSA - sibling of TOSA for Computer Vision

+ **Assumptions (for now):**
 • No nested kernels
 + To avoid tricky ABI considerations
 • No mixed types when accessing ZA
 + To avoid different tile sizes/types
 • Each kernel to fully own and utilize ZA
 + No sharing means fewer problems
SME in MLIR – Lowering to LLVM

- We need to make sure that the **Streaming Mode** and ZA are enabled
 - Leveraging LLVM backend and ACLE work as much as possible

- **Func dialect** - function attributes:

```cpp
func.func @arm_sme() attributes {arm_streaming, arm_za} {
    return
}
```

- **LLVM dialect** - LLVM attributes + intrinsics:

```cpp
llvm.func @arm_sme() attributes {arm_locally_streaming} {
    "arm_sme.intr.za.enable"() : () -> ()
    "arm_sme.intr.za.disable"() : () -> ()
    llvm.return
}
```
func.func @matmul(%mat_A: memref<6x8xf32>, %mat_B: memref<6x8xf32>, %mat_C: memref<8x8xf32>) {
 linalg.matmul ins(%mat_A, %mat_B: memref<6x8xf32>, memref<6x8xf32>) outs(%mat_C: memref<8x8xf32>)
 return
}

func.func @outerproduct_matmul(%mat_A_tr: memref<6x8xf32>, %mat_B: memref<6x8xf32>, %mat_C: memref<8x8xf32>) {
 (...)
 // Compute tile 0 of C
 %tile0_C = vector.transfer_read %mat_C[%c0, %c0], %cst {in_bounds = [true, true]} : memref<8x8xf32>, vector<4x4xf32>
 %op_0 = vector.outerproduct %A_col_0_0, %B_row_0_0, %tile0_C {kind = #vector.kind<add>} : vector<4xf32>, vector<4xf32>
 (...)
 // Compute tile 0 of C
 %tile1_C = vector.transfer_read %mat_C[%c0, %c4], %cst {in_bounds = [true, true]} : memref<8x8xf32>, vector<4x4xf32>
 %op_6 = vector.outerproduct %A_col_0_0, %B_row_0_1, %tile1_C {kind = #vector.kind<add>} : vector<4xf32>, vector<4xf32>
 (...)
 // Compute tile 0 of C
 %tile2_C = vector.transfer_read %mat_C[%c4, %c0], %cst {in_bounds = [true, true]} : memref<8x8xf32>, vector<4x4xf32>
 %op_12 = vector.outerproduct %A_col_0_1, %B_row_0_0, %tile2_C {kind = #vector.kind<add>} : vector<4xf32>, vector<4xf32>
 (...)
 // Compute tile 0 of C
 %tile3_C = vector.transfer_read %mat_C[%c4, %c4], %cst {in_bounds = [true, true]} : memref<8x8xf32>, vector<4x4xf32>
 %op_18 = vector.outerproduct %A_col_0_1, %B_row_0_1, %tile3_C {kind = #vector.kind<add>} : vector<4xf32>, vector<4xf32>
 (...)
}
SME in MLIR – linalg.matmul

Transform dialect sequence to lower linalg.matmul to something SME-friendly:

```mlir
transform.sequence failures(propagate) {
^bb0(%arg1: !transform.any_op):
  %0 = transform.structured.match ops{"linalg.matmul"} in %arg1 : (!transform.any_op) -> !transform.any_op
  %tiled, %loops:2 = transform.structured.tile %0 [4, 4] : (!transform.any_op) -> (!transform.any_op, !transform.op<"scf.for">, !transform.op<"scf.for">)
  %1 = get_closest_isolated_parent %tiled : (!transform.any_op) -> !transform.any_op
  %2 = transform.structured.vectorize %1 : (!transform.any_op) -> !transform.any_op
  %3 = transform.structured.match ops{"scf.for"} in %2 : (!transform.any_op) -> !transform.op<"scf.for">
  transform.loop.unroll %3 { factor = 2 } : !transform.op<"scf.for">
  transform.apply_patterns to %arg1 {
    transform.apply_patterns.vector.lower_contraction lowering_strategy = "outerproduct"
  } : !transform.any_op
}
```

We know that MLIR can generate code that’s friendly for SME!

• Full example on [GitHub Gist](https://gist.github.com/username/1234567890)
Progress so far

Scalable vectorization:
- [RFC] Scalable Vectorisation in Linalg
- [mlir][Vector] Add basic scalable vectorization support to Linalg vectorizer

Streaming SVE enablement:
- [RFC] Supporting Armv9 Scalable Matrix Extension (SME) Streaming SVE (SSVE) mode in MLIR
- [mlir] Add pass to enable Armv9 Streaming SVE mode

Testing:
- [mlir][aarch64] Enable MLIR integration tests for SVE/SME under emulation
- [mlir][ArmSME] Add tests for Streaming SVE

Lowering to SME from MLIR:
- [mlir][ArmSME] Dialect and Intrinsic Op Definition
- [mlir][ArmSME] Add basic lowering of vector.transfer write to zero
What about prior art?

Why wouldn’t we re-use all the amazing work that went into the AMX dialect?
- MLIR ODM presentation by Aart Bik
- AMX Dialect

We do, it is a great source of inspiration! However …
- AMX is not scalable
- The number of tile registers is fixed (it is not in the SME case)
- The AMX dialect is not connected to Linalg nor to Vector dialects
 - We would like to target SME from Linalg
- AMX is implemented as a HWV layer
 - Is that what we need for SME? Not clear!

2D vectors are just a specialization of MLIR’s n-D Vectors
- No need for anything special for AMX and/or SME

Q: What’s the best way to target CPU “accelerators” from MLIR?