
MLIR Pattern Matching for Library
Acceleration Instruction Rewriting

Vinicius Espindola
v188115@gmail.com

Guido Araújo
guido@unicamp.br

University of Campinas (Unicamp)
Institute of Computing (IC)
Computer Systems Laboratory (LSC)

MLIR Open Meeting • July 6th, 2023

Agenda

1. Introduction

2. SMR

3. Algorithm

4. Results

2

Introduction

1. Introduction

2. SMR

3. Algorithm

4. Results

3

Introduction - Context

4

▷ Restrictive abstraction lowering process

▷ High-level hardware accelerators

▷ Raise the abstraction level

Introduction - Existing solutions

5

▷ IDL

▷ KernelFaRer

▷ MLT

▷ Difficult to write patterns

https://dl.acm.org/doi/10.1145/3173162.3173182
https://dl.acm.org/doi/10.1145/3459010
https://dl.acm.org/doi/10.1145/3372266

Introduction - Goals

6

▷ New rewriting tool

▷ Raising - rewrite complex patterns

▷ Easy - simple rewrite specification

▷ Embeddable - existing compilation flows

SMR

1. Introduction

2. SMR

3. Algorithm

4. Results

7

SMR - Overview

8

▷ What is SMR?
Source-based Matching and Rewriting

▷ Tool for easily rewriting code

▷ Specify rewrites at source code-level

▷ SMR matches/replaces at MLIR level

▷ Outputs optimized MLIR

SMR - Foundation

9

▷ Tools for the job

▷ MLIR
○ High-level IR

○ Multiple frontends

▷ TWIG
○ Compiler made by Aho

○ Clever ideas to encode patterns as string-based automata

SMR - Usage

10

▷ Input: ▷ Rewrites (PAT file):

SMR - Usage

11

▷ Serialize PAT file

smr rewrites.pat --serialize=./rewrites.opat

▷ Apply rewrites to some input

smr input.f90 rewrites.opat -o input-opt.mlir

SMR - Serialization

12
smr rewrites.pat --serialize=./rewrites.opat

SMR - Serialization

13

▷ Why serialize the PAT file?

▷ Reusability

▷ Compile code and build automata only once

▷ Avoid overhead in future reuses

▷ OPAT is like a “library of patterns”

SMR - Matching

14smr input.f90 rewrites.opat -o input-opt.mlir

Algorithm

1. Introduction

2. SMR

3. Algorithm

4. Results

15

Algorithm - Overview

16

▷ First step - Control Dependency Graph (CDG)
○ Filter candidates by control structure

▷ Second step - Data Dependency Graph (DDG)

○ Check candidate and pattern data-flow equality

▷ Is a Match? Then rewrite the input code

▷ Parse PAT file

▷ Lower source code to MLIR

▷ Match control structure
○ Control Dependency Graph (CDG)

▷ Match data flow
○ Data Dependency Graph (DDG)

▷ Is a match? Rewrite.

Algorithm - Input

17

Input Code: PAT File:

<lang> {
<pattern_code>

 } = {
<replacement_code>

}

<lang> := f
| f90
| c
| cc

18

Algorithm - PAT Language

flang

cil

PAT File:

https://github.com/flang-compiler/f18-llvm-project/tree/fir-dev
https://github.com/compiler-tree-technologies/cil

Algorithm - PAT Parsing

19

Input Code: Pattern Code:

Replacement Code:

Algorithm - Wrapper functions

20

Pattern: Replacement:

▷ Functions are not matched

▷ Make code valid

▷ Map input variables

Algorithm - Compilation

21

▷ Lower inputs to MLIR

FIR

Algorithm - Control Dependency Graph

22

▷ We know the pattern/input control structure

▷ Must match control structure

▷ Represent input and pattern as CDG

▷ Match input and pattern CDG in automaton

Algorithm - Control Dependency Graph

23

▷ Transform input and pattern MLIR into CDG

Pattern:

24

▷ Reduce search space

▷ Only model candidates

Algorithm - CDG

CandidatesPattern:

Input:

Algorithm - Data Dependency Graph

25

▷ CDG matched, but it's not enough.

▷ Same control structure =/= Same computation

▷ Must match data flow within each region

▷ Enter the Data Dependency Graph (DDG)

Algorithm - Data Dependency Graph

26

▷ Use-def chain graph

Algorithm - Data Dependency Graph

27

▷ Color regions and add region edges

Algorithm - Dialect-wise configuration

28

▷ Each dialect has its own configuration

▷ What has to be matched might change

▷ Dialect-wise configuration

Algorithm - DDG Automaton

29

▷ Two rooted DAGs: input and pattern

▷ How to match rooted DAGs?

▷ Convert rooted DAGs to set of strings

▷ Match set of strings in automaton

Algorithm - TWIG Inspiration

30

Algorithm - DDG Automaton

31

▷ Paths from root to leafs

▷ Convert paths to strings:

[fir.if, B, 2_fir.if, 1, 2_std.cmpi, 2, std.const]

[fir.if, B, 2_fir.if, A, 3_fir.store, 1, std.const]

Algorithm - DDG Automaton

32

▷ Each pattern is a set of strings

▷ Build automaton for all set of strings

10 - [fir.if, B, 2-fir.if, 1, 2-std.cmpi, 2, std.const]

11 - [fir.if, B, 2-fir.if, A, 3-fir.store, 1, std.const]

● Automaton merges
common prefixes

Algorithm - DDG Automaton

33

▷ Feed input code strings to automaton

[fir.if, B, 2-fir.if, A, 3-fir.store, 1, fir.load, ….]

▷ Process and compile input and PAT

▷ Filter input with CDG matching

▷ Apply DDG matching on filtered input

▷ DDG matched? Apply rewrite

Algorithm - Recap

34

Results

1. Introduction

2. SMR

3. Algorithm

4. Results

35

Results

36

▷ Is SMR:

○ Capable of raising?

○ Simple?

○ Scalable?

○ Flexible?

Methodology - Usability

37

PAT for Polybench’s 3mm kernel
PAT for Polybench’s atax kernel

Results - Usability

38

Polybench running time after blas replacement FIR compilation time with/without SMR+BLAS

Results - Dialects Flexibility

39

Matching with CIL and CBLAS idioms

Results - Input Scalability

40

4 input programs against 95 patterns Darknet breakout

Results - Pattern Scalability

41

SMR running time vs number of patterns PFA build time

Results - Pattern Scalability

42

SMR’s automaton prefix merging

Results - Limitations

43

▷ Restrictions on Patterns

▷ Sensibility to front ends and dialects

▷ Limited pattern generality

Thank you!

● Paper: https://dl.acm.org/doi/full/10.1145/3571283
● Repo: https://gitlab.com/parlab/smr

44

https://dl.acm.org/doi/full/10.1145/3571283
https://gitlab.com/parlab/smr

