
MLIR ODM
Polynomial Dialect

Alexander Viand, Intel

Jeremy Kun, Google

Agenda Motivation

Types & Attributes

Ops & Lowerings

Roadmap

Motivation
tl;dr: hardware acceleration for cryptography

3

Cryptographic applications

• "FHE": Fully Homomorphic Encryption (compute on encrypted data)

• HEIR

• HECO

• HECATE

• Concrete

• HEaaN.MLIR

• NIST-standard Post-Quantum Cryptography (PQC)

• Kyber (key encapsulation)

• Dilithium (digital signature)

Bottleneck: modular polynomial arithmetic

ℤ𝑞 𝑥 /(𝐹 𝑥)

github.com/heir-compiler/heir
github.com/MarbleHE/HECO
https://github.com/corelab-src/elasm/
https://github.com/zama-ai/concrete

Polynomial modular arithmetic

Normal product:

Mod :

Mod 8 coefficients :

"set" and reduce

Choice of polynomial & coefficient mod is security + performance critical

𝐸𝑥𝑎𝑚𝑝𝑙𝑒: 𝑞 = 8, 𝐹 𝑥 = 𝑥3 + 1

𝐹𝐻𝐸 𝐸𝑥𝑎𝑚𝑝𝑙𝑒: 𝑞 ≈ 952809000096560291, 𝐹 𝑥 = 𝑥65536 + 1

Why put crypto in the compiler?

• Need hardware acceleration for FHE and PQC!
• GPU/TPU

• FPGA

• Optical accelerators

• HW supports poly ops as first-class operations
• DARPA DPRIVE

Input + computation dialect
No new MLIR infrastructure
Lowers to existing dialects

Prototype implementation at
github.com/google/heir

http://github.com/google/heir

Types and Attributes
tl;dr: a new polynomial type

8

Polynomial type

!polynomial.polynomial<#ring>

#ring = #polynomial.ring<

 ctype=i32,

 cmod=4294967291,

 ideal=#p

 >

#p = #polynomial.polynomial<1 + x**1024>
Modulus must be statically known

Custom attribute: parser, storage
*"ring" is the math

name for this

A polynomial is an

element of a ring*

Coefficient (base) type

Coefficient modulus

Polynomial modulus

Why a new type?

• are polynomials just “tensors with metadata“?

• A polynomial can be stored in many ways
• Many nonzero coefficients -> dense tensor

• Large degree and many zero coefficients -> sparse tensor

• Not necessarily always a list of coefficients (DFT/NTT “evaluation form”)

• Polynomial seems like the right abstraction for passes

Why specify ring on the type?

• "Better for ops to specify semantics“

• Once you agree we need a new type...

• Type conversion needs to pick tensor<dim x ty>
• Alternatives to make type conversion work seem overkill

Why not hard-code choices?

• Why not specialize to
• Future proof for new innovations in PQC/FHE crypto

• Support non-PQC crypto (e.g. secret sharing)

• Support non-crypto scientific computation

• Potential use within MLIR in polyhedral analysis

• Post-Quantum Crypto, Private Information Retrieval,
Secure Multi-Party Computation

• Similar crypto-friendly polynomial math

• Often much smaller security parameters than FHE -> different tradeoffs

Ops & Passes
tl;dr: optimized lowerings for common rings

13

Obvious polynomial ops

• constant <1 + x**1024>
• add, sub, mul, div_rem*
• to_tensor, from_tensor
• mul_scalar
• leading_term (degree + leading coefficient)

Less obvious ops

• monomial construct a single-term polynomial from data

• monomial_mul multiply a polynomial by a monomial (optimized lowerings)

• dft/idft compute a forward/reverse complex Fourier transform

• ntt/intt compute a forward/reverse integer number theoretic transform
(integer-only DFT analogue)

Enables O(n log(n)) multiplication of 𝑓 ∗ 𝑔 as

𝑖𝑁𝑇𝑇 𝑁𝑇𝑇 𝑓 ⋅ 𝑁𝑇𝑇 𝑔 with ⋅ elementwise!

While this requires a compatible ring,
virtually all crypto uses such rings

Ops we probably don't need

• tensor_mul use linalg.generic with poly ops inside?

Lowering mul

• Generic lowering supporting all* parameters: Naive polymul + modular
reduction

• Naive polymul computed via...
• Cyclic convolution (linalg.generic)

• DFT/NTT + pointwise mul + IDFT/INTT

• Karatsuba, etc.

• Modular reduction via textbook poly long division (scf.while)

• ℤ𝑞 𝑥 /(𝑥𝑁 + 1) - machine word-sized coefficients

• no manual mod reduction step

• (Nega)cyclic convolution

• DFT + entry-wise mul + IDFT

• Tensor mul via Toeplitz matrix trick (TPU)

• ℤ𝑝 𝑥 /(𝑥𝑁 + 1) - prime coefficients (< 64-bits)

• NTT + entry-wise mul + INTT

Lowering dft/ntt

• Goal: keep polynomial in coefficient or evaluation form for as long as possible
• Canonicalize [dft, op1, idft, dft, op2, idft] to [dft, op1, op2, idft]

• Lowering via

• Cooley-Tukey

• Stockham + AVX

• Dedicated accelerator support

http://wwwa.pikara.ne.jp/okojisan/otfft-en/optimization2.html

Formal verification!

• Cambridge group (Tobias Grosser) looking into Lean to formalize MLIR dialects & passes

• Polynomial dialect is one of their case studies

• We hope this will allow us to formally verify correctness of polynomial passes and lowerings

Roadmap
tl;dr: lower to LLVM, then accelerators

20

Milestones

Focus on HW acceleration

Nontrivial example implementations as end-to-end tests

Polynomial interpolation Simplified Dilithium scheme

Lowering polynomial to LLVM via standard dialects

Generic Ring ℤ𝑝 𝑥 /(𝑥𝑁 + 1)

GitHub repo
github.com/google/heir

RFC on Discourse
shorturl.at/fNO18

HEIR meetings
google.github.io/heir/community/

22

https://github.com/google/heir
https://discourse.llvm.org/t/rfc-a-poly-dialect-for-polynomial-arithmetic/73891
https://shorturl.at/fNO18
https://google.github.io/heir/community/

Questions

23

	Intro
	Slide 1: MLIR ODM Polynomial Dialect
	Slide 2: Agenda
	Slide 3: Motivation
	Slide 4: Cryptographic applications
	Slide 5: Polynomial modular arithmetic
	Slide 6: Why put crypto in the compiler?
	Slide 7: Input + computation dialect No new MLIR infrastructure Lowers to existing dialects Prototype implementation at github.com/google/heir
	Slide 8: Types and Attributes
	Slide 9: Polynomial type
	Slide 10: Why a new type?
	Slide 11: Why specify ring on the type?
	Slide 12: Why not hard-code choices?
	Slide 13: Ops & Passes
	Slide 14: Obvious polynomial ops
	Slide 15: Less obvious ops
	Slide 16: Ops we probably don't need
	Slide 17: Lowering mul
	Slide 18: Lowering dft/ntt
	Slide 19: Formal verification!
	Slide 20: Roadmap
	Slide 21: Milestones
	Slide 22
	Slide 23: Questions

