# MLIR ODM Polynomial Dialect 

Alexander Viand, Intel<br>Jeremy Kun, Google

## Agenda Motivation

## Types \& Attributes

## Ops \& Lowerings

Roadmap

# Motivation 

tl;dr: hardware acceleration for cryptography

## Cryptographic applications

- "FHE": Fully Homomorphic Encryption (compute on encrypted data)
- HEIR
- HECO
- HECATE
- Concrete
- HEaaN.MLIR

- NIST-standard Post-Quantum Cryptography (PQC)
- Kyber (key encapsulation)
- Dilithium (digital signature)

Bottleneck: modular polynomial arithmetic

$$
\mathbb{Z}_{q}[x] /(F(x))
$$

## Polynomial modular arithmetic <br> Example: $q=8, \quad F(x)=x^{3}+1$

$$
\left(1+5 x+x^{2}\right)\left(3+x-x^{2}\right)
$$

Normal product:

$$
3+16 x+7 x^{2}-4 x^{3}-x^{4}
$$

Mod $x^{3}+1: \quad 7+17 x+7 x^{2} \quad$ "sert $x^{3}+1=0$ and reduce
Mod 8 coefficiens: $7+x+7 x^{2}$
Choice of polynomial \& coefficient mod is security + performance critical

$$
\text { FHE Example: } q \approx 952809000096560291, \quad F(x)=x^{65536}+1
$$

## Why put crypto in the compiler?

- Need hardware acceleration for FHE and PQC!
- GPU/TPU
- FPGA
- Optical accelerators
- HW supports poly ops as first-class operations
- DARPA DPRIVE


# Input + computation dialect No new MLIR infrastructure Lowers to existing dialects 

## Prototype implementation at github.com/google/heir

# Types and Attributes 

tl;dr: a new polynomial type

## Polynomial type

$$
\text { !polynomial.polynomial<\#ring> } \begin{aligned}
& \text { A polynomial is an } \\
& \text { element of a ring* }
\end{aligned}
$$

```
#ring = #polynomial.ring<
    ctype=i32, Coefficient (base) type
    cmod=4294967291, Coefficient modulus
    ideal=#p Polynomial modulus
#p = #polynomial.polynomial<1 + x**1024>
    Modulus must be statically known
    Custom attribute: parser, storage
```


## Why a new type?

- are polynomials just "tensors with metadata"?
- A polynomial can be stored in many ways
- Many nonzero coefficients -> dense tensor
- Large degree and many zero coefficients -> sparse tensor
- Not necessarily always a list of coefficients (DFT/NTT "evaluation form")
- Polynomial seems like the right abstraction for passes


## Why specify ring on the type?

- "Better for ops to specify semantics"
- Once you agree we need a new type...
- Type conversion needs to pick tensor<dim $x$ ty>
- Alternatives to make type conversion work seem overkill


## Why not hard-code choices?

- Why not specialize to $\left(x^{N}+1\right)$
- Future proof for new innovations in PQC/FHE crypto
- Support non-PQC crypto (e.g. secret sharing)
- Support non-crypto scientific computation
- Potential use within MLIR in polyhedral analysis
- Post-Quantum Crypto, Private Information Retrieval, Secure Multi-Party Computation
- Similar crypto-friendly polynomial math
- Often much smaller security parameters than FHE -> different tradeoffs


# Ops \& Passes 

tl;dr: optimized lowerings for common rings

## Obvious polynomial ops

- constant <1 + x**1024>
- add, sub, mul, div_rem*
- to_tensor, from_tensor
- mul_scalar
- leading_term (degree + leading coefficient)


## Less obvious ops

- monomial construct a single-term polynomial from data
- monomial_mul multiply a polynomial by a monomial (optimized lowerings)
- dft/idft compute a forward/reverse complex Fourier transform
- ntt/intt compute a forward/reverse integer number theoretic transform (integer-only DFT analogue)

$$
\begin{aligned}
& \text { Enables O(n } \log (\mathrm{n})) \text { multiplication of } f * g \text { as } \\
& i N T T(N T T(f) \cdot N T T(g)) \text { with } \cdot \text { elementwise! } \\
& \text { While this requires a compatible ring, } \\
& \text { virtually all crypto uses such rings }
\end{aligned}
$$

## Ops we probably don't need

- tensor_mul use linalg.generic with poly ops inside?


## Lowering mul

- Generic lowering supporting all* parameters: Naive polymul + modular reduction
- Naive polymul computed via...
- Cyclic convolution (linalg.generic)
- DFT/NTT + pointwise mul + IDFT/INTT
- Karatsuba, etc.
- Modular reduction via textbook poly long division (scf.while)
- $\mathbb{Z}_{q}[x] /\left(x^{N}+1\right)$ - machine word-sized coefficients
- no manual mod reduction step
- (Nega)cyclic convolution
- DFT + entry-wise mul + IDFT
- Tensor mul via Toeplitz matrix trick (TPU)
- $\mathbb{Z}_{p}[x] /\left(x^{N}+1\right)$ - prime coefficients (<64-bits)
- NTT + entry-wise mul + INTT


## Lowering dft/ntt

- Goal: keep polynomial in coefficient or evaluation form for as long as possible - Canonicalize [dft, op1, idft, dft, op2, idft] to [dft, op1, op2, idft]
- Lowering via
- Cooley-Tukey
- Stockham + AVX
- Dedicated accelerator support


## Formal verification!

- Cambridge group (Tobias Grosser) looking into Lean to formalize MLIR dialects \& passes
- Polynomial dialect is one of their case studies
- We hope this will allow us to formally verify correctness of polynomial passes and lowerings


# Roadmap 

tl;dr: lower to LLVM, then accelerators

Lowering polynomial to LLVM via standard dialects
Generic Ring $\quad \mathbb{Z}_{p}[x] /\left(x^{N}+1\right)$

## Milestones

Nontrivial example implementations as end-to-end tests

Polynomial interpolation Simplified Dilithium scheme

## Focus on HW acceleration



GitHub repo
github.com/google/heir


HEIR meetings
google.github.io/heir/community/


RFC on Discourse shorturl.at/fNO18


## Questions

