A Python subset for a better MLIR programming experience

Kevin Lee (k323lee@uwaterloo.ca),
Kai-Ting Wang (kai.ting.wang@huawei.com)
Why are we doing this?

- MLIR is very verbose. Even Mojo compiler engineers complain about it!
- MLIR is a compiler frontend’s output. Language users shouldn’t need to use it.
- MLIR’s Python binding is also verbose: it’s meant to be used by compiler engineers, not language users

Verbosity comparison between MLIR and PyDSL

These are the same programs
Existing work

Mojo
- modular.com/blog/mojo-llvm-2023
- Closed-source as of now
- Superset of Python: there are new keywords and syntax
- Promises bring-your-own-dialect
- Language itself is mostly independent of Python

MLIR Python Util
- github.com/makslevental/mlir-python-utils/
- Not a compiler (in author’s own words)
- Relies on runtime behavior: not very extensible for significant mismatch between Python and MLIR syntax (e.g. for loop yielding)
- Not yet support affine

MLL
- github.com/imv1990/mll
- Pythonic, but also has C-like syntax. Not a superset of Python.
- Also promises bring-your-own-dialect

```python
func funcName(a : i32, b : i32, arr : array<10*20*i32> -> i32{
    print(a, b)
    return (a + b + arr[0,0])
}

arr = array<10*20*i32>.dense(10)
print(funcName(10, 20, arr))
```
Overview of PyDSL

- Supports multiple MLIR dialects: arith, scf, func, memref, affine, transform
 - Each feature mapped Pythonically to the language
- Supports a function dedicated to sequentially transform the payload function
- Preliminary support for compiling and calling the function directly
- Static typing: mandatory type hinting
- Preliminary high-level typing support (ongoing work)
Behind the scenes

Let's look at a simple dummy example and how it is converted into MLIR. Note that some variables (e.g. Memref64, i) are not used.

```python
from pydsl.type import F32, F64, Index
from pydsl.memref import MemRefFactory
from pydsl.scf import range
from pydsl.frontend import compile

Memref64 = MemRefFactory((40, 40), F64)

@compile(locals(), dump_mlir=True)
def hello(a: F32, b: F32) -> F32:
    d: F32 = 12.5
    l: Index = 5
    for i in range(l):
        e: F32 = 3.0
        f = e + d
    return (a / b) + d
```
Behind the scenes

This is the annotation that kicks off the whole process. User include this to indicate that they want the function below to be compiled. `hello(...)` is never executed by the runtime.

```python
from pydsl.type import F32, F64, Index
from pydsl.memref import MemRefFactory
from pydsl.scf import range
from pydsl.frontend import compile

Memref64 = MemRefFactory((40, 40), F64)

@compile(locals(), dump_mlir=True)
def hello(a: F32, b: F32) -> F32:
    d: F32 = 12.5
    l: Index = 5

    for i in range(l):
        e: F32 = 3.0
        f = e + d

    return (a / b) + d
```

```python
def compile(
    f_locals: dict[str, Any],
    transform_seq: Callable[[Any], None] | None = None,
    dump_mlir: bool = False,
    auto_build: bool = True,
) -> Callable[...,
``` CompiledFunction]:

 Compile the function into MLIR and lower it to a temporary shared library.
 The lowered function is a CompiledFunction object which may be called directly to run the respective function in the library.

 f_locals: a dictionary of local variables you want the function to have access to. Typically passing in Python's builtins.
 transform_seq: the function acting as the transform sequence.
 dump_mlir: whether or not to print out the MLIR output.

```python
def compile_payload(f: Callable) -> CompiledFunction:
    cf = CompiledFunction(f, f_locals, transform_seq=transform_seq, auto_build=auto_build)

    if dump_mlir:
        cf.dump_mlir()

    return cf
``` CompiledFunction

return compile_payload
Initialize the variables we already defined

locals() is a built-in Python function that grabs every local variable that is defined before we start the compilation process. This lets users import keywords and define custom-shaped Memrefs.

```python
from pydsl.type import F32, F64, Index
from pydsl.memref import MemRefFactory
from pydsl.scf import range
from pydsl.frontend import compile

Memref64 = MemRefFactory(((40, 40), F64))

@compile(locals(), dump_mlir=True)
def hello(a: F32, b: F32) -> F32:
    d: F32 = 12.5
    l: Index = 5
    for i in range(l):
        e: F32 = 3.0
        f = e + d
    return (a / b) + d
```

Those in the red box are used by our code.
Parse Python with Python

The first step of compilation is the parser. Lucky for us, Python has a library to let us parse Python into a tree.

```
from pydsl.type import F32, F64, Index
from pydsl.memref import MemRefFactory
from pydsl.scf import range
from pydsl.frontend import compile

MemRef64 = MemRefFactory(((40, 40), F64))

@compile(locals(), dump_mlir=True)
def hello(a: F32, b: F32) -> F32:
    d: F32 = 12.5
    l: Index = 5
    for i in range(l):
        e: F32 = 3.0
        f = e + d
    return (a / b) + d
```

```
from inspect import getsource
ast.dump(ast.parse(getsource(…)))
```

Simplified for visualization
Initialize the variables

We emulate Python's variable stack. We also use a Visitor class to visit every node in the module.
Visit all the nodes and emit MLIR

At a function, push a new scope onto the stack. As well, all Ops created are within the FuncOp block.

Some steps are skipped for conciseness.
Initialize these variables sequentially. These creates additional ConstOp within FuncOp

The ConstOp make use of f32 and index type definitions on our variable stack.

From now on, we'll draw blue arrows to show what the variables are pointing to
We determine what \(l \) is by querying the stack. Since \(l \) is \texttt{ConstOp 5}, \texttt{ForOp} now points to that \texttt{ConstOp}.

\textit{This particular For transformation actually also creates 2 more \texttt{ConstOp}: 0 for start and 1 for step. I omitted them for clarity.}
When a variable is defined by arithmetic operation, it just refers to the Op. The Op also checks the variable stack to see what other Ops it needs to point to.
Thus...

```
Module
  FunctionDef
    a: F32
    b: F32
    d: f32 = 12.5
    l: index = 5
    e: f32 = 3.0
    f = ...
    Add
    Div
    Add
    a
    b
    f
    i: Index (inferred)
    Call
    range
    e
    d
    a
    b
    l
    d
    b
    f
    i
    a:
    'F32': <class 'pydsl.type.F32'>,
    'F64': <class 'pydsl.type.F64'>,
    'Index': <class 'pydsl.type.Index'>,
    'UInt16': <class 'pydsl.type.UInt16'>,
    'MemRefFactory': <functools._lru_cache_wrapper object at 0xfffeeb7d28d0>,
    'range': <class 'pydsl.scf.range'>,
    'compile': <function compile at 0xfffeeb51d120>,
    'Memref64': <class 'pydsl.memref.MemrefUnnamedSubclass'>
```

Variable stack
We then traverse to Return

```
Module
  FunctionDef
    a: F32
    b: F32
    d: F32
    l: Index (inferred)
    e: f32 = 3.0
    f = ...
    ForOp
      start: 0, stop: ConstOp(5), step: 1
      AddOp(ConstOp, ConstOp)
  Block
    ConstOp 5
    ConstOp 12.5
  Block
    <ForOp parameter value 1>
    ConstOp 3.0
    AddOp(ConstOp, ConstOp)
    <FuncOp parameter value 1>
    <FuncOp parameter value 2>
```

Variable stack

```
'F32': <class 'pydsl.type.F32'>,
'F64': <class 'pydsl.type.F64'>,
'Index': <class 'pydsl.type.Index'>,
'UInt16': <class 'pydsl.type.UInt16'>,
'MemRefFactory': <functools._lru_cache_wrapper object at 0xfffeeb7d28d0>,
'range': <class 'pydsl.scf.range'>,
'compile': <function compile at 0xfffeeb51d120>,
'Memref64': <class 'pydsl.memref.MemrefUnnamedSubclass'>
```
Every FuncOp needs to end on a ReturnOp. For now, if the user does not define a return statement in a function, the compiler would throw an error. We do have a return statement, so we proceed as usual.

The traversal of Add and Div is the same as what we were doing, so we’re going to skim past this part.
When we leave a function, we pop the top-most scope from the stack. The visit function is done.
Everything from here on is trivial for us. We ask MLIR to check this graph for consistency, then ask it to dump it as a string. The compilation is done!

This entire graph is actually enclosed in a module block, but we'll omit that.
Affine dialect syntax

- Affine dialect is an important use case for us:
 - We define custom iterable macro/"metafunction" class which transforms the for loop that's using it, where affine_range's behavior can be defined.

```python
from pydsl.type import UInt32, F64, Index
from pydsl.memref import MemRefFactory
from pydsl.frontend import compile
from pydsl.affine import 
    affine_range as arange,
    affine_map as am,
    dimension as D,
    symbol as S

// ...
def lu(v0: Index, arg1: MemRefF64) -> Index:
    a: UInt32 = 5
    for arg2 in arange(S(v0)):
        for arg3 in arange(D(arg2)):
            for arg4 in arange(D(arg3)):
                arg1[am(D(arg2), D(arg3))] = 
                    arg1[am(D(arg2), D(arg3))]  
                    - (arg1[am(D(arg2), D(arg4))]  
                    * arg1[am(D(arg4), D(arg3))])
```
Transformation dialect syntax

- Presented unique syntax design challenges as for (and many other) statements cannot be annotated

```python
def transform_seq(targ: AnyOp):
    fuse_into(
        fuse_into(
            fuse_into(
                fuse_into(
                    match(targ, 'fuse_1'),
                    match(targ, 'fuse_target1'),
                    match(targ, 'fuse_target2'),
                    match(targ, 'fuse_target3'),
                    match(targ, 'fuse_target4'))
            fuse(match(targ, 'fuse_4'), match(targ, 'fuse_3'), 2)
        tile(match(targ, 'tile'), [32, 32, 32], 6)
    )
```

```python
@compile(locals(), transform_seq=transform_seq, dump_mlir=True, auto_build=False)
def lu(v0: Index, arg1: MemrefF64) -> UInt32:
    a: UInt32 = 5
    """@tag("tile")"
    for arg2 in arange(S(v0)):
        """@tag("fuse_4")"
        for arg3 in arange(D(arg2)):
            """@tag("fuse_1")"
            for arg4 in arange(D(arg3)):
                arg1[am(D(arg2), D(arg3))] = \
                arg1[am(D(arg2), D(arg3))] \-
                (arg1[am(D(arg2), D(arg4))] * arg1[am(D(arg4), D(arg3))])
```

// ...
```
Problem: Python is *really* permissive

- We’re not so worried about what Python can’t express as much as what it *can*.  
- For example, these are legal code in Python that runs perfectly well. But they do not map well to MLIR.

```python
b is never defined before this point
if True:
 b = 6
print(b) # This prints 6

for i in range(5):
 pass
print(i) # This prints 4

...and this is just tip of the iceberg.
```

*If we change True to False, this program simply crashes in Python.*

To imitate the run-time behavior of Python, we need additional static analysis and use of YieldOp for variables to be usable even after an MLIR scope is closed.

This isn’t important to our use case at the moment, so it’s not yet worked on.
We’re making a minimum viable product (for now)

- Few people are actively working on this project
- Focus of this work is to see whether this approach to compilation can meet our goal:
  - Support nested affine for loop
  - Support affine load and store
  - Keep the compiler simple
  - Ways of specifying specific MLIR features should be idiomatic
  - Like mlir-python-util, support running the compiled program directly from Python (helps with making benchmarks/tests)

E.g. No duck typing: every variable’s type is defined at compile time

```python
def weird_function(b: bool):
a = 5

if b:
 a = "h"

both str and int can *= 5
a *= 5

print(a) # 25 or "hhhhh"
```

We only define types that are necessary for our use case:

- Int
- Index
- Float
- Memref
- AnyOp
Other limitations

These require code analysis pre-pass:
- Cannot use a variable defined in a for loop outside of the loop
- Cannot yield a variable to the next iteration in a for loop (so doesn’t yet support accumulating variables)
- Affine symbols and dimensions must be specified verbosely

Other:
- Ugly compilation error messages, though not hard to fix (AST provides line/column number for each node)
- Many other important Python features are missing
Directly calling compiled MLIR functions from Python

```python
@cache
def lower(self) -> OpView:
 return self.value

@classmethod
def lower_class(cls) -> mlir.Type:
 return cls.mlir_type.get()

def _same_type_assertion(self, val):
 return type(self) is type(val)

def __add__(self, rhs):
 return type(self)(arith.AddFOp(self.value, rhs.value))

def __sub__(self, rhs):
 return type(self)(arith.SubFOp(self.value, rhs.value))

def __mul__(self, rhs):
 return type(self)(arith.MulFOp(self.value, rhs.value))

def __truediv__(self, rhs):
 return type(self)(arith.DivFOp(self.value, rhs.value))
```

```python
self._loaded_so = cdll.LoadLibrary(self._so.name)
```

Compile-time abstraction with zero runtime cost: cleaner compiler code and polymorphism

```python
@cache
def lower(self) -> OpView:
 return self.value

@classmethod
def lower_class(cls) -> mlir.Type:
 return cls.mlir_type.get()

def _same_type_assertion(self, val):
 return type(self) is type(val)

def __add__(self, rhs: 'Float') -> 'Float':
 return type(self)(arith.AddFOp(self.value, rhs.value))

def __sub__(self, rhs: 'Float') -> 'Float':
 return type(self)(arith.SubFOp(self.value, rhs.value))

def __mul__(self, rhs: 'Float') -> 'Float':
 return type(self)(arith.MulFOp(self.value, rhs.value))

def __truediv__(self, rhs: 'Float') -> 'Float':
 return type(self)(arith.DivFOp(self.value, rhs.value))
```

E.g. every numerical type is a Python class that implements operator overloading mapping to the appropriate arith operator. lower functions converts the class into its raw MLIR representation

```
self._loaded_so = cdll.LoadLibrary(self._so.name)
```

stdout (ignoring warnings)

```
module {
 func.func public @hello(%arg0: f32, %arg1: f32) -> f32 {
 %cst = arith.constant 1.200000e+01 : f32
 %c5 = arith.constant 5 : index
 %c0 = arith.constant 0 : index
 %c1 = arith.constant 1 : index
 scf.for %arg2 = %c0 to %c5 step %c1 {
 %cst_0 = arith.constant 3.000000e+00 : f32
 %2 = arith.addf %cst_0, %cst : f32
 }
 %0 = arith.divf %arg0, %arg1 : f32
 %1 = arith.addf %0, %cst : f32
 return %1 : f32
 }
}
```

20.333332061767578

stdout (ignoring warnings)

```
module {
 func.func public @hello(%arg0: f32, %arg1: f32) -> f32 {
 %cst = arith.constant 1.200000e+01 : f32
 %c5 = arith.constant 5 : index
 %c0 = arith.constant 0 : index
 %c1 = arith.constant 1 : index
 scf.for %arg2 = %c0 to %c5 step %c1 {
 %cst_0 = arith.constant 3.000000e+00 : f32
 %2 = arith.addf %cst_0, %cst : f32
 }
 %0 = arith.divf %arg0, %arg1 : f32
 %1 = arith.addf %0, %cst : f32
 return %1 : f32
 }
}
```
Addendum: As of the presentation, the library is not yet open source. We plan to release it to the public shortly.