
Ahmed Harmouche, 2024.10.17.

Shaderpulse: GLSL Frontend for 
MLIR SPIR-V
Open MLIR Meeting



Parsing GLSL
Overview of the parser

• Takes the token stream generated by the Lexer, and constructs an AST


• Top-down parser: Recursive Decent Parser


• translation unit -> external declarations -> variable declarations, function 
prototypes, etc.


• The result of the parsing is a pointer to the root AST node, TranslationUnit



Traversing the AST

• Multiple ways for traversing


• 1. Take the root node, and explicitly traverse it “manually”


• 2. Use an ASTVisitor, and implicitly traverse it “automatically”


• AST constructs implement the ASTNode interface, thus they accept an 
ASTVisitor


• ASTVisitors can be used for various tasks, such as semantic analysis, ast 
printing, or code generation

Parsing GLSL



Generating SPIR-V dialect
Variable declarations

• MLIRCodeGen implements ASTVisitor interface


• Variable declarations:  
- Convert shaderpulse::Type to mlir::Type 
- If we are in global scope, generate spirv::GlobalVariableOp, if in a function 
generate spirv::VariableOp 
- Apply initialiser expression. 
- Use llvm::ScopedHashTableScope for the symbol table



Generating SPIR-V dialect
Function declarations

• Create a new scope upon visiting a FunctionDeclaration, destroy scope when 
done visiting


• Collect the argument types


• Set insertion point to start of function, then visit the body of the function


• Insert the created function into a llvm::StringMap<spirv::FuncOp>



Generating SPIR-V dialect
Calling functions

• Look up the function in the functionMap


• If found, loop through the arguments, and visit them


• Generate a <spirv::FunctionCallOp> operation


• Push the function call result onto the expression stack


• Returning from a function: 
- function has result: pop expression stack, generate <spirv::ReturnValue> 
- function does not have a result: <spirv::ReturnOp>



Control Flow 

• Generate spirv::LoopOp


• Structured in the following way:  
-> entry: jumps to header 
-> header: contains the BranchConditionalOp to determine where to loop: 
body, or merge 
-> body: contains the code to be executed if the condition is satisfied 
-> merge block: header branches here when exiting the loop

Generating SPIR-V dialect



Control Flow - break, continue

• Scenario: break in an if block


• Can’t access the loop merge block directly from the selection block


• Break and continue are implemented using hidden control variables


• The respective control vars are set as break and continue statements are 
visited


• After the statement that contained break/continue, we insert a conditional 
branch, which determines to branch to a “post-gate block” (i.e. rest of the 
loop body), or to the merge/continue block

Generating SPIR-V dialect



Selection

• To generate code for if-else statements we use spirv::SelectionOp


• Structured similarly to spirv::LoopOp: 
-> Selection header block: contains BranchConditionalOp to determine where 
to branch: thenBlock (true part) or elseBlock (false part) 
-> thenBlock 
-> elseBlock 
-> merge block: both then and else block converge here

Generating SPIR-V dialect



Generating SPIR-V dialect
Handling expressions

• Many constructs in the AST contain an Expression


• We can resolve them in a recursive way


• Example: visiting a BinaryExpression 
- lhs->accept(visitor);  
- rhs->accept(visitor);  
- visitor->visit(this);


• Intermediary results of expressions are pushed to an expression stack. Upon 
encountering an operation that makes use of an expression, pop the 
expression stack to get the mlir::Value that the Operation uses.



Generating SPIR-V dialect
Expressions - handling types

• We check the operand types to determine which operation to pick


• isIntLike(), isFloatLike() - expands to composites as well, i.e. an ivec3, uvec3 
and int, uint are both “int like”, this simplifies handling the operand types 
 



Generating SPIR-V dialect
Type conversions

• Type conversions are ConstructorExpressions


• Explicit conversion are supported 
 
 
 



Generating SPIR-V dialect
Composites: arrays

• Constructed using spirv::CompositeConstruct 
 
float[3] myArr = float[3](1.0, 2.0, 3.0);  
 
 
 
float[2][3] multiArr = float[2][3](arr1, arr2); 
 



Generating SPIR-V dialect
Operations on arrays

• Indexing using spirv::AccessChainOp


• constant index 
float elemFromMulti = multiArr[0][1]; 
 
 
 
variable index 
float someVar = myArr[varIdx]; 

• We can load the access chain to read from the array, and store into the access chain to write to the array



Generating SPIR-V dialect
Composites: structs

• Constructed using spirv::CompositeConstruct


• MyStruct2 myStruct2 = MyStruct2(MyStruct(0.1, 2, 3u, true), 1); 
 



Generating SPIR-V dialect
Operations on structs

• Accessing a member using spirv::AccessChainOp 
 
bool boolMember = myStruct2.structMember.d; 
 
 
 
Struct with an array member 
 
 
 
int arrElemFromStruct = structWithArr.a[2];



Generating SPIR-V dialect
Composites: Vectors

• Constructed using spirv::CompositeConstruct


• vec3 _vec3 = vec3(1.0, 1.0, 1.0);  
 

• vec4 _vec4_1_2_1 = vec4(1.0, _vec2, 1.0); 
 
 
 



Generating SPIR-V dialect
Operations on vectors: accessing an element

• Implemented using spirv::CompositeExtractOp 
 
vec3 myVec = vec3(1.0, 2.0, 3.0); 
float elemX = myVec.x; 
 
 
 
 
float elemB = myVec.b;  
 
 
 



Generating SPIR-V dialect
Operations on vectors: swizzle
• Implemented using spirv::VectorShuffleOp 
 
vec3 myVec = vec3(1.0, 2.0, 3.0); 
vec3 reversed = myVec.zyx; 
 

• Swizzle can be chained: 
 
float elem = reversed.zyx.xy.y (3.0, 2.0, 1.0) -> (3.0, 2.0) -> 2.0 
 



Compute shaders - built-ins
GLSL to SPIR-V dialect

• Built-in compute vars are supported: 
- gl_GlobalInvocationID 
- gl_WorkGroupID 
- gl_WorkGroupSize 
- gl_LocalInvocationID


• built_in attribute is set on these variables


• mlir::spirv::StorageClass::Input is added



Compute shaders - SSBOs
GLSL to SPIR-V dialect

• To support them we need InterfaceBlocks 
 



Compute shaders - execution mode
GLSL to SPIR-V dialect

• spirv::ExecutionModeOp


• spirv::ExecutionMode::LocalSize is used to apply local size from:


• execution_mode attribue


• values attribute 
 



Let’s try out shaderpulse



Thank you for your attention


