
WebAssembly support in MLIR
—

Ferdinand Lemaire
Jessica Paquette 

Luc Forget
—

Woven By Toyota



Proposed agenda

● Rapid presentation (~15-20’)
○ Motivations for WebAssembly support in MLIR
○ Guided tour
○ Overview of current implementation state

■ Testing
■ Technical challenges

● Technical discussion (~35-40’)
● Path to upstream



Motivations

● WebAssembly (Wasm) : a well specified, portable binary format with built in 
safety features.

○ Wasm module is executed by an embedder (wasm equivalent of JVM) which provides 
lightweight sandboxing.

○ Wasm ISA offers good control flow integrity by design
○ Despite the name, not specific to web browser execution. Many embedders exists for 

standalone execution.
○ Many programming languages can be compiled to Wasm binaries. 

● Motivation of this work: provide a framework for AOT compilation of Wasm 
modules to native code, benefiting from the high quality codegen of LLVM.

https://webassembly.org/


Who would be interested by a Wasm dialect ?

● People wanting to improve Wasm backends (using the dialect as a target):
○ Researcher wanting to improve Wasm performance, e.g. authors of this paper on similar work, 

showing they can improve the quality of generated wasm when starting from a higher 
abstraction level than LLVM IR to Wasm.

○ Wasm backend developer for various programming language (see comment in the RFC). 
● People interested in embedder related development
● People wanting to develop analysis / optimisation of Wasm module or work on 

improving the quality of native code generation from Wasm module in the 
comfortable setting of MLIR.

https://www.arxiv.org/abs/2506.16048


Guided tour of current implementation

We have

● Binary Wasm → Wasm Dialect importer
mlir-translate --import-wasm XYZ.wasm -o XYZ.mlir

● Wasm Dialect → usual “core” dialect lowering
mlir-convert --raise-wasm XYZ.mlir -o XYZ_lowered.mlir

● A driver to make it simple to run an end-to-end 
wasabi -o XYZ.ll XYZ.wasm



Guided tour of current implementation

● Binary Wasm → Wasm Dialect importer
Is a regular translation. 
Sources: mlir/lib/Target/Wasm Headers: mlir/include/mlir/Target/Wasm
Tests: mlir/test/Target/WebAssembly

●  Wasm Dialect
Ops definitions: include/mlir/Dialect/WebAssembly/IR/WebAssemblyOps.td
SSA representation of Wasm operations

● Lowering to usual set of dialects (arith, cf, math, func, memref…)
Implemented as one conversion pass.
Implementation: mlir/lib/Conversion/RaiseWasm/RaiseWasmMLIR.cpp
Tests: mlir/test/Conversion/RaiseWasm

https://github.com/lforg37/llvm-project/tree/wasm_mlir_init/mlir/lib/Target/Wasm
https://github.com/lforg37/llvm-project/tree/wasm_mlir_init/mlir/include/mlir/Target/Wasm
https://github.com/lforg37/llvm-project/tree/wasm_mlir_init/mlir/test/Target/WebAssembly
https://github.com/lforg37/llvm-project/blob/wasm_mlir_init/mlir/include/mlir/Dialect/WebAssembly/IR/WebAssemblyOps.td
https://github.com/lforg37/llvm-project/blob/wasm_mlir_init/mlir/lib/Conversion/RaiseWasm/RaiseWasmMLIR.cpp
https://github.com/lforg37/llvm-project/tree/wasm_mlir_init/mlir/test/Conversion/RaiseWasm


Guided tour of current implementation

Dialect design:

● Very straightforward, numeric operations looks a lot like their counterparts 
from arith and math dialects

● Using symbol visibility mechanism to represent imports and exports
● One “exotic” feature for wasm.function: 

○ Wasm function arguments have reference semantic, can be written to like local variables.
○ As a result, type T of function input type is mapped to entry block argument of type 

!wasm<local T>.



Guided tour of current implementation

Testing:

● Basic testing for each supported import and lowering of op, using llvm-lit.
● Needs a bit more negative testing (in particular for malformed wasm binaries)
● When better coverage, the Wasm conformance test suite could be used for 

end to end validation.   



Technical challenges

● Wasm: stack based virtual machine. MLIR works better with SSA, so the dialect 
technically represents superset of Wasm.

○ In RFC: proposal of a two dialect architecture with one that would really be one to one mapping to 
“real” wasm, with the op having only “side effects” to represent the program.

● Handling of the multiple embedders:
○ Some operation are tightly coupled to the embedder: e.g. Trap
○ Once again, got good suggestion for RFC to have a dialect extension for embedder ops an embedder 

specific lowering.
○ For instance 

■ wasm.trap → wasm.wasmtime.trap → relevant function call during lowering to LLVM IR.
● Versioning: 

○ Wasm is supposed to be backward compatible, so issue mostly concerns the translations 
● (minor) lack of control on FP rounding mode in some of arith / maths operations + 

loose specification of some FP corner cases for some ops.



Wasm
MLIR 
Wasm 
dialect

“Core” 
dialects + 
embedder 

specific 
ops

Core 
dialects

LLVMIR 
Dialect

import-wasm raise-mlir raise-wasm-embedder-*

wasabi



Dialect example: function
wasm.func nested @func_1(%arg0: !wasm<local ref to i32>, %arg1: !wasm<local ref to i32>) -> i32 {

  %v0 = wasm.local_get %arg0 : ref to i32

  %v1 = wasm.local_get %arg1 : ref to i32

  %0 = wasm.add %v0 %v1 : i32

  wasm.return %0 : i32

}



Dialect example: loop
module {

 wasm.func nested @func_0() -> i32 {

   %0 = wasm.local of type i32

   wasm.loop : {

     %1 = wasm.local_get %0 : ref to i32

     %2 = wasm.const 10 : i32

     %3 = wasm.lt_si %1 %2 : i32 -> i32

     wasm.block_return %3 : i32

   }> ^bb1

 ^bb1(%1: i32):  // pred: ^bb0

   wasm.return %1 : i32

 }

}



Discussion



Path to upstream


