
Notes on non-attribute properties

Krzysztof Drewniak1

Advanced Micro Devices

Aug 14, 2025

1Krzysztof.Drewniak@amd.com
1 / 12

mailto:Krzysztof.Drewniak@amd.com

What are non-attribute properties

I Ability to add non-attribute values directly to operations
I Not uniqued
I Mutable
I Still an evolving piece of MLIR infrastructure
I Defineable in tablegen
I Have an interface type (passed to builder etc.) and storage

type (stored in properties struct)
I Convertable to/from attributes

2 / 12

Example op

def MyOp : MyDialect<"my_op"> {
let arguments = (ins

I64Attr:$attr,
I64Prop:$a,
StringProp:$b,
DefaultValuedProp<I64Prop, "0">:$c

);
}

3 / 12

Properties struct

class MyOpGenericAdaptorBase {
struct Properties {

IntegerAttr attr;
int64_t a;
std::string b;
int64_t c = 0;

IntegerAttr getAttr() const;
void setAttr(IntegerAttr value);
int64_t getA() const;
...
StringRef getB() const;
void setB(StringRef value);

}; ...

All ops generated upstream have a Properties struct today!
(We retain the option to not use one for inherent attributes when
TableGen’ing and should deprecate that.) 4 / 12

Builders

MyOp::create(OpBuilder&, Location,
IntegerAttr attr, int64_t a, StringRef b,
int64_t c = 0);

...
MyOp::create(OpBuilder&, Location,

TypeRange resultTypes, ValueRange operands,
const Properties& properties,
ArrayRef<NamedAttribute> discardableAttrs);

Second form is new, not fully efficient yet.

5 / 12

Example syntaxes

"my_dialect.my_op"() <{attr = 1 : i64,
a = 2, b = "x", c = 0 : i64} {} : () -> ()

asmFormat = "attr-dict $attr $a $b $c";
my_dialect.my_op 1 2 "x" 0

asmFormat = "attr-dict $attr $a $b ($c^)";
my_dialect.my_op 1 2 "x"

asmFormat = "prop-dict attr-dict";
my_dialct.my_op <{attr = 1 : i64, ... c = 0 : i64}>

But I think it should be
my_dialect.my_op <attr = 1, a = 2, b = "x">

6 / 12

Printing and parsing

I Non-attribute properties work in assembly formats.
I Optional/default parsing supported $c vs ($c^)?.
I Not listing a non-attribute property means needing a

prop-dict directive.
I prop-dict prints all non-elided inherent attributes and

non-attributes properties as an attribute — like in generic
form

I Using prop-dict means attr-dict is discardable attributes only
(not currently taken advantage of)

7 / 12

Missing infrastructure — op creation

I Operation::create and OperationState flow that separates
properties and discardable attributes.

I Currently, we always scan the attribute list to pull out
inherent attributes

I Need some opt-in way to not do that
I Details being hashed out on forum

8 / 12

Missing infrastructure — op parsing/printing

I Proposed change to prop-dict in assembly formats.
I Would make prop-dict like a struct of all inherent properties

not mentioned elsewhere
I Could be changed backwards-compatibly for most cases – just

check for a DictionaryAttr after the <.

9 / 12

Missing? — getPropertyAsAttr

I Have getPropertiesAsAttr and setPropertiesFromAttr
for generic parsing and current prop-dict

I Should we add getPropertyAsAttr and
setPropertyFromAttr?

I Take existing get/setInherentAttr() and add code for
non-attribute properties

I Pros: Allows reasonably generic code, introspection, may
simplify bindings

I Cons: Might lead to people using it when they shouldn’t

10 / 12

FFI bindings

I Currently — no way to get/set non-attribute properties from
C, Python, etc.

I Let’s discuss answers
I IMO, the C++ types normally used for non-attribute

properties can easily become C types
I So - tablegen C versions of Properties struct
I But autogen’d C headers have been objected to
I Python ... not my wheelhouse, apparently can wrap C++

directly?

11 / 12

Summary

I Non-attribute property ifrastructure has evolved, is continuing
I Still have infrastructure questions
I But also ... bigger questions about what a non-attribute

property should be.
I And so I’ll pass it to Fabian

12 / 12

