Krzysztof Drewniak!

Advanced Micro Devices

Aug 14, 2025

'Krzysztof.Drewniak@amd.com
1/12

mailto:Krzysztof.Drewniak@amd.com

What are non-attribute properties

VvVvYvYyVvYyy

v

Ability to add non-attribute values directly to operations
Not uniqued

Mutable

Still an evolving piece of MLIR infrastructure

Defineable in tablegen

Have an interface type (passed to builder etc.) and storage

type (stored in properties struct)

Convertable to/from attributes

2/12

def MyOp : MyDialect<"my_op"> {
let arguments = (ins
I64Attr:$attr,
I64Prop: $a,
StringProp:$b,
DefaultValuedProp<I64Prop, "0">:$c

3/12

Properties struct

class MyOpGenericAdaptorBase {
struct Properties {
IntegerAttr attr;
int64_t a;
std::string b;
int64_t ¢ = O;

IntegerAttr getAttr() const;
void setAttr(IntegerAttr value);
int64_t getA() const;

StringRef getB() const;

void setB(StringRef value);
s
All ops generated upstream have a Properties struct today!
(We retain the option to not use one for inherent attributes when
TableGen'ing and should deprecate that.)

4/12

Builders

MyOp: :create(OpBuilder&, Location,
IntegerAttr attr, int64_t a, StringRef b,
int64 t ¢ = 0);

MyOp: :create(OpBuilder&, Location,
TypeRange resultTypes, ValueRange operands,
const Properties& properties,
ArrayRef<NamedAttribute> discardableAttrs);

Second form is new, not fully efficient yet.

5/12

Example syntaxes
"my_dialect.my_op" () <{attr = 1 : i64,
a=2,b="x",c=0:1i64} {3 : O > O

asmFormat = "attr-dict $attr $a $b $c";
my_dialect.my_op 1 2 "x" O

asmFormat = "attr-dict $attr $a $b ($c7)";
my_dialect.my_op 1 2 "x"

asmFormat = "prop-dict attr-dict";
my_dialct.my_op <{attr = 1 : i64, ... c = 0 : i64}>

But I think it should be
my_dialect.my_op <attr = 1, a = 2, b = "x">

6/12

Printing and parsing

v

Non-attribute properties work in assembly formats.
Optional /default parsing supported $c vs ($c™) 7.

Not listing a non-attribute property means needing a
prop-dict directive.

prop-dict prints all non-elided inherent attributes and
non-attributes properties as an attribute — like in generic
form

Using prop-dict means attr-dict is discardable attributes only
(not currently taken advantage of)

7/12

Missing infrastructure — op creation

» Operation::create and OperationState flow that separates
properties and discardable attributes.

» Currently, we always scan the attribute list to pull out
inherent attributes

» Need some opt-in way to not do that

» Details being hashed out on forum

8/12

Missing infrastructure — op parsing/printing

» Proposed change to prop-dict in assembly formats.

» Would make prop-dict like a struct of all inherent properties
not mentioned elsewhere

» Could be changed backwards-compatibly for most cases — just
check for a DictionaryAttr after the <.

9/12

Missing? — getPropertyAsAttr

» Have getPropertiesAsAttr and setPropertiesFromAttr
for generic parsing and current prop-dict

» Should we add getPropertyAsAttr and
setPropertyFromAttr?

» Take existing get/setInherentAttr() and add code for
non-attribute properties

» Pros: Allows reasonably generic code, introspection, may
simplify bindings
» Cons: Might lead to people using it when they shouldn't

10/12

FFI bindings

» Currently — no way to get/set non-attribute properties from
C, Python, etc.

» Let's discuss answers

» IMO, the C++ types normally used for non-attribute
properties can easily become C types

» So - tablegen C versions of Properties struct

v

But autogen’'d C headers have been objected to

» Python ... not my wheelhouse, apparently can wrap C++
directly?

11/12

» Non-attribute property ifrastructure has evolved, is continuing
» Still have infrastructure questions

» But also ... bigger questions about what a non-attribute
property should be.

» And so I'll pass it to Fabian

12/12

