
MLIR properties, design
discussion and next steps

Open Design Meeting
Hosted: Fabian Mora Cordero

Participants: Mehdi Amini, Krzysztof Drewniak

1

Background

2

Attributes

“Attributes are the mechanism for specifying
constant data on operations in places where a
variable is never allowed - e.g. the comparison
predicate of a cmpi operation. Each operation
has an attribute dictionary, which associates a

set of attribute names to attribute values…”

MLIR LangRef

Characteristics:

● Lifetime bound and owned by the MLIR
context

● Unique wrt the context

● Definition owned by dialects

● Can be parsed and printed generically

● Can have interfaces

3

MLIR properties

[RFC] Introducing MLIR Operation Properties

Mehdi Amini

“Properties are extra data members stored
directly on an Operation class. They provide a

way to store inherent attributes and other
arbitrary data. The semantics of the data is
specific to a given operation, and may be

exposed through Interfaces accessors and other
methods. Properties can always be serialized to

Attribute in order to be printed generically.”

MLIR LangRef

// Any kind of integer stored as properties.

class IntProp<string storageTypeParam, string desc =

""> : Property<storageTypeParam, desc> {

 let summary = “...”

 let optionalParser = [{...}];

 let printer = "...";

 let writeToMlirBytecode = [{...}];

 let readFromMlirBytecode = [{...}];

 code convertToAttribute = [{...}];

 code convertFromAttribute = [{...}];

}

def I32Prop : IntProp<"int32_t">;

4

https://discourse.llvm.org/t/rfc-introducing-mlir-operation-properties/67846

Op example:
def MyOp : Dialect_Op<"my_op"> {

 let arguments = (ins UnitProp:$prop, UnitAttr:$attr);

 let assemblyFormat = [{ attr-dict }];

}

::mlir::Attribute MyOp::getPropertiesAsAttr(::mlir::MLIRContext *ctx,

const Properties &prop) {

 ::mlir::SmallVector<::mlir::NamedAttribute> attrs;

 ::mlir::Builder odsBuilder{ctx};

 const auto &propStorage = prop.attr;

 if (propStorage)

 attrs.push_back(odsBuilder.getNamedAttr("attr",

 propStorage));

 {

 const auto &propStorage = prop.prop;

 auto attr = [&]() -> ::mlir::Attribute {

 if (propStorage)

 return ::mlir::UnitAttr::get(ctx);

 else

 return ::mlir::BoolAttr::get(ctx, false);

 }();

 attrs.push_back(odsBuilder.getNamedAttr("prop", attr));

 }

 if (!attrs.empty())

 return odsBuilder.getDictionaryAttr(attrs);

 return {};

}

struct Properties {

 using attrTy = ::mlir::UnitAttr;

 attrTy attr;

 auto getAttr() const {

 auto &propStorage = this->attr;

 return

::llvm::dyn_cast_or_null<::mlir::UnitAttr>(propStorage)

;

 }

 void setAttr(const ::mlir::UnitAttr &propValue) {

 this->attr = propValue;

 }

 using propTy = bool;

 propTy prop = false;

};

TableGen spec

C++ declaration C++ methods
5

Issues

6

● They broke C and python bindings: [mlir][python] Op properties are broken for
python · Issue #150009 · llvm/llvm-project

● They are currently a C++ implementation detail of operations

○ No generic printing and parsing of props, as in the case of attrs or types

○ Their semantic meaning is subjugated to a C++ detail of ops, and not the IR

● They need attributes to interact generically with other components, eg.
printing and parsing generic ops

○ This implementation is inefficient

● No interfaces, so not a full replacement for attributes in ops

7

https://github.com/llvm/llvm-project/issues/150009
https://github.com/llvm/llvm-project/issues/150009

Proposal

8

Amend their definition in the LangRef

“Properties are extra data members stored
directly on an Operation class. They provide a

way to store inherent attributes and other
arbitrary data. The semantics of the data is
specific to a given operation, and may be

exposed through Interfaces accessors and other
methods. Properties can always be serialized to

Attribute in order to be printed generically.”

MLIR LangRef

“Properties are a mechanism for specifying
arbitrary mutable or immutable data on

operations. The full semantics of the data are
specific to a given property and operation. Each

operation has a static property dictionary,
associating names to properties.”

MLIR LangRef

9

Long term implementation changes

● Remove round-tripping properties through attributes as a constraint
○ It’s wasteful and defeat the efficiency goal of props

○ It’s an excuse to avoid solving the underlying technical debt

● Add property verifiers
○ Needed for safe generic parsing and printing

○ These should be nop on full release mode, and there should be an option to disable them on
runtime

● Add generic parsing and printing hooks
○ `&i32<0>`, `&gpu::binary<”...”>`, …

○ Removes the need to round-trip through attributes for generic parsing and printing

10

Long term implementation changes

● Add a `UniquePropStorage` to store opaque properties

○ Needed for parsing unknown generic properties

● This should serve as a stopgap measure for the C/Python bindings issue

● Add a `OpaquePropRef` class to hold references to opaque properties

○ Needed to have a `TypeID` safe way to interact with props in Ops

● Add a `PropRef` template class to hold concrete instances of prop refs

● Allow prop interfaces

● Make all attributes convertible to props, but not the other way

11

What about attrs? What’s the official guideline?

● Attributes should be used when:

○ Data rarely changes during the lifetime of the context

○ Fast-comparison is needed between data

○ The data should be persistent till the end of the context

○ Example: An attribute containing information for configuring an immutable pass pipeline

● Use properties in almost all cases except in those cases suggested by the
attribute guidance

12

Optional changes

● Add a discardable prop dict and replace the discardable attr dict

○ This should be possible via a map and `UniquePropStorage`

● Remove unregistered ops

○ Seem like a relic of the past

○ Their interaction with props is limited

13

