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Background



Attributes

“Attributes are the mechanism for specifying
constant data on operations in places where a
variable is never allowed - e.g. the comparison
predicate of a cmpi operation. Each operation
has an attribute dictionary, which associates a

set of attribute names to attribute values...”

MLIR LangRef

Characteristics:

Lifetime bound and owned by the MLIR
context

Unique wrt the context
Definition owned by dialects
Can be parsed and printed generically

Can have interfaces



MLIR properties

// Any kind of integer stored as properties.

[REC] Introducing MLIR Operation Properties

class IntProp<string storageTypeParam, string desc =
. . ""> : Property<storageTypeParam, desc> {
Mehdi Amini

let summary = “

let optionalParser = [{...}];

“Properties are extra data members stored
directly on an Operation class. They provide a

let printer = "...";

) ; let writeToMlirBytecode = [{...}];
way to store inherent attributes and other let readFromMlirBytecode = [{...}]:
arbitrary data. The semantics of the data is code convertToAttribute = [{...}];
specific to a given operation, and may be Fodsicony o RS DEEC R SN EE R

exposed through Interfaces accessors and other
methods. Properties can always be serialized to
Attribute in order to be printed generically.”

def I32Prop : IntProp<"int32 t">;

MLIR LangRef


https://discourse.llvm.org/t/rfc-introducing-mlir-operation-properties/67846

Op example:

def MyOp : Dialect Op<"my op"> ({

let arguments = (ins UnitProp:$prop, UnitAttr:S$attr);

let assemblyFormat = [{ attr-dict }];

TableGen spec

struct Properties ({
using attrTy = ::mlir::UnitAttr;
attrTy attr;
auto getAttr () const {
auto &propStorage = this->attr;

return

::1lvm::dyn cast or null<::mlir::UnitAttr>(propStorage)

}

void setAttr(const ::mlir::UnitAttr &propValue) ({
this->attr = propValue;

}

using propTy

bool;
propTy prop = false;

i 2 .
C++ declaration

::mlir::Attribute MyOp: :getPropertiesAsAttr(::mlir: :MLIRContext *ctx,
const Properties &prop) {
::mlir::SmallVector<: mlir: :NamedAttribute> attrs;
::mlir::Builder odsBuilder{ctx};
const auto &propStorage = prop.attr;
if (propStorage)
attrs.push back(odsBuilder.getNamedAttr("attr",
propStorags ;

const auto &propStorage = prop.prop;
auto attr = [&] () —-> ::mlir::Attribute {
if (propStorage)
return ::mlir::UnitAttr::get(ctx);
else
return ::mlir::BoolAttr::get(ctx, false);
PO
attrs.push_back(odsBuilder.getNamedAttr("prop", attr));
}
if (lattrs.empty())
return odsBuilder.getDictionaryAttr(attrs) ;
return {};

}

C++ methods



Issues



They broke C and python bindings: [mlir][python] Op properties are broken for
python - Issue #150009 - llvm/llvm-project

They are currently a C++ implementation detail of operations
o No generic printing and parsing of props, as in the case of attrs or types

o Their semantic meaning is subjugated to a C++ detail of ops, and not the IR

They need attributes to interact generically with other components, eg.
printing and parsing generic ops

o This implementation is inefficient

No interfaces, so not a full replacement for attributes in ops


https://github.com/llvm/llvm-project/issues/150009
https://github.com/llvm/llvm-project/issues/150009

Proposal



Amend their definition in the LangRef

“Properties are extra data members stored
directly on an Operation class. They provide a
way to store inherent attributes and other
arbitrary data. The semantics of the data is
specific to a given operation, and may be
exposed through Interfaces accessors and other
methods. Properties can always be serialized to
Attribute in order to be printed generically.”

MLIR LangRef

“Properties are a mechanism for specifying
arbitrary mutable or immutable data on
operations. The full semantics of the data are
specific to a given property and operation. Each
operation has a static property dictionary,
associating names to properties.”

MLIR LangRef



Long term implementation changes

e Remove round-tripping properties through attributes as a constraint
o It's wasteful and defeat the efficiency goal of props
o It's an excuse to avoid solving the underlying technical debt

e Add property verifiers
o Needed for safe generic parsing and printing

o These should be nop on full release mode, and there should be an option to disable them on
runtime

e Add generic parsing and printing hooks
o &i32<0>", "&gpu::binary<”...”>", ...

o Removes the need to round-trip through attributes for generic parsing and printing
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Long term implementation changes

Add a "UniquePropStorage™ to store opaque properties

o Needed for parsing unknown generic properties

This should serve as a stopgap measure for the C/Python bindings issue

Add a "OpaquePropRef" class to hold references to opaque properties

o Needed to have a "TypelD" safe way to interact with props in Ops

Add a "PropRef" template class to hold concrete instances of prop refs
Allow prop interfaces

Make all attributes convertible to props, but not the other way
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What about attrs? What's the official guideline?

e Attributes should be used when:
o Data rarely changes during the lifetime of the context
o Fast-comparison is needed between data
o The data should be persistent till the end of the context
o Example: An attribute containing information for configuring an immutable pass pipeline

e Use properties in almost all cases except in those cases suggested by the
attribute guidance
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Optional changes

e Add a discardable prop dict and replace the discardable attr dict
o This should be possible via a map and "UniquePropStorage’
e Remove unregistered ops

o Seem like a relic of the past

o Their interaction with props is limited
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