MLIR properties, design

discussion and next steps
Open Design Meeting

Hosted: Fabian Mora Cordero
Participants: Mehdi Amini, Krzysztof Drewniak

Background

Attributes

“Attributes are the mechanism for specifying
constant data on operations in places where a
variable is never allowed - e.g. the comparison
predicate of a cmpi operation. Each operation
has an attribute dictionary, which associates a

set of attribute names to attribute values...”

MLIR LangRef

Characteristics:

Lifetime bound and owned by the MLIR
context

Unique wrt the context
Definition owned by dialects
Can be parsed and printed generically

Can have interfaces

MLIR properties

// Any kind of integer stored as properties.

[REC] Introducing MLIR Operation Properties

class IntProp<string storageTypeParam, string desc =
. . ""> : Property<storageTypeParam, desc> {
Mehdi Amini

let summary = “

let optionalParser = [{...}];

“Properties are extra data members stored
directly on an Operation class. They provide a

let printer = "...";

) ; let writeToMlirBytecode = [{...}];
way to store inherent attributes and other let readFromMlirBytecode = [{...}]:
arbitrary data. The semantics of the data is code convertToAttribute = [{...}];
specific to a given operation, and may be Fodsicony o RS DEEC R SN EE R

exposed through Interfaces accessors and other
methods. Properties can always be serialized to
Attribute in order to be printed generically.”

def I32Prop : IntProp<"int32 t">;

MLIR LangRef

https://discourse.llvm.org/t/rfc-introducing-mlir-operation-properties/67846

Op example:

def MyOp : Dialect Op<"my op"> ({

let arguments = (ins UnitProp:$prop, UnitAttr:S$attr);

let assemblyFormat = [{ attr-dict }];

TableGen spec

struct Properties ({
using attrTy = ::mlir::UnitAttr;
attrTy attr;
auto getAttr () const {
auto &propStorage = this->attr;

return

::1lvm::dyn cast or null<::mlir::UnitAttr>(propStorage)

}

void setAttr(const ::mlir::UnitAttr &propValue) ({
this->attr = propValue;

}

using propTy

bool;
propTy prop = false;

i 2 .
C++ declaration

::mlir::Attribute MyOp: :getPropertiesAsAttr(::mlir: :MLIRContext *ctx,
const Properties &prop) {
::mlir::SmallVector<: mlir: :NamedAttribute> attrs;
::mlir::Builder odsBuilder{ctx};
const auto &propStorage = prop.attr;
if (propStorage)
attrs.push back(odsBuilder.getNamedAttr("attr",
propStorags ;

const auto &propStorage = prop.prop;
auto attr = [&] () —-> ::mlir::Attribute {
if (propStorage)
return ::mlir::UnitAttr::get(ctx);
else
return ::mlir::BoolAttr::get(ctx, false);
PO
attrs.push_back(odsBuilder.getNamedAttr("prop", attr));
}
if (lattrs.empty())
return odsBuilder.getDictionaryAttr(attrs) ;
return {};

}

C++ methods

Issues

They broke C and python bindings: [mlir][python] Op properties are broken for
python - Issue #150009 - llvm/llvm-project

They are currently a C++ implementation detail of operations
o No generic printing and parsing of props, as in the case of attrs or types

o Their semantic meaning is subjugated to a C++ detail of ops, and not the IR

They need attributes to interact generically with other components, eg.
printing and parsing generic ops

o This implementation is inefficient

No interfaces, so not a full replacement for attributes in ops

https://github.com/llvm/llvm-project/issues/150009
https://github.com/llvm/llvm-project/issues/150009

Proposal

Amend their definition in the LangRef

“Properties are extra data members stored
directly on an Operation class. They provide a
way to store inherent attributes and other
arbitrary data. The semantics of the data is
specific to a given operation, and may be
exposed through Interfaces accessors and other
methods. Properties can always be serialized to
Attribute in order to be printed generically.”

MLIR LangRef

“Properties are a mechanism for specifying
arbitrary mutable or immutable data on
operations. The full semantics of the data are
specific to a given property and operation. Each
operation has a static property dictionary,
associating names to properties.”

MLIR LangRef

Long term implementation changes

e Remove round-tripping properties through attributes as a constraint
o It's wasteful and defeat the efficiency goal of props
o It's an excuse to avoid solving the underlying technical debt

e Add property verifiers
o Needed for safe generic parsing and printing

o These should be nop on full release mode, and there should be an option to disable them on
runtime

e Add generic parsing and printing hooks
o &i32<0>", "&gpu::binary<”...”>", ...

o Removes the need to round-trip through attributes for generic parsing and printing

10

Long term implementation changes

Add a "UniquePropStorage™ to store opaque properties

o Needed for parsing unknown generic properties

This should serve as a stopgap measure for the C/Python bindings issue

Add a "OpaquePropRef" class to hold references to opaque properties

o Needed to have a "TypelD" safe way to interact with props in Ops

Add a "PropRef" template class to hold concrete instances of prop refs
Allow prop interfaces

Make all attributes convertible to props, but not the other way

11

What about attrs? What's the official guideline?

e Attributes should be used when:
o Data rarely changes during the lifetime of the context
o Fast-comparison is needed between data
o The data should be persistent till the end of the context
o Example: An attribute containing information for configuring an immutable pass pipeline

e Use properties in almost all cases except in those cases suggested by the
attribute guidance

12

Optional changes

e Add a discardable prop dict and replace the discardable attr dict
o This should be possible via a map and "UniquePropStorage’
e Remove unregistered ops

o Seem like a relic of the past

o Their interaction with props is limited

(K

