MLIR

Multi-Level IR Compiler Framework

source

polynomial.add (polynomial::AddOp) 

Addition operation between polynomials.

Syntax:

operation ::= `polynomial.add` operands attr-dict `:` type($result)

Performs polynomial addition on the operands. The operands may be single polynomials or containers of identically-typed polynomials, i.e., polynomials from the same underlying ring with the same coefficient types.

Addition is defined to occur in the ring defined by the ring attribute of the two operands, meaning the addition is taken modulo the coefficientModulus and the polynomialModulus of the ring.

Example:

// add two polynomials modulo x^1024 - 1
#poly = #polynomial.polynomial<x**1024 - 1>
#ring = #polynomial.ring<coefficientType=i32, coefficientModulus=65536, polynomialModulus=#poly>
%0 = polynomial.constant #polynomial.polynomial<1 + x**2> : !polynomial.polynomial<#ring>
%1 = polynomial.constant #polynomial.polynomial<x**5 - x + 1> : !polynomial.polynomial<#ring>
%2 = polynomial.add %0, %1 : !polynomial.polynomial<#ring>

Traits: AlwaysSpeculatableImplTrait, Commutative, Elementwise, SameOperandsAndResultType, Scalarizable, Tensorizable, Vectorizable

Interfaces: ConditionallySpeculatable, InferTypeOpInterface, NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Operands: 

OperandDescription
lhspolynomial-like
rhspolynomial-like

Results: 

ResultDescription
resultpolynomial-like

polynomial.constant (polynomial::ConstantOp) 

Define a constant polynomial via an attribute.

Syntax:

operation ::= `polynomial.constant` $input attr-dict `:` type($output)

Example:

#poly = #polynomial.polynomial<x**1024 - 1>
#ring = #polynomial.ring<coefficientType=i32, coefficientModulus=65536, polynomialModulus=#poly>
%0 = polynomial.constant #polynomial.polynomial<1 + x**2> : !polynomial.polynomial<#ring>

Traits: AlwaysSpeculatableImplTrait

Interfaces: ConditionallySpeculatable, NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Attributes: 

AttributeMLIR TypeDescription
input::mlir::polynomial::PolynomialAttr
An attribute containing a single-variable polynomial.
A polynomial attribute represents a single-variable polynomial, which
is used to define the modulus of a `RingAttr`, as well as to define constants
and perform constant folding for `polynomial` ops.

The polynomial must be expressed as a list of monomial terms, with addition or subtraction between them. The choice of variable name is arbitrary, but must be consistent across all the monomials used to define a single attribute. The order of monomial terms is arbitrary, each monomial degree must occur at most once.

Example:

#poly = #polynomial.polynomial&lt;x**1024 + 1&gt;

Results: 

ResultDescription
outputAn element of a polynomial ring.

polynomial.from_tensor (polynomial::FromTensorOp) 

Creates a polynomial from integer coefficients stored in a tensor.

Syntax:

operation ::= `polynomial.from_tensor` $input attr-dict `:` type($input) `->` type($output)

polynomial.from_tensor creates a polynomial value from a tensor of coefficients. The input tensor must list the coefficients in degree-increasing order.

The input one-dimensional tensor may have size at most the degree of the ring’s polynomialModulus generator polynomial, with smaller dimension implying that all higher-degree terms have coefficient zero.

Example:

#poly = #polynomial.polynomial<x**1024 - 1>
#ring = #polynomial.ring<coefficientType=i32, coefficientModulus=65536, polynomialModulus=#poly>
%two = arith.constant 2 : i32
%five = arith.constant 5 : i32
%coeffs = tensor.from_elements %two, %two, %five : tensor<3xi32>
%poly = polynomial.from_tensor %coeffs : tensor<3xi32> -> !polynomial.polynomial<#ring>

Traits: AlwaysSpeculatableImplTrait

Interfaces: ConditionallySpeculatable, NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Operands: 

OperandDescription
inputranked tensor of integer values

Results: 

ResultDescription
outputAn element of a polynomial ring.

polynomial.leading_term (polynomial::LeadingTermOp) 

Compute the leading term of the polynomial.

Syntax:

operation ::= `polynomial.leading_term` operands attr-dict `:` type($input) `->` `(` type($degree) `,` type($coefficient) `)`

The degree of a polynomial is the largest $k$ for which the coefficient a_k of x^k is nonzero. The leading term is the term a_k * x^k, which this op represents as a pair of results. The first is the degree k as an index, and the second is the coefficient, whose type matches the coefficient type of the polynomial’s ring attribute.

Example:

#poly = #polynomial.polynomial<x**1024 - 1>
#ring = #polynomial.ring<coefficientType=i32, coefficientModulus=65536, polynomialModulus=#poly>
%0 = polynomial.constant #polynomial.polynomial<1 + x**2> : !polynomial.polynomial<#ring>
%1, %2 = polynomial.leading_term %0 : !polynomial.polynomial<#ring> -> (index, i32)

Traits: AlwaysSpeculatableImplTrait

Interfaces: ConditionallySpeculatable, NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Operands: 

OperandDescription
inputAn element of a polynomial ring.

Results: 

ResultDescription
degreeindex
coefficientinteger

polynomial.monic_monomial_mul (polynomial::MonicMonomialMulOp) 

Multiply a polynomial by a monic monomial.

Syntax:

operation ::= `polynomial.monic_monomial_mul` operands attr-dict `:` functional-type(operands, results)

Multiply a polynomial by a monic monomial, meaning a polynomial of the form 1 * x^k for an index operand k.

In some special rings of polynomials, such as a ring of polynomials modulo x^n - 1, monomial_mul can be interpreted as a cyclic shift of the coefficients of the polynomial. For some rings, this results in optimized lowerings that involve rotations and rescaling of the coefficients of the input.

Traits: AlwaysSpeculatableImplTrait

Interfaces: ConditionallySpeculatable, InferTypeOpInterface, NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Operands: 

OperandDescription
inputpolynomial-like
monomialDegreeindex

Results: 

ResultDescription
outputpolynomial-like

polynomial.monomial (polynomial::MonomialOp) 

Create a polynomial that consists of a single monomial.

Syntax:

operation ::= `polynomial.monomial` operands attr-dict `:` functional-type(operands, results)

Construct a polynomial that consists of a single monomial term, from its degree and coefficient as dynamic inputs.

The coefficient type of the output polynomial’s ring attribute must match the coefficient input type.

Example:

#poly = #polynomial.polynomial<x**1024 - 1>
#ring = #polynomial.ring<coefficientType=i32, coefficientModulus=65536, polynomialModulus=#poly>
%deg = arith.constant 1023 : index
%five = arith.constant 5 : i32
%0 = polynomial.monomial %five, %deg : (i32, index) -> !polynomial.polynomial<#ring>

Traits: AlwaysSpeculatableImplTrait

Interfaces: ConditionallySpeculatable, NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Operands: 

OperandDescription
coefficientinteger
degreeindex

Results: 

ResultDescription
outputAn element of a polynomial ring.

polynomial.mul (polynomial::MulOp) 

Multiplication operation between polynomials.

Syntax:

operation ::= `polynomial.mul` operands attr-dict `:` type($result)

Performs polynomial multiplication on the operands. The operands may be single polynomials or containers of identically-typed polynomials, i.e., polynomials from the same underlying ring with the same coefficient types.

Multiplication is defined to occur in the ring defined by the ring attribute of the two operands, meaning the multiplication is taken modulo the coefficientModulus and the polynomialModulus of the ring.

Example:

// multiply two polynomials modulo x^1024 - 1
#poly = #polynomial.polynomial<x**1024 - 1>
#ring = #polynomial.ring<coefficientType=i32, coefficientModulus=65536, polynomialModulus=#poly>
%0 = polynomial.constant #polynomial.polynomial<1 + x**2> : !polynomial.polynomial<#ring>
%1 = polynomial.constant #polynomial.polynomial<x**5 - x + 1> : !polynomial.polynomial<#ring>
%2 = polynomial.mul %0, %1 : !polynomial.polynomial<#ring>

Traits: AlwaysSpeculatableImplTrait, Commutative, Elementwise, SameOperandsAndResultType, Scalarizable, Tensorizable, Vectorizable

Interfaces: ConditionallySpeculatable, InferTypeOpInterface, NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Operands: 

OperandDescription
lhspolynomial-like
rhspolynomial-like

Results: 

ResultDescription
resultpolynomial-like

polynomial.mul_scalar (polynomial::MulScalarOp) 

Multiplication by a scalar of the field.

Syntax:

operation ::= `polynomial.mul_scalar` operands attr-dict `:` type($polynomial) `,` type($scalar)

Multiplies the polynomial operand’s coefficients by a given scalar value. The operation is defined to occur in the ring defined by the ring attribute of the two operands, meaning the multiplication is taken modulo the coefficientModulus of the ring.

The scalar input must have the same type as the polynomial ring’s coefficientType.

Example:

// multiply two polynomials modulo x^1024 - 1
#poly = #polynomial.polynomial<x**1024 - 1>
#ring = #polynomial.ring<coefficientType=i32, coefficientModulus=65536, polynomialModulus=#poly>
%0 = polynomial.constant #polynomial.polynomial<1 + x**2> : !polynomial.polynomial<#ring>
%1 = arith.constant 3 : i32
%2 = polynomial.mul_scalar %0, %1 : !polynomial.polynomial<#ring>, i32

Traits: AlwaysSpeculatableImplTrait, Elementwise, Scalarizable, Tensorizable, Vectorizable

Interfaces: ConditionallySpeculatable, InferTypeOpInterface, NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Operands: 

OperandDescription
polynomialpolynomial-like
scalarinteger

Results: 

ResultDescription
outputpolynomial-like

polynomial.sub (polynomial::SubOp) 

Subtraction operation between polynomials.

Syntax:

operation ::= `polynomial.sub` operands attr-dict `:` type($result)

Performs polynomial subtraction on the operands. The operands may be single polynomials or containers of identically-typed polynomials, i.e., polynomials from the same underlying ring with the same coefficient types.

Subtraction is defined to occur in the ring defined by the ring attribute of the two operands, meaning the subtraction is taken modulo the coefficientModulus and the polynomialModulus of the ring.

Example:

// subtract two polynomials modulo x^1024 - 1
#poly = #polynomial.polynomial<x**1024 - 1>
#ring = #polynomial.ring<coefficientType=i32, coefficientModulus=65536, polynomialModulus=#poly>
%0 = polynomial.constant #polynomial.polynomial<1 + x**2> : !polynomial.polynomial<#ring>
%1 = polynomial.constant #polynomial.polynomial<x**5 - x + 1> : !polynomial.polynomial<#ring>
%2 = polynomial.sub %0, %1 : !polynomial.polynomial<#ring>

Traits: AlwaysSpeculatableImplTrait, Elementwise, SameOperandsAndResultType, Scalarizable, Tensorizable, Vectorizable

Interfaces: ConditionallySpeculatable, InferTypeOpInterface, NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Operands: 

OperandDescription
lhspolynomial-like
rhspolynomial-like

Results: 

ResultDescription
resultpolynomial-like

polynomial.to_tensor (polynomial::ToTensorOp) 

Creates a tensor containing the coefficients of a polynomial.

Syntax:

operation ::= `polynomial.to_tensor` $input attr-dict `:` type($input) `->` type($output)

polynomial.to_tensor creates a dense tensor value containing the coefficients of the input polynomial. The output tensor contains the coefficients in degree-increasing order.

Operations that act on the coefficients of a polynomial, such as extracting a specific coefficient or extracting a range of coefficients, should be implemented by composing to_tensor with the relevant tensor dialect ops.

The output tensor has shape equal to the degree of the polynomial ring attribute’s polynomialModulus, including zeroes.

Example:

#poly = #polynomial.polynomial<x**1024 - 1>
#ring = #polynomial.ring<coefficientType=i32, coefficientModulus=65536, polynomialModulus=#poly>
%two = arith.constant 2 : i32
%five = arith.constant 5 : i32
%coeffs = tensor.from_elements %two, %two, %five : tensor<3xi32>
%poly = polynomial.from_tensor %coeffs : tensor<3xi32> -> !polynomial.polynomial<#ring>
%tensor = polynomial.to_tensor %poly : !polynomial.polynomial<#ring> -> tensor<1024xi32>

Traits: AlwaysSpeculatableImplTrait

Interfaces: ConditionallySpeculatable, NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Operands: 

OperandDescription
inputAn element of a polynomial ring.

Results: 

ResultDescription
outputranked tensor of integer values