MLIR

Multi-Level IR Compiler Framework

Remark Infrastructure

Remarks are structured, human- and machine-readable notes emitted by the compiler to communicate:

  • What transformations were applied
  • What optimizations were missed
  • Why certain decisions were made

The RemarkEngine collects remarks during compilation and routes them to a pluggable streamer. By default, MLIR integrates with LLVM’s llvm::remarks infrastructure, enabling you to:

  • Stream remarks as passes run
  • Serialize to YAML or LLVM Bitstream

Overview 

  • Opt-in – Disabled by default; zero overhead unless enabled.
  • Per-context – Configured on MLIRContext.
  • Formats – LLVM Remark engine (YAML / Bitstream) or custom streamers.
  • KindsPassed, Missed, Failure, Analysis.
  • API – Lightweight streaming interface using << (like MLIR diagnostics).

Architecture 

The remark system consists of two main components:

RemarkEngine 

Owned by MLIRContext, the engine:

  • Receives finalized InFlightRemark objects
  • Optionally mirrors remarks to the DiagnosticEngine
  • Dispatches to the installed streamer

MLIRRemarkStreamerBase 

An abstract backend interface with a single hook:

virtual void streamOptimizationRemark(const Remark &remark) = 0;

The default implementation, MLIRLLVMRemarkStreamer, adapts mlir::Remark to LLVM’s remark format and writes YAML or Bitstream via llvm::remarks::RemarkStreamer.

Ownership chain: MLIRContextRemarkEngineMLIRRemarkStreamerBase


Remark Categories 

MLIR provides four built-in categories:

Passed 

An optimization or transformation succeeded.

[Passed] RemarkName | Category:Vectorizer:myPass1 | Function=foo | Remark="vectorized loop", tripCount=128

Missed 

An optimization didn’t apply and produces ideally an actionable feedback.

[Missed]  | Category:Unroll | Function=foo | Reason="tripCount=4 < threshold=256", Suggestion="increase unroll to 128"

Failure 

An optimization was attempted but failed. Unlike Missed, this indicates an active attempt that couldn’t complete.

For example, when a user requests --use-max-register=100 but the allocator cannot satisfy the constraint:

[Failed] Category:RegisterAllocator | Reason="Limiting to use-max-register=100 failed; it now uses 104 registers for better performance"

Analysis 

Neutral informational output—useful for profiling and debugging.

[Analysis] Category:Register | Remark="Kernel uses 168 registers"
[Analysis] Category:Register | Remark="Kernel uses 10kB local memory"

Emitting Remarks 

Use the remark::* helpers to create an in-flight remark, then append content with the << operator.

Configuring Remark Options 

Each remark accepts four fields (all StringRef):

| Field | Description | |-|*********************************| | Name | Identifiable name for the remark | | Category | High-level classification | | Sub-category | Fine-grained classification | | Function | The function where the remark originates |

Basic Example 

#include "mlir/IR/Remarks.h"

LogicalResult MyPass::runOnOperation() {
  Location loc = getOperation()->getLoc();

  auto opts = remark::RemarkOpts::name("VectorizeLoop")
                  .category("Vectorizer")
                  .subCategory("MyPass")
                  .function("foo");

  // Passed: transformation succeeded
  remark::passed(loc, opts)
      << "vectorized loop"
      << remark::metric("tripCount", 128);

  // Analysis: informational output
  remark::analysis(loc, opts)
      << "Kernel uses 168 registers";

  // Missed: optimization skipped (with reason and suggestion)
  remark::missed(loc, opts)
      << remark::reason("tripCount={0} < threshold={1}", 4, 256)
      << remark::suggest("increase unroll factor to {0}", 128);

  // Failure: optimization attempted but failed
  remark::failed(loc, opts)
      << remark::reason("unsupported pattern encountered");

  return success();
}

Metrics and Helpers 

All helper functions accept LLVM format strings, which build lazily—ensuring zero cost when remarks are disabled.

| Helper | Description | |–|************| | remark::metric(key, value) | Adds a structured key–value pair | | remark::add(fmt, ...) | Shortcut for metric("Remark", ...) | | remark::reason(fmt, ...) | Shortcut for metric("Reason", ...) | | remark::suggest(fmt, ...) | Shortcut for metric("Suggestion", ...) |

String Shorthand 

Appending a plain string:

remark::passed(loc, opts) << "vectorized loop";

is equivalent to:

remark::passed(loc, opts) << remark::metric("Remark", "vectorized loop");

Custom Metrics 

Add structured data for machine readability:

remark::passed(loc, opts)
    << "loop optimized"
    << remark::metric("TripCount", 128)
    << remark::metric("VectorWidth", 4);

Emitting Policies 

The RemarkEngine supports pluggable policies that control which remarks are emitted.

RemarkEmittingPolicyAll 

Emits all remarks unconditionally.

RemarkEmittingPolicyFinal 

Emits only the final remark for each location. This is useful in multi-pass compilers where an early pass may report a failure, but a later pass succeeds.

Example: Only the successful remark is emitted:

auto opts = remark::RemarkOpts::name("Unroller").category("LoopUnroll");

// First pass: reports failure
remark::failed(loc, opts) << "Loop could not be unrolled";

// Later pass: reports success (this is the one emitted)
remark::passed(loc, opts) << "Loop unrolled successfully";

You can also implement custom policies by inheriting from the policy interface.


Enabling Remarks 

Option 1: LLVM Remark Streamer (YAML or Bitstream) 

Persist remarks to a file for post-processing:

// Setup categories
remark::RemarkCategories cats{
    /*passed=*/   "LoopUnroll",
    /*missed=*/   std::nullopt,
    /*analysis=*/ std::nullopt,
    /*failed=*/   "LoopUnroll"
};

// Use final policy
std::unique_ptr<remark::RemarkEmittingPolicyFinal> policy =
        std::make_unique<remark::RemarkEmittingPolicyFinal>();

remark::enableOptimizationRemarksWithLLVMStreamer(
    context, outputFile, llvm::remarks::Format::YAML, std::move(policy), cats);

YAML output (human-readable):

*** !Passed
pass:     Vectorizer:MyPass
name:     VectorizeLoop
function: foo
loc:      input.mlir:12:3
args:
  - Remark:    vectorized loop
  - tripCount: 128

Bitstream format — compact binary for large-scale analysis.

Option 2: Diagnostic Engine (No Streamer) 

Mirror remarks to the standard diagnostic output:

// Setup categories
remark::RemarkCategories cats{
    /*passed=*/   "LoopUnroll",
    /*missed=*/   std::nullopt,
    /*analysis=*/ std::nullopt,
    /*failed=*/   "LoopUnroll"
};

// Use final policy
std::unique_ptr<remark::RemarkEmittingPolicyFinal> policy =
        std::make_unique<remark::RemarkEmittingPolicyFinal>();

remark::enableOptimizationRemarks(
    context,
    /*streamer=*/ nullptr,
    /*policy=*/ std::move(policy),
    cats,
    /*printAsEmitRemarks=*/ true);

Option 3: Custom Streamer 

Implement your own backend for specialized output formats:

class MyStreamer : public MLIRRemarkStreamerBase {
public:
  void streamOptimizationRemark(const Remark &remark) override {
    // Custom serialization logic
  }
};

auto streamer = std::make_unique<MyStreamer>();
remark::enableOptimizationRemarks(context, std::move(streamer), cats);