mlir.dialects._tensor_ops_gen ============================= .. py:module:: mlir.dialects._tensor_ops_gen Attributes ---------- .. autoapisummary:: mlir.dialects._tensor_ops_gen._ods_ir Classes ------- .. autoapisummary:: mlir.dialects._tensor_ops_gen._Dialect mlir.dialects._tensor_ops_gen.BitcastOp mlir.dialects._tensor_ops_gen.CastOp mlir.dialects._tensor_ops_gen.CollapseShapeOp mlir.dialects._tensor_ops_gen.ConcatOp mlir.dialects._tensor_ops_gen.DimOp mlir.dialects._tensor_ops_gen.EmptyOp mlir.dialects._tensor_ops_gen.ExpandShapeOp mlir.dialects._tensor_ops_gen.ExtractOp mlir.dialects._tensor_ops_gen.ExtractSliceOp mlir.dialects._tensor_ops_gen.FromElementsOp mlir.dialects._tensor_ops_gen.GatherOp mlir.dialects._tensor_ops_gen.GenerateOp mlir.dialects._tensor_ops_gen.InsertOp mlir.dialects._tensor_ops_gen.InsertSliceOp mlir.dialects._tensor_ops_gen.PadOp mlir.dialects._tensor_ops_gen.ParallelInsertSliceOp mlir.dialects._tensor_ops_gen.RankOp mlir.dialects._tensor_ops_gen.ReshapeOp mlir.dialects._tensor_ops_gen.ScatterOp mlir.dialects._tensor_ops_gen.SplatOp mlir.dialects._tensor_ops_gen.YieldOp Functions --------- .. autoapisummary:: mlir.dialects._tensor_ops_gen.bitcast mlir.dialects._tensor_ops_gen.cast mlir.dialects._tensor_ops_gen.collapse_shape mlir.dialects._tensor_ops_gen.concat mlir.dialects._tensor_ops_gen.dim mlir.dialects._tensor_ops_gen.empty mlir.dialects._tensor_ops_gen.expand_shape mlir.dialects._tensor_ops_gen.extract mlir.dialects._tensor_ops_gen.extract_slice mlir.dialects._tensor_ops_gen.from_elements mlir.dialects._tensor_ops_gen.gather mlir.dialects._tensor_ops_gen.generate mlir.dialects._tensor_ops_gen.insert mlir.dialects._tensor_ops_gen.insert_slice mlir.dialects._tensor_ops_gen.pad mlir.dialects._tensor_ops_gen.parallel_insert_slice mlir.dialects._tensor_ops_gen.rank mlir.dialects._tensor_ops_gen.reshape mlir.dialects._tensor_ops_gen.scatter mlir.dialects._tensor_ops_gen.splat mlir.dialects._tensor_ops_gen.yield_ Module Contents --------------- .. py:data:: _ods_ir .. py:class:: _Dialect(descriptor: object) Bases: :py:obj:`_ods_ir` .. py:attribute:: DIALECT_NAMESPACE :value: 'tensor' .. py:class:: BitcastOp(dest, source, *, loc=None, ip=None) Bases: :py:obj:`_ods_ir` Bitcast a tensor from one type to another type of equivalent element width. If both are ranked, then the rank should be the same and static dimensions should match. Example: .. code:: mlir // Bitcast from unsigned to signed or signless integer. %2 = tensor.bitcast %1 : tensor<4xui32> to tensor<4xi32> .. py:attribute:: OPERATION_NAME :value: 'tensor.bitcast' .. py:attribute:: _ODS_REGIONS :value: (0, True) .. py:method:: source() -> _ods_ir .. py:method:: dest() -> _ods_ir .. py:function:: bitcast(dest, source, *, loc=None, ip=None) -> _ods_ir .. py:class:: CastOp(dest, source, *, loc=None, ip=None) Bases: :py:obj:`_ods_ir` Convert a tensor from one type to an equivalent type without changing any data elements. The source and destination types must both be tensor types with the same element type. If both are ranked, then the rank should be the same and static dimensions should match. The operation is invalid if converting to a mismatching constant dimension. Example: .. code:: mlir // Convert from unknown rank to rank 2 with unknown dimension sizes. %2 = tensor.cast %1 : tensor<*xf32> to tensor // Convert to a type with more known dimensions. %3 = tensor.cast %2 : tensor to tensor<4x?xf32> // Discard static dimension and rank information. %4 = tensor.cast %3 : tensor<4x?xf32> to tensor %5 = tensor.cast %4 : tensor to tensor<*xf32> .. py:attribute:: OPERATION_NAME :value: 'tensor.cast' .. py:attribute:: _ODS_REGIONS :value: (0, True) .. py:method:: source() -> _ods_ir .. py:method:: dest() -> _ods_ir .. py:function:: cast(dest, source, *, loc=None, ip=None) -> _ods_ir .. py:class:: CollapseShapeOp(result, src, reassociation, *, loc=None, ip=None) Bases: :py:obj:`_ods_ir` The ``tensor.collapse_shape`` op produces a new tensor of lower (or equal) rank whose dimension sizes are a reassociation of the original ``src`` dimensions. A reassociation is defined as a continuous grouping of dimensions and is represented by an array of DenseI64ArrayAttr attribute. The reassociation maps are applied to the operand shape to obtain the result shape. Example: .. code:: mlir // Dimension collapse (i, j) -> i' and k -> k' %b = tensor.collapse_shape %a [[0, 1], [2]] : tensor into tensor .. py:attribute:: OPERATION_NAME :value: 'tensor.collapse_shape' .. py:attribute:: _ODS_REGIONS :value: (0, True) .. py:method:: src() -> _ods_ir .. py:method:: reassociation() -> _ods_ir .. py:method:: result() -> _ods_ir Shortcut to get an op result if it has only one (throws an error otherwise). .. py:function:: collapse_shape(result, src, reassociation, *, loc=None, ip=None) -> _ods_ir .. py:class:: ConcatOp(result, dim, inputs, *, loc=None, ip=None) Bases: :py:obj:`_ods_ir` The "concat" operation constructs a tensor out of a variadic list of input tensors, concatenated along a static dimension number. All inputs and the result type must share the same rank. ``dim`` specifies the dimension along which to concatenate. The size of the concatenated dimension in the result must be equal to the sum of the sizes of the inputs along that dimension. All other dimensions in both the inputs and result must be the same size. Example: .. code:: mlir %0 = tensor.concat dim(0) %0, %1, %2 : (tensor<3x6xf32>, tensor<3x6xf32>, tensor<1x6xf32) -> tensor<7x6xf32> // Dynamic + dynamic -> static %0 = tensor.concat dim(1) %0, %1, %2 : (tensor<3x?xf32>, tensor<3x2xf32>, tensor<3x?xf32) -> tensor<3x10xf32> .. py:attribute:: OPERATION_NAME :value: 'tensor.concat' .. py:attribute:: _ODS_REGIONS :value: (0, True) .. py:method:: inputs() -> _ods_ir .. py:method:: dim() -> _ods_ir .. py:method:: result() -> _ods_ir Shortcut to get an op result if it has only one (throws an error otherwise). .. py:function:: concat(result, dim, inputs, *, loc=None, ip=None) -> _ods_ir .. py:class:: DimOp(source, index, *, results=None, loc=None, ip=None) Bases: :py:obj:`_ods_ir` The ``tensor.dim`` operation takes a tensor and a dimension operand of type ``index``. It returns the size of the requested dimension of the given tensor. If the dimension index is out of bounds, the behavior is undefined. The specified tensor type is that of the first operand. Example: .. code:: mlir // Always returns 4, can be constant folded: %c0 = arith.constant 0 : index %x = tensor.dim %A, %c0 : tensor<4x?xf32> // Return the dynamic dimension of %A. %c1 = arith.constant 1 : index %y = tensor.dim %A, %c1 : tensor<4x?xf32> // Equivalent generic form: %x = "tensor.dim"(%A, %c0) : (tensor<4x?xf32>, index) -> index %y = "tensor.dim"(%A, %c1) : (tensor<4x?xf32>, index) -> index .. py:attribute:: OPERATION_NAME :value: 'tensor.dim' .. py:attribute:: _ODS_REGIONS :value: (0, True) .. py:method:: source() -> _ods_ir .. py:method:: index() -> _ods_ir .. py:method:: result() -> _ods_ir Shortcut to get an op result if it has only one (throws an error otherwise). .. py:function:: dim(source, index, *, results=None, loc=None, ip=None) -> _ods_ir .. py:class:: EmptyOp(result, dynamicSizes, *, loc=None, ip=None) Bases: :py:obj:`_ods_ir` ``tensor.empty`` is an operation that defines a tensor of a particular shape. The shape could be dynamic or static. The contents of the tensor are unspecified and the only purpose of the op result is to materialize the specified shape in IR and make it available to other transformations. ``tensor.empty`` is useful in transformations that expect destination style ops. I.e., ops that implement ``DestinationStyleOpInterface``. Ops that are not in destination style can be made compatible with such transformations with a ``tensor.empty`` destination. Note: This op can be lowered to a ``bufferization.alloc_tensor``, at which point it turns into an explicit buffer allocation. .. py:attribute:: OPERATION_NAME :value: 'tensor.empty' .. py:attribute:: _ODS_REGIONS :value: (0, True) .. py:method:: dynamicSizes() -> _ods_ir .. py:method:: result() -> _ods_ir Shortcut to get an op result if it has only one (throws an error otherwise). .. py:function:: empty(result, dynamic_sizes, *, loc=None, ip=None) -> _ods_ir .. py:class:: ExpandShapeOp(result, src, reassociation, output_shape, static_output_shape, *, loc=None, ip=None) Bases: :py:obj:`_ods_ir` The ``tensor.expand_shape`` op produces a tensor of higher (or equal) rank than the operand ``src`` whose dimension sizes are a reassociation of ``src``. A reassociation is defined as a continuous grouping of dimensions and is represented with an array of DenseI64ArrayAttr attribute. The reassociation maps applied to the result tensor with the higher rank must result in the operand tensor with the smaller rank. The representation for the output shape supports a partially-static specification via attributes specified through the ``static_output_shape`` argument. A special sentinel value ``ShapedType::kDynamic`` encodes that the corresponding entry has a dynamic value. There must be exactly as many SSA inputs in ``output_shape`` as there are ``ShapedType::kDynamic`` entries in ``static_output_shape``. Example: .. code:: mlir // Dimension expansion i -> (i', j') and (k) -> (k') %b = tensor.expand_shape %a [[0, 1], [2]] output_shape [%sz0, %sz1, 32] : tensor into tensor .. py:attribute:: OPERATION_NAME :value: 'tensor.expand_shape' .. py:attribute:: _ODS_REGIONS :value: (0, True) .. py:method:: src() -> _ods_ir .. py:method:: output_shape() -> _ods_ir .. py:method:: reassociation() -> _ods_ir .. py:method:: static_output_shape() -> _ods_ir .. py:method:: result() -> _ods_ir Shortcut to get an op result if it has only one (throws an error otherwise). .. py:function:: expand_shape(result, src, reassociation, output_shape, static_output_shape, *, loc=None, ip=None) -> _ods_ir .. py:class:: ExtractOp(tensor, indices, *, results=None, loc=None, ip=None) Bases: :py:obj:`_ods_ir` The ``tensor.extract`` op reads a ranked tensor and returns one element as specified by the given indices. The result of the op is a value with the same type as the elements of the tensor. The arity of indices must match the rank of the accessed value. All indices should all be of ``index`` type. Example: .. code:: mlir %4 = tensor.extract %t[%1, %2] : tensor<4x4xi32> %5 = tensor.extract %rt[%1, %2] : tensor .. py:attribute:: OPERATION_NAME :value: 'tensor.extract' .. py:attribute:: _ODS_REGIONS :value: (0, True) .. py:method:: tensor() -> _ods_ir .. py:method:: indices() -> _ods_ir .. py:method:: result() -> _ods_ir Shortcut to get an op result if it has only one (throws an error otherwise). .. py:function:: extract(tensor, indices, *, results=None, loc=None, ip=None) -> _ods_ir .. py:class:: ExtractSliceOp(result, source, offsets, sizes, strides, static_offsets, static_sizes, static_strides, *, loc=None, ip=None) Bases: :py:obj:`_ods_ir` The "extract_slice" operation extract a tensor from another tensor as specified by the operation's offsets, sizes and strides arguments. The extract_slice operation supports the following arguments: * source: the "base" tensor from which to extract a slice. * offsets: tensor-rank number of offsets into the "base" tensor from which to extract the slice. * sizes: tensor-rank number of sizes which specify the sizes of the result tensor type. * strides: tensor-rank number of strides specifying subsampling in each dimension. The representation based on offsets, sizes and strides support a partially-static specification via attributes specified through the ``static_offsets``, ``static_sizes`` and ``static_strides`` arguments. A special sentinel value ShapedType::kDynamic encodes that the corresponding entry has a dynamic value. After buffer allocation, the "extract_slice" op is expected to lower into a memref.subview op. An extract_slice operation may additionally reduce the rank of the resulting tensor by removing dimensions that are statically known to be of size 1. This rank-reduction behavior is not required by the op semantics: this flexibility allows to progressively drop unit dimensions while lowering between different flavors of ops on that operate on tensors. Verification vs Inference in the rank-reduced case -------------------------------------------------- Note that there may be multiple ways to infer a resulting rank-reduced type. e.g. 1x6x1 could potentially rank-reduce to either 1x6 or 6x1 2-D shapes. To disambiguate, the inference helpers ``inferCanonicalRankReducedResultType`` only drop the first unit dimensions, in order: e.g. 1x6x1 rank-reduced to 2-D will infer the 6x1 2-D shape, but not 1x6. Verification however has access to result type and does not need to infer. The verifier calls ``isRankReducedType(getSource(), getResult())`` to determine whether the result type is rank-reduced from the source type. This computes a so-called rank-reduction mask, consisting of dropped unit dims, to map the rank-reduced type to the source type by dropping ones: e.g. 1x6 is a rank-reduced version of 1x6x1 by mask {2} 6x1 is a rank-reduced version of 1x6x1 by mask {0} 1x2x1x4 is a rank-reduced version of 1x1x2x1x1x4x1 by mask {1, 4, 6} (remaining common 1 dimensions are matched eagerly) Example: .. code:: mlir // Rank-reducing extract_slice. %1 = tensor.extract_slice %0[0, 0, 0][1, 16, 4][1, 1, 1] : tensor<8x16x4xf32> to tensor<16x4xf32> %3 = tensor.extract_slice %2[%o0, 4, %o2][1, %sz1, 1][1, %st1, 1] : tensor<8x16x4xf32> to tensor<1x?xf32> .. py:attribute:: OPERATION_NAME :value: 'tensor.extract_slice' .. py:attribute:: _ODS_OPERAND_SEGMENTS .. py:attribute:: _ODS_REGIONS :value: (0, True) .. py:method:: source() -> _ods_ir .. py:method:: offsets() -> _ods_ir .. py:method:: sizes() -> _ods_ir .. py:method:: strides() -> _ods_ir .. py:method:: static_offsets() -> _ods_ir .. py:method:: static_sizes() -> _ods_ir .. py:method:: static_strides() -> _ods_ir .. py:method:: result() -> _ods_ir Shortcut to get an op result if it has only one (throws an error otherwise). .. py:function:: extract_slice(result, source, offsets, sizes, strides, static_offsets, static_sizes, static_strides, *, loc=None, ip=None) -> _ods_ir .. py:class:: FromElementsOp(result, elements, *, loc=None, ip=None) Bases: :py:obj:`_ods_ir` Create a N-D tensor from a range of same-type arguments. The number of provided ``elements`` should equal to the number of the elements in the result type. The ``elements`` correspond to a flattened tensor. Example: .. code:: mlir tensor.from_elements %a, %b, %c, %d, %e, %f : tensor<2x3xindex> will result in a tensor [[%a, %b, %c] [%d, %e, %f]] .. py:attribute:: OPERATION_NAME :value: 'tensor.from_elements' .. py:attribute:: _ODS_REGIONS :value: (0, True) .. py:method:: elements() -> _ods_ir .. py:method:: result() -> _ods_ir Shortcut to get an op result if it has only one (throws an error otherwise). .. py:function:: from_elements(result, elements, *, loc=None, ip=None) -> _ods_ir .. py:class:: GatherOp(result, source, indices, gather_dims, *, unique=None, loc=None, ip=None) Bases: :py:obj:`_ods_ir` The ``gather`` operation extracts a subset of the elements from a ``source`` tensor at the given indices. In its most general form, the tensor of indices specifies all the coordinates of every element to extract (i.e. COO format, without the payload). The indices are expected to be confined to coordinate values that fit the range of the ``source`` tensor, otherwise the behavior is undefined. The leading dimensions of the index tensor give the result tensor its leading dimensions. The trailing dimensions of the result tensor are obtained from the source tensor by omitting the dimensions specified in ``gather_dims`` (rank-reducing semantics) or setting them to ``1`` (rank-preserving semantics) (see examples). The trailing dimension of the index tensor contains the coordinates and is expected to have its size equal to the number of dimensions being gathered. This convention allows an idiomatic specification and lowering of "gathering multiple N-D slices from the source tensor". Note: in the examples below, we separate out the indexing part of the tensor type by a whitespace for readability purposes. Example: .. code:: mlir // For each 1x2 triple of coordinates in %indices, extract the // element (i.e. 0-D subset) at the coordinates triple in %source. // %out = tensor.gather %source[%indices] gather_dims([0, 1, 2]) : (tensor<4x4x4xf32>, tensor<1x2x 3xindex>) -> tensor<1x2x 1x1x1xf32> // Note: result type may be further rank-reduced to tensor<1x2x f32>. A slice variant is provided to allow specifying whole slices of the source tensor. Example: .. code:: mlir // For each 5x6 singleton of coordinates in %indices, extract the 2-D // slice %source[*, %indices[...]:%indices[...] + 1, *] with the indices // corresponding to the `gather_dims` attribute specified by %indices. // %out = tensor.gather %source[%indices] gather_dims([1]) : (tensor<3x4x5xf32>, tensor<6x7x 1xindex>) -> tensor<6x7x 3x1x5xf32> // Note: result type may be further rank-reduced to tensor<6x7x 3x5xf32>. The dimensions specified in the gather_dims attribute are ones for which the result tensor has size ``1``. I.e. if the source type is ``axbxcxd`` and the coordinates are [1, 3], then the shape suffix is ``ax1xcx1``. Gather also allows rank-reducing semantics where the shape ``ax1xcx1`` can be further simplified to ``axc``. The elemental type of the indices tensor can be any integer type. In the absence of target-specific or problem specific information the default type one should use is ``index``. This operation does not support unranked tensors. An optional ``unique`` unit attribute may be specified to indicate that the coordinates in ``indices`` are statically guaranteed to be unique at runtime. Incorrectly setting the ``unique`` attribute when the coordinates are not truly unique is undefined behavior. Only full slices are meant to be supported by this op, if one desires partial slices (e.g. strided windows) one should compose this op with other tensor ops (e.g. tensor.extract_slice). This is to avoid a slippery slope of complexity that would make the op unusable in practice. At the tensor-level, the index tensor is specified in an AoS form (i.e. coordinate tuple is the most minor). It is the responsibility of further lowerings and bufferization to implement various concrete layouts. Note: As currently specified, the operation must lower to an abstraction that performs copies to the output tensor. This is because the buffer type system is currently not rich enough to allow multiple non-contiguous views in the same type. This is visible more clearly in a notional buffer version of the op: .. code:: mlir // memref is a contiguous buffer of ?x4x1 elements. // gather from random source slices must copy to the contiguous output. %out = memref.gather %source[%indices] gather_dims([1]) : (memref<4x4xf32>, memref) -> memref // Nested buffer support would allow gather to directly index into the // source buffer (i.e. represent a jagged view into the source). %out = memref.gather %source[%indices] gather_dims([1]) : (memref<4x4xf32>, memref) -> memref> .. py:attribute:: OPERATION_NAME :value: 'tensor.gather' .. py:attribute:: _ODS_REGIONS :value: (0, True) .. py:method:: source() -> _ods_ir .. py:method:: indices() -> _ods_ir .. py:method:: gather_dims() -> _ods_ir .. py:method:: unique() -> bool .. py:method:: result() -> _ods_ir Shortcut to get an op result if it has only one (throws an error otherwise). .. py:function:: gather(result, source, indices, gather_dims, *, unique=None, loc=None, ip=None) -> _ods_ir .. py:class:: GenerateOp(result, dynamicExtents, *, loc=None, ip=None) Bases: :py:obj:`_ods_ir` This operation creates a dynamically sized tensor with elements of any type. It expects one index operand per dynamic extent of the result tensor. The body region defines the tensor's elements. It takes index operands as its region arguments that span the index space. The element at the given position is yielded with the ``yield`` operation (see ``YieldOp``). There is no defined ordering to the invocations of the body. It is conceptually a "parallel map" operation. Example: .. code:: mlir %tnsr = tensor.generate %m, %n { ^bb0(%i : index, %j : index, %k : index): ... yield %elem : f32 } : tensor .. py:attribute:: OPERATION_NAME :value: 'tensor.generate' .. py:attribute:: _ODS_REGIONS :value: (1, True) .. py:method:: dynamicExtents() -> _ods_ir .. py:method:: result() -> _ods_ir Shortcut to get an op result if it has only one (throws an error otherwise). .. py:method:: body() -> _ods_ir .. py:function:: generate(result, dynamic_extents, *, loc=None, ip=None) -> _ods_ir .. py:class:: InsertOp(scalar, dest, indices, *, results=None, loc=None, ip=None) Bases: :py:obj:`_ods_ir` The ``tensor.insert`` op inserts a scalar into a ranked tensor ``dest`` as specified by the operation's indices. It returns a copy of ``dest`` with the indexed position updated to the value of ``scalar``. The arity of ``indices ``must match the rank of the tensor ``dest``. All indices should be of ``index`` type. Example: .. code:: mlir %4 = tensor.insert %t into %dest[%1, %2] : tensor<4x4xi32> %5 = tensor.insert %rt into %dest[%1, %2] : tensor .. py:attribute:: OPERATION_NAME :value: 'tensor.insert' .. py:attribute:: _ODS_REGIONS :value: (0, True) .. py:method:: scalar() -> _ods_ir .. py:method:: dest() -> _ods_ir .. py:method:: indices() -> _ods_ir .. py:method:: result() -> _ods_ir Shortcut to get an op result if it has only one (throws an error otherwise). .. py:function:: insert(scalar, dest, indices, *, results=None, loc=None, ip=None) -> _ods_ir .. py:class:: InsertSliceOp(source, dest, offsets, sizes, strides, static_offsets, static_sizes, static_strides, *, results=None, loc=None, ip=None) Bases: :py:obj:`_ods_ir` The "insert_slice" operation insert a tensor ``source`` into another tensor ``dest`` as specified by the operation's offsets, sizes and strides arguments. It returns a copy of ``dest`` with the proper slice updated with the value of ``source``. The insert_slice operation supports the following arguments: * source: the tensor that is inserted. * dest: the tensor into which the source tensor is inserted. * offsets: tensor-rank number of offsets into the ``dest`` tensor into which the slice is inserted. * sizes: tensor-rank number of sizes which specify the sizes of the source tensor type. * strides: tensor-rank number of strides that specify subsampling in each dimension. The representation based on offsets, sizes and strides support a partially-static specification via attributes specified through the ``static_offsets``, ``static_sizes`` and ``static_strides`` arguments. A special sentinel value ShapedType::kDynamic encodes that the corresponding entry has a dynamic value. After buffer allocation, the "insert_slice" op is expected to lower into a memref.subview op. An insert_slice operation may additionally specify insertion into a tensor of higher rank than the source tensor, along dimensions that are statically known to be of size 1. This rank-altering behavior is not required by the op semantics: this flexibility allows to progressively drop unit dimensions while lowering between different flavors of ops on that operate on tensors. The rank-altering behavior of tensor.insert_slice matches the rank-reducing behavior of tensor.extract_slice. Verification in the rank-reduced case ------------------------------------- The same verification discussion and mechanisms apply as for ExtractSliceOp. Unlike ExtractSliceOp however, there is no need for a specific inference. Example: .. code:: mlir // Rank-altering insert_slice. %1 = tensor.insert_slice %t into %0[0, 0, 0][1, 16, 4][1, 1, 1] : tensor<16x4xf32> into tensor<8x16x4xf32> %3 = tensor.insert_slice %tt into %2[%o0, 4, %o2][1, %sz1, 1][1, %st1, 1] : tensor<1x?xf32> into tensor<8x16x4xf32> .. py:attribute:: OPERATION_NAME :value: 'tensor.insert_slice' .. py:attribute:: _ODS_OPERAND_SEGMENTS .. py:attribute:: _ODS_REGIONS :value: (0, True) .. py:method:: source() -> _ods_ir .. py:method:: dest() -> _ods_ir .. py:method:: offsets() -> _ods_ir .. py:method:: sizes() -> _ods_ir .. py:method:: strides() -> _ods_ir .. py:method:: static_offsets() -> _ods_ir .. py:method:: static_sizes() -> _ods_ir .. py:method:: static_strides() -> _ods_ir .. py:method:: result() -> _ods_ir Shortcut to get an op result if it has only one (throws an error otherwise). .. py:function:: insert_slice(source, dest, offsets, sizes, strides, static_offsets, static_sizes, static_strides, *, results=None, loc=None, ip=None) -> _ods_ir .. py:class:: PadOp(result, source, low, high, static_low, static_high, *, nofold=None, loc=None, ip=None) Bases: :py:obj:`_ods_ir` ``tensor.pad`` is an operation that pads the ``source`` tensor with given ``low`` and ``high`` padding config. The PadOp operation supports the following arguments: * source: the "base" tensor on which to pad. * low: A list contains the padding along the start of each dimension, i.e., how many padded values are prepended to the beginning of the tensor in each dimension. * high: A list contains the padding along the end of each dimension, i.e., how many padded values are appended to the end of the tensor in each dimension. * nofold: indicates that the operation should not be folded when source and result types are equal. The result tensor dimensions are ``low[i]`` + ``dim[i]`` + ``high[i]`` for each dimension ``i``. The number of elements of ``low`` and ``high`` must match the rank of the input tensor. They can be either a constant or a dynamic value. The region of the ``tensor.pad`` operation returns the value to use for the padding. The arguments of the region represent the index of the source being accessed. There should be as many arguments as the rank of the ``source`` tensor. The value ``yield``-ed by the region is used as the value of the view at the given position. If ``nofold`` is set, the padding operation will not be folded away even if the source type and the padded type have the same static shape. This can be used, e.g., for packing or promotion to faster memory. Example 1: add 3 zeros to the beginning and 5 zeros to the end of a 1D tensor. .. code:: mlir %arg0 = ... : tensor<10xi32> %c0_i32 = arith.constant 0 : i32 %padded = tensor.pad %arg0 low[3] high[5] { ^bb0(%arg1: index): tensor.yield %c0_i32 : i32 } : tensor<10xi32> to tensor<18xi32> Example 2: add 1 value to the beginning of dimension 0, 2 values to the end of dimension 0, 2 values to the start of dimension 1, and 3 values to the end of dimension 1. .. code:: mlir %pad_value = ... : f32 %0 = tensor.pad %0 low[1, 2] high[2, 3] { ^bb0(%arg0 : index, %arg1 : index): tensor.yield %pad_value : f32 } : tensor to tensor Example 3: .. code:: mlir %pad_value = ... : f32 %0 = tensor.pad %arg0 low[2, %arg1, 3, 3] high[3, 3, %arg1, 2] { ^bb0(%arg2: index, %arg3: index, %arg4: index, %arg5: index): tensor.yield %pad_value : f32 } : tensor<1x2x2x?xf32> to tensor<6x?x?x?xf32> Example 4: .. code:: mlir %pad_value = ... : f32 %0 = tensor.pad %arg0 low[0, 0] high[%ub0, %ub1] { ^bb0(%arg1: index, %arg2: index): tensor.yield %pad_value : f32 } : tensor<2x3xf32> to tensor Example 5: Force a padded value to be always exist with ``nofold``, even though the padding config specifies that no new elements will be added to the tensor. .. code:: mlir %pad_value = ... : f32 %0 = tensor.pad %arg0 nofold low[0, 0] high[0, 0] { ^bb0(%arg1: index, %arg2: index): tensor.yield %pad_value : f32 } : tensor<2x3xf32> to tensor<2x3xf32> .. py:attribute:: OPERATION_NAME :value: 'tensor.pad' .. py:attribute:: _ODS_OPERAND_SEGMENTS .. py:attribute:: _ODS_REGIONS :value: (1, True) .. py:method:: source() -> _ods_ir .. py:method:: low() -> _ods_ir .. py:method:: high() -> _ods_ir .. py:method:: static_low() -> _ods_ir .. py:method:: static_high() -> _ods_ir .. py:method:: nofold() -> bool .. py:method:: result() -> _ods_ir Shortcut to get an op result if it has only one (throws an error otherwise). .. py:method:: region() -> _ods_ir .. py:function:: pad(result, source, low, high, static_low, static_high, *, nofold=None, loc=None, ip=None) -> _ods_ir .. py:class:: ParallelInsertSliceOp(source, dest, offsets, sizes, strides, static_offsets, static_sizes, static_strides, *, loc=None, ip=None) Bases: :py:obj:`_ods_ir` The ``parallel_insert_slice`` yields a subset tensor value to its parent InParallelOpInterface. These subset tensor values are aggregated to in some unspecified order into a full tensor value returned by the parent parallel iterating op. The ``parallel_insert_slice`` is one such op allowed in the InParallelOpInterface op. Conflicting writes result in undefined semantics, in that the indices written to by multiple parallel updates might contain data from any of the updates, or even a malformed bit pattern. If an index is updated exactly once, the value contained at that index in the resulting tensor will be equal to the value at a corresponding index of a slice that was used for the updated. If an index is not updated at all, its value will be equal to the one in the original tensor. This op does not create a new value, which allows maintaining a clean separation between the subset and full tensor. Note that we cannot mark this operation as pure (Pures), even though it has no side effects, because it will get DCEd during canonicalization. The parallel_insert_slice operation supports the following arguments: * source: the tensor that is inserted. * dest: the tensor into which the source tensor is inserted. * offsets: tensor-rank number of offsets into the ``dest`` tensor into which the slice is inserted. * sizes: tensor-rank number of sizes which specify the sizes of the source tensor type. * strides: tensor-rank number of strides that specify subsampling in each dimension. The representation based on offsets, sizes and strides support a partially-static specification via attributes specified through the ``static_offsets``, ``static_sizes`` and ``static_strides`` arguments. A special sentinel value ShapedType::kDynamic encodes that the corresponding entry has a dynamic value. After buffer allocation, the "parallel_insert_slice" op is expected to lower into a memref.subview op. A parallel_insert_slice operation may additionally specify insertion into a tensor of higher rank than the source tensor, along dimensions that are statically known to be of size 1. This rank-altering behavior is not required by the op semantics: this flexibility allows to progressively drop unit dimensions while lowering between different flavors of ops on that operate on tensors. The rank-altering behavior of tensor.parallel_insert_slice matches the rank-reducing behavior of tensor.insert_slice and tensor.extract_slice. Verification in the rank-reduced case ------------------------------------- The same verification discussion and mechanisms apply as for ExtractSliceOp. Unlike ExtractSliceOp however, there is no need for a specific inference. .. py:attribute:: OPERATION_NAME :value: 'tensor.parallel_insert_slice' .. py:attribute:: _ODS_OPERAND_SEGMENTS .. py:attribute:: _ODS_REGIONS :value: (0, True) .. py:method:: source() -> _ods_ir .. py:method:: dest() -> _ods_ir .. py:method:: offsets() -> _ods_ir .. py:method:: sizes() -> _ods_ir .. py:method:: strides() -> _ods_ir .. py:method:: static_offsets() -> _ods_ir .. py:method:: static_sizes() -> _ods_ir .. py:method:: static_strides() -> _ods_ir .. py:function:: parallel_insert_slice(source, dest, offsets, sizes, strides, static_offsets, static_sizes, static_strides, *, loc=None, ip=None) -> ParallelInsertSliceOp .. py:class:: RankOp(tensor, *, results=None, loc=None, ip=None) Bases: :py:obj:`_ods_ir` The ``tensor.rank`` operation takes a tensor operand and returns its rank. Example: .. code:: mlir %0 = tensor.rank %arg0 : tensor<*xf32> %1 = tensor.rank %arg1 : tensor .. py:attribute:: OPERATION_NAME :value: 'tensor.rank' .. py:attribute:: _ODS_REGIONS :value: (0, True) .. py:method:: tensor() -> _ods_ir .. py:function:: rank(tensor, *, results=None, loc=None, ip=None) -> _ods_ir .. py:class:: ReshapeOp(result, source, shape, *, loc=None, ip=None) Bases: :py:obj:`_ods_ir` The ``reshape`` operation converts a tensor from one type to an equivalent type with a provided shape. The source and destination types are compatible if both have the same element type, same number of elements. The following combinations are possible: a. Source type is ranked or unranked. Shape argument has static size. Result type is ranked. .. code:: mlir // Reshape statically-shaped tensor. %dst = tensor.reshape %src(%shape) : (tensor<4x1xf32>, tensor<1xi32>) -> tensor<4xf32> %dst0 = tensor.reshape %src(%shape0) : (tensor<4x1xf32>, tensor<2xi32>) -> tensor<2x2xf32> // Flatten unranked tensor. %dst = tensor.reshape %src(%shape) : (tensor<*xf32>, tensor<1xi32>) -> tensor b. Source type is ranked or unranked. Shape argument has dynamic size. Result type is unranked. .. code:: mlir // Reshape dynamically-shaped 1D tensor. %dst = tensor.reshape %src(%shape) : (tensor, tensor) -> tensor<*xf32> // Reshape unranked tensor. %dst = tensor.reshape %src(%shape) : (tensor<*xf32>, tensor) -> tensor<*xf32> .. py:attribute:: OPERATION_NAME :value: 'tensor.reshape' .. py:attribute:: _ODS_REGIONS :value: (0, True) .. py:method:: source() -> _ods_ir .. py:method:: shape() -> _ods_ir .. py:method:: result() -> _ods_ir Shortcut to get an op result if it has only one (throws an error otherwise). .. py:function:: reshape(result, source, shape, *, loc=None, ip=None) -> _ods_ir .. py:class:: ScatterOp(result, source, dest, indices, scatter_dims, *, unique=None, loc=None, ip=None) Bases: :py:obj:`_ods_ir` The ``scatter`` operation inserts a ``source`` tensor into a ``dest`` tensor at the given indices. In its most general form, the tensor of indices specifies all the coordinates of every element to insert (i.e. COO format, without the payload). The indices are expected to be confined to coordinate values that fit the range of the ``dest`` tensor, otherwise the behavior is undefined. The leading dimensions of the index tensor must match that of the dest tensor. The trailing dimensions of the dest tensor must match those of the source tensor by omitting the dimensions specified in scatter_dims (rank-reducing semantics) or setting them to ``1`` (rank-preserving semantics) (see examples). This convention allows an idiomatic specification and lowering of "scattering multiple N-D slices into the dest tensor". The result type must match the type of the dest tensor. Note: in the examples below, we separate out the indexing part of the tensor type by a whitespace for readability purposes. Example: .. code:: mlir // For each 1x2 triple of coordinates in %indices, insert the // element (i.e. 0-D subset) at the coordinates triple in %dest. // %out = tensor.scatter %source into %dest[%indices] scatter_dims([0, 1, 2]) unique : (tensor<1x2x 1x1x1xf32>, tensor<4x4x4xf32>, tensor<1x2x 3xindex>) -> tensor<4x4x4xf32> // Note: source type may be further rank-reduced to tensor<1x2x f32>. A slice variant is provided to allow specifying insertion of whole tensor slices into the ``dest`` tensor. Example: .. code:: mlir // For each 3 singleton of coordinates in %indices, insert the 2-D // slice into %dest[*, %indices[...]:%indices[...] + 1, *] with the // indices corresponding to the scatter_dims attribute specified by // %indices. // %out = tensor.scatter %source into %dest[%indices] scatter_dims([1]) unique : (tensor<3x 4x1x6xf32>, tensor<4x5x6xf32>, tensor<3x 1xindex>) -> tensor<4x5x6xf32> The dimensions specified in the scatter_dims attribute are ones for which the source tensor has size ``1``. I.e. if the dest type is ``axbxcxd`` and the coordinates are [1, 3], then the source type suffix is ``ax1xcx1``. Scatter also allows rank-reducing semantics where the shape ``ax1xcx1`` can be further simplified to ``axc``. The elemental type of the indices tensor can be any integer type. In the absence of target-specific or problem specific information the default type one should use is ``index``. This operation does not support unranked tensors. A ``unique`` unit attribute must be be specified to indicate that the coordinates are statically guaranteed to be unique at runtime. If coordinates are not truly unique at runtime, the behavior is undefined. Only full slices are meant to be supported by this op, if one desires partial slices (e.g. strided windows) one should compose this op with other tensor ops (e.g. tensor.insert_slice). This is to avoid a slippery slope of complexity that would make the op unusable in practice. At the tensor-level, the index tensor is specified in an AoS form (i.e. coordinate tuple is the most minor). It is the responsibility of further lowerings and bufferization to implement various concrete layouts. Note: As currently specified, the operation must lower to an abstraction that performs copies to the output tensor. This is because the buffer type system is currently not rich enough to allow multiple non-contiguous views in the same type. This is visible more clearly in a notional buffer version of the op: .. code:: mlir // memref is a contiguous buffer of ?x4 elements, scatter into // random dest slices must copy to the contiguous dest. // some_side_effecting_op_writing_into %source, ...: memref<3x 4xf32> memref.scatter %source into %dest[%indices] scatter_dims([1]) unique : (memref<3x 4xf32>, memref, memref) // Nested buffer support in the producing op would allow writing directly // into the dest buffer. %v = some_nested_buffer_view_op %dest[%indices] scatter_dims([1]) unique : memref> some_side_effecting_op_writing_into %v, ...: memref> .. py:attribute:: OPERATION_NAME :value: 'tensor.scatter' .. py:attribute:: _ODS_REGIONS :value: (0, True) .. py:method:: source() -> _ods_ir .. py:method:: dest() -> _ods_ir .. py:method:: indices() -> _ods_ir .. py:method:: scatter_dims() -> _ods_ir .. py:method:: unique() -> bool .. py:method:: result() -> _ods_ir Shortcut to get an op result if it has only one (throws an error otherwise). .. py:function:: scatter(result, source, dest, indices, scatter_dims, *, unique=None, loc=None, ip=None) -> _ods_ir .. py:class:: SplatOp(aggregate, input, dynamicSizes, *, loc=None, ip=None) Bases: :py:obj:`_ods_ir` Broadcast the operand to all elements of the result tensor. An additional argument of type ``index`` must be provided for each dynamic dimension present in the result type. Example for a statically shaped tensor: .. code:: mlir %s = arith.constant 1.0 : f32 %t = tensor.splat %s : tensor<8x16xf32> Example for a tensor containing dynamic dimensions: .. code:: mlir // Broadcasts %s to a 3D dynamically shaped tensor, with %m and %n binding // to dimensions 0 and 2 of the resulting tensor, respectively. %m = arith.constant 10 : index %n = arith.constant 30 : index %t = tensor.splat %s[%m, %n] : tensor .. py:attribute:: OPERATION_NAME :value: 'tensor.splat' .. py:attribute:: _ODS_REGIONS :value: (0, True) .. py:method:: input() -> _ods_ir .. py:method:: dynamicSizes() -> _ods_ir .. py:method:: aggregate() -> _ods_ir .. py:function:: splat(aggregate, input, dynamic_sizes, *, loc=None, ip=None) -> _ods_ir .. py:class:: YieldOp(value, *, loc=None, ip=None) Bases: :py:obj:`_ods_ir` This operation is used to yield a single value from a within a region. It is used to create dynamically sized tensors (see ``tensor.generate`` and ``tensor.pad`` ops). .. py:attribute:: OPERATION_NAME :value: 'tensor.yield' .. py:attribute:: _ODS_REGIONS :value: (0, True) .. py:method:: value() -> _ods_ir .. py:function:: yield_(value, *, loc=None, ip=None) -> YieldOp