MLIR
20.0.0git
|
#include "mlir/IR/Attributes.h"
#include "mlir/IR/Builders.h"
#include "mlir/IR/BuiltinTypes.h"
#include "mlir/IR/Location.h"
#include "mlir/IR/OpDefinition.h"
#include "mlir/Support/LLVM.h"
#include "llvm/ADT/PointerUnion.h"
#include "llvm/ADT/SmallVector.h"
#include "mlir/Interfaces/InferTypeOpInterface.h.inc"
Go to the source code of this file.
Classes | |
class | mlir::ShapeAdaptor |
Adaptor class to abstract the differences between whether value is from a ShapedType or ShapedTypeComponents or DenseIntElementsAttribute. More... | |
class | mlir::ShapedTypeComponents |
ShapedTypeComponents that represents the components of a ShapedType. More... | |
class | mlir::ValueShapeRange |
Range of values and shapes (corresponding effectively to Shapes dialect's ValueShape type concept). More... | |
class | mlir::OpTrait::InferTypeOpAdaptor< ConcreteType > |
class | mlir::OpTrait::InferShapedTypeOpAdaptor< ConcreteType > |
class | mlir::OpTrait::InferTensorType< ConcreteType > |
Tensor type inference trait that constructs a tensor from the inferred shape and elemental types. More... | |
Namespaces | |
mlir | |
Include the generated interface declarations. | |
mlir::detail | |
AttrTypeReplacer. | |
mlir::OpTrait | |
Typedefs | |
using | mlir::ReifiedRankedShapedTypeDims = SmallVector< SmallVector< OpFoldResult > > |
Functions | |
LogicalResult | mlir::reifyResultShapes (OpBuilder &b, Operation *op, ReifiedRankedShapedTypeDims &reifiedReturnShapes) |
Reify the shape of the result of an operation (typically in terms of the shape of its operands). More... | |
LogicalResult | mlir::detail::inferReturnTensorTypes (ArrayRef< ShapedTypeComponents > retComponents, SmallVectorImpl< Type > &inferredReturnTypes) |
LogicalResult | mlir::detail::verifyInferredResultTypes (Operation *op) |
Verifies that the inferred result types match the actual result types for the op. More... | |
void | mlir::detail::reportFatalInferReturnTypesError (OperationState &state) |
Report a fatal error indicating that the result types could not be inferred. More... | |