MLIR  20.0.0git
COO.h
Go to the documentation of this file.
1 //===- COO.h - Coordinate-scheme sparse tensor representation ---*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains a coordinate-scheme representation of sparse tensors.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #ifndef MLIR_EXECUTIONENGINE_SPARSETENSOR_COO_H
14 #define MLIR_EXECUTIONENGINE_SPARSETENSOR_COO_H
15 
16 #include <algorithm>
17 #include <cassert>
18 #include <cinttypes>
19 #include <functional>
20 #include <vector>
21 
22 namespace mlir {
23 namespace sparse_tensor {
24 
25 /// An element of a sparse tensor in coordinate-scheme representation
26 /// (i.e., a pair of coordinates and value). For example, a rank-1
27 /// vector element would look like
28 /// ({i}, a[i])
29 /// and a rank-5 tensor element would look like
30 /// ({i,j,k,l,m}, a[i,j,k,l,m])
31 ///
32 /// The coordinates are represented as a (non-owning) pointer into a
33 /// shared pool of coordinates, rather than being stored directly in this
34 /// object. This significantly improves performance because it reduces the
35 /// per-element memory footprint and centralizes the memory management for
36 /// coordinates. The only downside is that the coordinates themselves cannot
37 /// be retrieved without knowing the rank of the tensor to which this element
38 /// belongs (and that rank is not stored in this object).
39 template <typename V>
40 struct Element final {
41  Element(const uint64_t *coords, V val) : coords(coords), value(val){};
42  const uint64_t *coords; // pointer into shared coordinates pool
43  V value;
44 };
45 
46 /// Closure object for `operator<` on `Element` with a given rank.
47 template <typename V>
48 struct ElementLT final {
49  ElementLT(uint64_t rank) : rank(rank) {}
50  bool operator()(const Element<V> &e1, const Element<V> &e2) const {
51  for (uint64_t d = 0; d < rank; ++d) {
52  if (e1.coords[d] == e2.coords[d])
53  continue;
54  return e1.coords[d] < e2.coords[d];
55  }
56  return false;
57  }
58  const uint64_t rank;
59 };
60 
61 /// A memory-resident sparse tensor in coordinate-scheme representation
62 /// (a collection of `Element`s). This data structure is used as an
63 /// intermediate representation, e.g., for reading sparse tensors from
64 /// external formats into memory.
65 template <typename V>
66 class SparseTensorCOO final {
67 public:
68  /// Constructs a new coordinate-scheme sparse tensor with the given
69  /// sizes and an optional initial storage capacity.
70  explicit SparseTensorCOO(const std::vector<uint64_t> &dimSizes,
71  uint64_t capacity = 0)
72  : SparseTensorCOO(dimSizes.size(), dimSizes.data(), capacity) {}
73 
74  /// Constructs a new coordinate-scheme sparse tensor with the given
75  /// sizes and an optional initial storage capacity. The size of the
76  /// dimSizes array is determined by dimRank.
77  explicit SparseTensorCOO(uint64_t dimRank, const uint64_t *dimSizes,
78  uint64_t capacity = 0)
79  : dimSizes(dimSizes, dimSizes + dimRank), isSorted(true) {
80  assert(dimRank > 0 && "Trivial shape is not supported");
81  for (uint64_t d = 0; d < dimRank; ++d)
82  assert(dimSizes[d] > 0 && "Dimension size zero has trivial storage");
83  if (capacity) {
84  elements.reserve(capacity);
85  coordinates.reserve(capacity * dimRank);
86  }
87  }
88 
89  /// Gets the dimension-rank of the tensor.
90  uint64_t getRank() const { return dimSizes.size(); }
91 
92  /// Gets the dimension-sizes array.
93  const std::vector<uint64_t> &getDimSizes() const { return dimSizes; }
94 
95  /// Gets the elements array.
96  const std::vector<Element<V>> &getElements() const { return elements; }
97 
98  /// Returns the `operator<` closure object for the COO's element type.
100 
101  /// Adds an element to the tensor.
102  void add(const std::vector<uint64_t> &dimCoords, V val) {
103  const uint64_t *base = coordinates.data();
104  const uint64_t size = coordinates.size();
105  const uint64_t dimRank = getRank();
106  assert(dimCoords.size() == dimRank && "Element rank mismatch");
107  for (uint64_t d = 0; d < dimRank; ++d) {
108  assert(dimCoords[d] < dimSizes[d] &&
109  "Coordinate is too large for the dimension");
110  coordinates.push_back(dimCoords[d]);
111  }
112  // This base only changes if `coordinates` was reallocated. In which
113  // case, we need to correct all previous pointers into the vector.
114  // Note that this only happens if we did not set the initial capacity
115  // right, and then only for every internal vector reallocation (which
116  // with the doubling rule should only incur an amortized linear overhead).
117  const uint64_t *const newBase = coordinates.data();
118  if (newBase != base) {
119  for (uint64_t i = 0, n = elements.size(); i < n; ++i)
120  elements[i].coords = newBase + (elements[i].coords - base);
121  base = newBase;
122  }
123  // Add the new element and update the sorted bit.
124  const Element<V> addedElem(base + size, val);
125  if (!elements.empty() && isSorted)
126  isSorted = getElementLT()(elements.back(), addedElem);
127  elements.push_back(addedElem);
128  }
129 
130  /// Sorts elements lexicographically by coordinates. If a coordinate
131  /// is mapped to multiple values, then the relative order of those
132  /// values is unspecified.
133  void sort() {
134  if (isSorted)
135  return;
136  std::sort(elements.begin(), elements.end(), getElementLT());
137  isSorted = true;
138  }
139 
140 private:
141  const std::vector<uint64_t> dimSizes; // per-dimension sizes
142  std::vector<Element<V>> elements; // all COO elements
143  std::vector<uint64_t> coordinates; // shared coordinate pool
144  bool isSorted;
145 };
146 
147 } // namespace sparse_tensor
148 } // namespace mlir
149 
150 #endif // MLIR_EXECUTIONENGINE_SPARSETENSOR_COO_H
A memory-resident sparse tensor in coordinate-scheme representation (a collection of Elements).
Definition: COO.h:66
ElementLT< V > getElementLT() const
Returns the operator< closure object for the COO's element type.
Definition: COO.h:99
SparseTensorCOO(const std::vector< uint64_t > &dimSizes, uint64_t capacity=0)
Constructs a new coordinate-scheme sparse tensor with the given sizes and an optional initial storage...
Definition: COO.h:70
const std::vector< Element< V > > & getElements() const
Gets the elements array.
Definition: COO.h:96
void sort()
Sorts elements lexicographically by coordinates.
Definition: COO.h:133
uint64_t getRank() const
Gets the dimension-rank of the tensor.
Definition: COO.h:90
void add(const std::vector< uint64_t > &dimCoords, V val)
Adds an element to the tensor.
Definition: COO.h:102
const std::vector< uint64_t > & getDimSizes() const
Gets the dimension-sizes array.
Definition: COO.h:93
SparseTensorCOO(uint64_t dimRank, const uint64_t *dimSizes, uint64_t capacity=0)
Constructs a new coordinate-scheme sparse tensor with the given sizes and an optional initial storage...
Definition: COO.h:77
Include the generated interface declarations.
Closure object for operator< on Element with a given rank.
Definition: COO.h:48
const uint64_t rank
Definition: COO.h:58
bool operator()(const Element< V > &e1, const Element< V > &e2) const
Definition: COO.h:50
ElementLT(uint64_t rank)
Definition: COO.h:49
An element of a sparse tensor in coordinate-scheme representation (i.e., a pair of coordinates and va...
Definition: COO.h:40
const uint64_t * coords
Definition: COO.h:41
Element(const uint64_t *coords, V val)
Definition: COO.h:41