MLIR  20.0.0git
CRunnerUtils.cpp
Go to the documentation of this file.
1 //===- CRunnerUtils.cpp - Utils for MLIR execution ------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements basic functions to manipulate structured MLIR types at
10 // runtime. Entities in this file are meant to be retargetable, including on
11 // targets without a C++ runtime, and must be kept C compatible.
12 //
13 //===----------------------------------------------------------------------===//
14 
17 
18 #ifndef _WIN32
19 #if defined(__FreeBSD__) || defined(__NetBSD__) || defined(__OpenBSD__) || \
20  defined(__DragonFly__)
21 #include <cstdlib>
22 #else
23 #include <alloca.h>
24 #endif
25 #include <sys/time.h>
26 #else
27 #include "malloc.h"
28 #endif // _WIN32
29 
30 #include <algorithm>
31 #include <cinttypes>
32 #include <cstdio>
33 #include <cstdlib>
34 #include <numeric>
35 #include <random>
36 #include <string.h>
37 
38 #ifdef MLIR_CRUNNERUTILS_DEFINE_FUNCTIONS
39 
40 namespace {
41 template <typename V>
42 void stdSort(uint64_t n, V *p) {
43  std::sort(p, p + n);
44 }
45 
46 } // namespace
47 
48 // Small runtime support "lib" for vector.print lowering.
49 // By providing elementary printing methods only, this
50 // library can remain fully unaware of low-level implementation
51 // details of our vectors. Also useful for direct LLVM IR output.
52 extern "C" void printI64(int64_t i) { fprintf(stdout, "%" PRId64, i); }
53 extern "C" void printU64(uint64_t u) { fprintf(stdout, "%" PRIu64, u); }
54 extern "C" void printF32(float f) {
55  if (std::isnan(f) && std::signbit(f)) {
56  fprintf(stdout, "-nan");
57  } else {
58  fprintf(stdout, "%g", f);
59  }
60 }
61 extern "C" void printF64(double d) {
62  if (std::isnan(d) && std::signbit(d)) {
63  fprintf(stdout, "-nan");
64  } else {
65  fprintf(stdout, "%lg", d);
66  }
67 }
68 extern "C" void printString(char const *s) { fputs(s, stdout); }
69 extern "C" void printOpen() { fputs("( ", stdout); }
70 extern "C" void printClose() { fputs(" )", stdout); }
71 extern "C" void printComma() { fputs(", ", stdout); }
72 extern "C" void printNewline() { fputc('\n', stdout); }
73 
74 extern "C" void memrefCopy(int64_t elemSize, UnrankedMemRefType<char> *srcArg,
75  UnrankedMemRefType<char> *dstArg) {
76  DynamicMemRefType<char> src(*srcArg);
77  DynamicMemRefType<char> dst(*dstArg);
78 
79  int64_t rank = src.rank;
80  MLIR_MSAN_MEMORY_IS_INITIALIZED(src.sizes, rank * sizeof(int64_t));
81 
82  // Handle empty shapes -> nothing to copy.
83  for (int rankp = 0; rankp < rank; ++rankp)
84  if (src.sizes[rankp] == 0)
85  return;
86 
87  char *srcPtr = src.data + src.offset * elemSize;
88  char *dstPtr = dst.data + dst.offset * elemSize;
89 
90  if (rank == 0) {
91  memcpy(dstPtr, srcPtr, elemSize);
92  return;
93  }
94 
95  int64_t *indices = static_cast<int64_t *>(alloca(sizeof(int64_t) * rank));
96  int64_t *srcStrides = static_cast<int64_t *>(alloca(sizeof(int64_t) * rank));
97  int64_t *dstStrides = static_cast<int64_t *>(alloca(sizeof(int64_t) * rank));
98 
99  // Initialize index and scale strides.
100  for (int rankp = 0; rankp < rank; ++rankp) {
101  indices[rankp] = 0;
102  srcStrides[rankp] = src.strides[rankp] * elemSize;
103  dstStrides[rankp] = dst.strides[rankp] * elemSize;
104  }
105 
106  int64_t readIndex = 0, writeIndex = 0;
107  for (;;) {
108  // Copy over the element, byte by byte.
109  memcpy(dstPtr + writeIndex, srcPtr + readIndex, elemSize);
110  // Advance index and read position.
111  for (int64_t axis = rank - 1; axis >= 0; --axis) {
112  // Advance at current axis.
113  auto newIndex = ++indices[axis];
114  readIndex += srcStrides[axis];
115  writeIndex += dstStrides[axis];
116  // If this is a valid index, we have our next index, so continue copying.
117  if (src.sizes[axis] != newIndex)
118  break;
119  // We reached the end of this axis. If this is axis 0, we are done.
120  if (axis == 0)
121  return;
122  // Else, reset to 0 and undo the advancement of the linear index that
123  // this axis had. Then continue with the axis one outer.
124  indices[axis] = 0;
125  readIndex -= src.sizes[axis] * srcStrides[axis];
126  writeIndex -= dst.sizes[axis] * dstStrides[axis];
127  }
128  }
129 }
130 
131 /// Prints GFLOPS rating.
132 extern "C" void printFlops(double flops) {
133  fprintf(stderr, "%lf GFLOPS\n", flops / 1.0E9);
134 }
135 
136 /// Returns the number of seconds since Epoch 1970-01-01 00:00:00 +0000 (UTC).
137 extern "C" double rtclock() {
138 #ifndef _WIN32
139  struct timeval tp;
140  int stat = gettimeofday(&tp, nullptr);
141  if (stat != 0)
142  fprintf(stderr, "Error returning time from gettimeofday: %d\n", stat);
143  return (tp.tv_sec + tp.tv_usec * 1.0e-6);
144 #else
145  fprintf(stderr, "Timing utility not implemented on Windows\n");
146  return 0.0;
147 #endif // _WIN32
148 }
149 
150 extern "C" void *mlirAlloc(uint64_t size) { return malloc(size); }
151 
152 extern "C" void *mlirAlignedAlloc(uint64_t alignment, uint64_t size) {
153 #ifdef _WIN32
154  return _aligned_malloc(size, alignment);
155 #elif defined(__APPLE__)
156  // aligned_alloc was added in MacOS 10.15. Fall back to posix_memalign to also
157  // support older versions.
158  void *result = nullptr;
159  (void)::posix_memalign(&result, alignment, size);
160  return result;
161 #else
162  return aligned_alloc(alignment, size);
163 #endif
164 }
165 
166 extern "C" void mlirFree(void *ptr) { free(ptr); }
167 
168 extern "C" void mlirAlignedFree(void *ptr) {
169 #ifdef _WIN32
170  _aligned_free(ptr);
171 #else
172  free(ptr);
173 #endif
174 }
175 
176 extern "C" void *rtsrand(uint64_t s) {
177  // Standard mersenne_twister_engine seeded with s.
178  return new std::mt19937(s);
179 }
180 
181 extern "C" uint64_t rtrand(void *g, uint64_t m) {
182  std::mt19937 *generator = static_cast<std::mt19937 *>(g);
183  std::uniform_int_distribution<uint64_t> distrib(0, m);
184  return distrib(*generator);
185 }
186 
187 extern "C" void rtdrand(void *g) {
188  std::mt19937 *generator = static_cast<std::mt19937 *>(g);
189  delete generator;
190 }
191 
193  void *g) {
194  assert(mref);
195  assert(mref->strides[0] == 1); // consecutive
196  std::mt19937 *generator = static_cast<std::mt19937 *>(g);
197  uint64_t s = mref->sizes[0];
198  uint64_t *data = mref->data + mref->offset;
199  std::iota(data, data + s, 0);
200  std::shuffle(data, data + s, *generator);
201 }
202 
203 #define IMPL_STDSORT(VNAME, V) \
204  extern "C" void _mlir_ciface_stdSort##VNAME(uint64_t n, \
205  StridedMemRefType<V, 1> *vref) { \
206  assert(vref); \
207  assert(vref->strides[0] == 1); \
208  V *values = vref->data + vref->offset; \
209  stdSort(n, values); \
210  }
211 IMPL_STDSORT(I64, int64_t)
212 IMPL_STDSORT(F64, double)
213 IMPL_STDSORT(F32, float)
214 #undef IMPL_STDSORT
215 
216 #endif // MLIR_CRUNNERUTILS_DEFINE_FUNCTIONS
MLIR_CRUNNERUTILS_EXPORT void printI64(int64_t i)
MLIR_CRUNNERUTILS_EXPORT void printF32(float f)
MLIR_CRUNNERUTILS_EXPORT void printString(char const *s)
MLIR_CRUNNERUTILS_EXPORT void printU64(uint64_t u)
MLIR_CRUNNERUTILS_EXPORT void memrefCopy(int64_t elemSize, ::UnrankedMemRefType< char > *src, ::UnrankedMemRefType< char > *dst)
MLIR_CRUNNERUTILS_EXPORT void printNewline()
MLIR_CRUNNERUTILS_EXPORT void * rtsrand(uint64_t s)
MLIR_CRUNNERUTILS_EXPORT void printOpen()
MLIR_CRUNNERUTILS_EXPORT void printFlops(double flops)
MLIR_CRUNNERUTILS_EXPORT void rtdrand(void *g)
MLIR_CRUNNERUTILS_EXPORT double rtclock()
MLIR_CRUNNERUTILS_EXPORT void printClose()
MLIR_CRUNNERUTILS_EXPORT uint64_t rtrand(void *g, uint64_t m)
MLIR_CRUNNERUTILS_EXPORT void printF64(double d)
MLIR_CRUNNERUTILS_EXPORT void _mlir_ciface_shuffle(StridedMemRefType< uint64_t, 1 > *mref, void *g)
MLIR_CRUNNERUTILS_EXPORT void printComma()
static const mlir::GenInfo * generator
#define MLIR_MSAN_MEMORY_IS_INITIALIZED(p, s)
Definition: Msan.h:32
StridedMemRef descriptor type with static rank.
Definition: CRunnerUtils.h:131
int64_t strides[N]
Definition: CRunnerUtils.h:136
int64_t sizes[N]
Definition: CRunnerUtils.h:135