MLIR  20.0.0git
CudaRuntimeWrappers.cpp
Go to the documentation of this file.
1 //===- CudaRuntimeWrappers.cpp - MLIR CUDA API wrapper library ------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Implements C wrappers around the CUDA library for easy linking in ORC jit.
10 // Also adds some debugging helpers that are helpful when writing MLIR code to
11 // run on GPUs.
12 //
13 //===----------------------------------------------------------------------===//
14 
16 
17 #include <stdio.h>
18 
19 #include "cuda.h"
20 #include "cuda_bf16.h"
21 #include "cuda_fp16.h"
22 
23 #ifdef MLIR_ENABLE_CUDA_CUSPARSE
24 #include "cusparse.h"
25 #ifdef MLIR_ENABLE_CUDA_CUSPARSELT
26 #include "cusparseLt.h"
27 #endif // MLIR_ENABLE_CUDA_CUSPARSELT
28 #endif // MLIR_ENABLE_CUDA_CUSPARSE
29 
30 #ifdef _WIN32
31 #include <malloc.h>
32 #define MLIR_CUDA_WRAPPERS_EXPORT __declspec(dllexport)
33 #else
34 #define MLIR_CUDA_WRAPPERS_EXPORT __attribute__((visibility("default")))
35 #endif // _WIN32
36 
37 #define CUDA_REPORT_IF_ERROR(expr) \
38  [](CUresult result) { \
39  if (!result) \
40  return; \
41  const char *name = nullptr; \
42  cuGetErrorName(result, &name); \
43  if (!name) \
44  name = "<unknown>"; \
45  fprintf(stderr, "'%s' failed with '%s'\n", #expr, name); \
46  }(expr)
47 
48 #define CUSPARSE_REPORT_IF_ERROR(expr) \
49  { \
50  cusparseStatus_t status = (expr); \
51  if (status != CUSPARSE_STATUS_SUCCESS) { \
52  fprintf(stderr, "cuSPARSE '%s' failed with '%s'\n", #expr, \
53  cusparseGetErrorString(status)); \
54  } \
55  }
56 
57 thread_local static int32_t defaultDevice = 0;
58 
59 const char *kDebugEnvironmentVariable = "MLIR_CUDA_DEBUG";
60 
61 /// Helper method that checks environment value for debugging.
63  static bool isInitialized = false;
64  static bool isEnabled = false;
65  if (!isInitialized)
66  isEnabled = getenv(kDebugEnvironmentVariable) != nullptr;
67  return isEnabled;
68 }
69 
70 #define debug_print(fmt, ...) \
71  do { \
72  if (isDebugEnabled()) \
73  fprintf(stderr, "%s:%d:%s(): " fmt, "CudaRuntimeWrappers.cpp", __LINE__, \
74  __func__, __VA_ARGS__); \
75  } while (0)
76 
77 // Returns default CUdevice
78 CUdevice getDefaultCuDevice() {
79  CUdevice device;
80  CUDA_REPORT_IF_ERROR(cuDeviceGet(&device, /*ordinal=*/defaultDevice));
81  return device;
82 }
83 
84 // Make the primary context of the current default device current for the
85 // duration
86 // of the instance and restore the previous context on destruction.
88 public:
90  // Static reference to CUDA primary context for device ordinal
91  // defaultDevice.
92  static CUcontext context = [] {
93  CUDA_REPORT_IF_ERROR(cuInit(/*flags=*/0));
94  CUcontext ctx;
95  // Note: this does not affect the current context.
97  cuDevicePrimaryCtxRetain(&ctx, getDefaultCuDevice()));
98  return ctx;
99  }();
100 
101  CUDA_REPORT_IF_ERROR(cuCtxPushCurrent(context));
102  }
103 
104  ~ScopedContext() { CUDA_REPORT_IF_ERROR(cuCtxPopCurrent(nullptr)); }
105 };
106 
107 #ifdef MLIR_ENABLE_CUDA_CUSPARSE
108 // Note that (1) Nvidia confirms the safety to share handle across multiple
109 // instances, and streams. (2) Clients are responsible to call the @mgpu
110 // environment initialization/destruction in a thread-safe manner, e.g.,
111 // at the beginning of the program before multi-threads are created.
112 static cusparseHandle_t cusparse_env = nullptr;
113 
114 #ifdef MLIR_ENABLE_CUDA_CUSPARSELT
115 // cusparseLtHandle_t is not a pointer type, so we need an additional flag to
116 // indicate whether it is initialized.
117 static cusparseLtHandle_t cusparseLt_env;
118 static bool cusparseLt_initiated = false;
119 
120 #endif // MLIR_ENABLE_CUDA_CUSPARSELT
121 #endif // MLIR_ENABLE_CUDA_CUSPARSE
122 
123 extern "C" MLIR_CUDA_WRAPPERS_EXPORT CUmodule
124 mgpuModuleLoad(void *data, size_t /*gpuBlobSize*/) {
125  ScopedContext scopedContext;
126  CUmodule module = nullptr;
127  CUDA_REPORT_IF_ERROR(cuModuleLoadData(&module, data));
128  return module;
129 }
130 
131 extern "C" MLIR_CUDA_WRAPPERS_EXPORT CUmodule mgpuModuleLoadJIT(void *data,
132  int optLevel) {
133  ScopedContext scopedContext;
134  CUmodule module = nullptr;
135  char jitErrorBuffer[4096] = {0};
136  CUjit_option jitOptions[] = {CU_JIT_ERROR_LOG_BUFFER,
137  CU_JIT_ERROR_LOG_BUFFER_SIZE_BYTES,
138  CU_JIT_OPTIMIZATION_LEVEL};
139  void *jitOptionsVals[] = {jitErrorBuffer,
140  reinterpret_cast<void *>(sizeof(jitErrorBuffer)),
141  reinterpret_cast<void *>(optLevel)};
142 
143  CUresult result =
144  cuModuleLoadDataEx(&module, data, 3, jitOptions, jitOptionsVals);
145  if (result) {
146  fprintf(stderr, "JIT compilation failed with: '%s'\n", jitErrorBuffer);
147  CUDA_REPORT_IF_ERROR(result);
148  }
149  return module;
150 }
151 
152 extern "C" MLIR_CUDA_WRAPPERS_EXPORT void mgpuModuleUnload(CUmodule module) {
153  CUDA_REPORT_IF_ERROR(cuModuleUnload(module));
154 }
155 
156 extern "C" MLIR_CUDA_WRAPPERS_EXPORT CUfunction
157 mgpuModuleGetFunction(CUmodule module, const char *name) {
158  CUfunction function = nullptr;
159  CUDA_REPORT_IF_ERROR(cuModuleGetFunction(&function, module, name));
160  return function;
161 }
162 
163 // The wrapper uses intptr_t instead of CUDA's unsigned int to match
164 // the type of MLIR's index type. This avoids the need for casts in the
165 // generated MLIR code.
166 extern "C" MLIR_CUDA_WRAPPERS_EXPORT void
167 mgpuLaunchKernel(CUfunction function, intptr_t gridX, intptr_t gridY,
168  intptr_t gridZ, intptr_t blockX, intptr_t blockY,
169  intptr_t blockZ, int32_t smem, CUstream stream, void **params,
170  void **extra, size_t /*paramsCount*/) {
171  ScopedContext scopedContext;
172  if (smem > 0) {
173  // Avoid checking driver as it's more expensive than if statement
174  int32_t maxShmem = 0;
175  CUdevice device = getDefaultCuDevice();
176  CUDA_REPORT_IF_ERROR(cuDeviceGet(&device, /*ordinal=*/defaultDevice));
177  CUDA_REPORT_IF_ERROR(cuDeviceGetAttribute(
178  &maxShmem, CU_DEVICE_ATTRIBUTE_MAX_SHARED_MEMORY_PER_BLOCK_OPTIN,
179  device));
180  if (maxShmem < smem) {
181  fprintf(stderr,
182  "Requested shared memory (%dkb) is larger than maximum allowed "
183  "shared memory (%dkb) for this device\n",
184  smem, maxShmem);
185  }
186  CUDA_REPORT_IF_ERROR(cuFuncSetAttribute(
187  function, CU_FUNC_ATTRIBUTE_MAX_DYNAMIC_SHARED_SIZE_BYTES, smem));
188  }
189  debug_print("Launching kernel, grid=%ld,%ld,%ld, "
190  "threads: %ld, %ld, %ld, "
191  "smem: %dkb\n",
192  gridX, gridY, gridZ, blockX, blockY, blockZ, smem);
193  CUDA_REPORT_IF_ERROR(cuLaunchKernel(function, gridX, gridY, gridZ, blockX,
194  blockY, blockZ, smem, stream, params,
195  extra));
196 }
197 
199  ScopedContext scopedContext;
200  CUstream stream = nullptr;
201  CUDA_REPORT_IF_ERROR(cuStreamCreate(&stream, CU_STREAM_NON_BLOCKING));
202  return stream;
203 }
204 
205 extern "C" MLIR_CUDA_WRAPPERS_EXPORT void mgpuStreamDestroy(CUstream stream) {
206  CUDA_REPORT_IF_ERROR(cuStreamDestroy(stream));
207 }
208 
209 extern "C" MLIR_CUDA_WRAPPERS_EXPORT void
210 mgpuStreamSynchronize(CUstream stream) {
211  CUDA_REPORT_IF_ERROR(cuStreamSynchronize(stream));
212 }
213 
214 extern "C" MLIR_CUDA_WRAPPERS_EXPORT void mgpuStreamWaitEvent(CUstream stream,
215  CUevent event) {
216  CUDA_REPORT_IF_ERROR(cuStreamWaitEvent(stream, event, /*flags=*/0));
217 }
218 
220  ScopedContext scopedContext;
221  CUevent event = nullptr;
222  CUDA_REPORT_IF_ERROR(cuEventCreate(&event, CU_EVENT_DISABLE_TIMING));
223  return event;
224 }
225 
226 extern "C" MLIR_CUDA_WRAPPERS_EXPORT void mgpuEventDestroy(CUevent event) {
227  CUDA_REPORT_IF_ERROR(cuEventDestroy(event));
228 }
229 
230 extern "C" MLIR_CUDA_WRAPPERS_EXPORT void mgpuEventSynchronize(CUevent event) {
231  CUDA_REPORT_IF_ERROR(cuEventSynchronize(event));
232 }
233 
234 extern "C" MLIR_CUDA_WRAPPERS_EXPORT void mgpuEventRecord(CUevent event,
235  CUstream stream) {
236  CUDA_REPORT_IF_ERROR(cuEventRecord(event, stream));
237 }
238 
239 extern "C" MLIR_CUDA_WRAPPERS_EXPORT void *
240 mgpuMemAlloc(uint64_t sizeBytes, CUstream stream, bool isHostShared) {
241  ScopedContext scopedContext;
242  CUdeviceptr ptr = 0;
243  if (sizeBytes == 0)
244  return reinterpret_cast<void *>(ptr);
245 
246  if (isHostShared) {
248  cuMemAllocManaged(&ptr, sizeBytes, CU_MEM_ATTACH_GLOBAL));
249  return reinterpret_cast<void *>(ptr);
250  }
251  CUDA_REPORT_IF_ERROR(cuMemAlloc(&ptr, sizeBytes));
252  return reinterpret_cast<void *>(ptr);
253 }
254 
255 extern "C" MLIR_CUDA_WRAPPERS_EXPORT void mgpuMemFree(void *ptr,
256  CUstream /*stream*/) {
257  CUDA_REPORT_IF_ERROR(cuMemFree(reinterpret_cast<CUdeviceptr>(ptr)));
258 }
259 
260 extern "C" MLIR_CUDA_WRAPPERS_EXPORT void
261 mgpuMemcpy(void *dst, void *src, size_t sizeBytes, CUstream stream) {
262  CUDA_REPORT_IF_ERROR(cuMemcpyAsync(reinterpret_cast<CUdeviceptr>(dst),
263  reinterpret_cast<CUdeviceptr>(src),
264  sizeBytes, stream));
265 }
266 
267 extern "C" MLIR_CUDA_WRAPPERS_EXPORT void
268 mgpuMemset32(void *dst, unsigned int value, size_t count, CUstream stream) {
269  CUDA_REPORT_IF_ERROR(cuMemsetD32Async(reinterpret_cast<CUdeviceptr>(dst),
270  value, count, stream));
271 }
272 
273 extern "C" MLIR_CUDA_WRAPPERS_EXPORT void
274 mgpuMemset16(void *dst, unsigned short value, size_t count, CUstream stream) {
275  CUDA_REPORT_IF_ERROR(cuMemsetD16Async(reinterpret_cast<CUdeviceptr>(dst),
276  value, count, stream));
277 }
278 
279 ///
280 /// Helper functions for writing mlir example code
281 ///
282 
283 // Allows to register byte array with the CUDA runtime. Helpful until we have
284 // transfer functions implemented.
285 extern "C" MLIR_CUDA_WRAPPERS_EXPORT void
286 mgpuMemHostRegister(void *ptr, uint64_t sizeBytes) {
287  ScopedContext scopedContext;
288  CUDA_REPORT_IF_ERROR(cuMemHostRegister(ptr, sizeBytes, /*flags=*/0));
289 }
290 
291 /// Registers a memref with the CUDA runtime. `descriptor` is a pointer to a
292 /// ranked memref descriptor struct of rank `rank`. Helpful until we have
293 /// transfer functions implemented.
294 extern "C" MLIR_CUDA_WRAPPERS_EXPORT void
296  int64_t elementSizeBytes) {
297  // Only densely packed tensors are currently supported.
298 #ifdef _WIN32
299  int64_t *denseStrides = (int64_t *)_alloca(rank * sizeof(int64_t));
300 #else
301  int64_t *denseStrides = (int64_t *)alloca(rank * sizeof(int64_t));
302 #endif // _WIN32
303  int64_t *sizes = descriptor->sizes;
304  for (int64_t i = rank - 1, runningStride = 1; i >= 0; i--) {
305  denseStrides[i] = runningStride;
306  runningStride *= sizes[i];
307  }
308  uint64_t sizeBytes = sizes[0] * denseStrides[0] * elementSizeBytes;
309  int64_t *strides = &sizes[rank];
310  (void)strides;
311  for (unsigned i = 0; i < rank; ++i)
312  assert(strides[i] == denseStrides[i] &&
313  "Mismatch in computed dense strides");
314 
315  auto *ptr = descriptor->data + descriptor->offset * elementSizeBytes;
316  mgpuMemHostRegister(ptr, sizeBytes);
317 }
318 
319 // Allows to unregister byte array with the CUDA runtime.
321  ScopedContext scopedContext;
322  CUDA_REPORT_IF_ERROR(cuMemHostUnregister(ptr));
323 }
324 
325 /// Unregisters a memref with the CUDA runtime. `descriptor` is a pointer to a
326 /// ranked memref descriptor struct of rank `rank`
327 extern "C" MLIR_CUDA_WRAPPERS_EXPORT void
329  StridedMemRefType<char, 1> *descriptor,
330  int64_t elementSizeBytes) {
331  auto *ptr = descriptor->data + descriptor->offset * elementSizeBytes;
333 }
334 
335 extern "C" MLIR_CUDA_WRAPPERS_EXPORT void mgpuSetDefaultDevice(int32_t device) {
336  defaultDevice = device;
337 }
338 
339 ///
340 /// Runtime methods using CUDA 12.0+ driver
341 ///
342 
343 #if (CUDA_VERSION >= 12000)
344 
345 extern "C" MLIR_CUDA_WRAPPERS_EXPORT void mgpuLaunchClusterKernel(
346  CUfunction function, intptr_t clusterX, intptr_t clusterY,
347  intptr_t clusterZ, intptr_t gridX, intptr_t gridY, intptr_t gridZ,
348  intptr_t blockX, intptr_t blockY, intptr_t blockZ, int32_t smem,
349  CUstream stream, void **params, void **extra, size_t /*paramsCount*/) {
350  ScopedContext scopedContext;
351  if (smem > 0) {
352  // Avoid checking driver as it's more expensive than if statement
353  int32_t maxShmem = 0;
354  CUdevice device = getDefaultCuDevice();
355  CUDA_REPORT_IF_ERROR(cuDeviceGet(&device, /*ordinal=*/defaultDevice));
356  CUDA_REPORT_IF_ERROR(cuDeviceGetAttribute(
357  &maxShmem, CU_DEVICE_ATTRIBUTE_MAX_SHARED_MEMORY_PER_BLOCK_OPTIN,
358  device));
359  if (maxShmem < smem) {
360  fprintf(stderr,
361  "Requested shared memory (%dkb) is larger than maximum allowed "
362  "shared memory (%dkb) for this device\n",
363  smem, maxShmem);
364  }
365  CUDA_REPORT_IF_ERROR(cuFuncSetAttribute(
366  function, CU_FUNC_ATTRIBUTE_MAX_DYNAMIC_SHARED_SIZE_BYTES, smem));
367  }
368  CUlaunchConfig config;
369  config.gridDimX = gridX;
370  config.gridDimY = gridY;
371  config.gridDimZ = gridZ;
372  config.blockDimX = blockX;
373  config.blockDimY = blockY;
374  config.blockDimZ = blockZ;
375  config.sharedMemBytes = smem;
376  config.hStream = stream;
377  CUlaunchAttribute launchAttr[2];
378  launchAttr[0].id = CU_LAUNCH_ATTRIBUTE_CLUSTER_DIMENSION;
379  launchAttr[0].value.clusterDim.x = clusterX;
380  launchAttr[0].value.clusterDim.y = clusterY;
381  launchAttr[0].value.clusterDim.z = clusterZ;
382  launchAttr[1].id = CU_LAUNCH_ATTRIBUTE_CLUSTER_SCHEDULING_POLICY_PREFERENCE;
383  launchAttr[1].value.clusterSchedulingPolicyPreference =
384  CU_CLUSTER_SCHEDULING_POLICY_SPREAD;
385  config.numAttrs = 2;
386  config.attrs = launchAttr;
387 
388  debug_print("Launching kernel,"
389  "cluster: %ld, %ld, %ld, "
390  "grid=%ld,%ld,%ld, "
391  "threads: %ld, %ld, %ld, "
392  "smem: %dkb\n",
393  clusterX, clusterY, clusterZ, gridX, gridY, gridZ, blockX, blockY,
394  blockZ, smem);
395 
396  CUDA_REPORT_IF_ERROR(cuLaunchKernelEx(&config, function, params, extra));
397 }
398 
399 extern "C" MLIR_CUDA_WRAPPERS_EXPORT void mgpuTensorMapEncodeTiled(
400  CUtensorMap *tensorMap, // Tensor map object
401  CUtensorMapDataType tensorDataType, // Tensor data type
402  cuuint32_t tensorRank, // Dimensionality of tensor
403  void *globalAddress, // Starting address
404  const cuuint64_t *globalDim, // Tensor size (number of elements)
405  const cuuint64_t *globalStrides, // Stride size (in bytes)
406  const cuuint32_t *boxDim, // Traversal box (number of elments)
407  const cuuint32_t *elementStrides, // Traversal stride
408  CUtensorMapInterleave interleave, // Type of interleaved layout
409  CUtensorMapSwizzle swizzle, // Bank swizzling pattern
410  CUtensorMapL2promotion l2Promotion, // L2 promotion size
411  CUtensorMapFloatOOBfill oobFill // Padding zfill or NaN fill
412 ) {
413  ScopedContext scopedContext;
414  CUDA_REPORT_IF_ERROR(cuTensorMapEncodeTiled(
415  tensorMap, tensorDataType, tensorRank, globalAddress, globalDim,
416  globalStrides, boxDim, elementStrides, interleave, swizzle, l2Promotion,
417  oobFill));
418  debug_print("Created TMA descriptor\n Addr: %p\n"
419  "data type : %d\n"
420  "rank : %d\n"
421  "globalDim[5]: %zu, %zu, %zu, %zu, %zu\n"
422  "globalStrides[5]: %zu, %zu, %zu, %zu, %zu\n"
423  "boxDim[5]: %u, %u, %u, %u, %u\n"
424  "elementStrides[5]: %u, %u, %u, %u, %u\n"
425  "interleave: %u \n"
426  "swizzle: %u \n"
427  "l2Promotion: %u \n"
428  "oobFill: %u \n",
429  (void *)&tensorMap, tensorDataType, tensorRank, globalDim[0],
430  globalDim[1], globalDim[2], globalDim[3], globalDim[4],
431  globalStrides[0], globalStrides[1], globalStrides[2],
432  globalStrides[3], globalStrides[4], boxDim[0], boxDim[1],
433  boxDim[2], boxDim[3], boxDim[4], elementStrides[0],
434  elementStrides[1], elementStrides[2], elementStrides[3],
435  elementStrides[4], interleave, swizzle, l2Promotion, oobFill);
436 }
437 
438 template <int Rank>
439 void mgpuGetMemRefDataAndShape(void *rawDescriptor, char **addr,
440  uint64_t *globalDim, uint64_t *globalStrides,
441  const CUtensorMapDataType tensorDataType) {
442  auto descriptor =
443  reinterpret_cast<StridedMemRefType<char, Rank> *>(rawDescriptor);
444  *addr = descriptor->data;
445  for (int i = 0; i < Rank; ++i) {
446  globalDim[i] = static_cast<uint64_t>(descriptor->sizes[Rank - i - 1]);
447  }
448  static constexpr int elementSizeInBytes[] = {1, 2, 4, 4, 8, 8, 2,
449  4, 8, 2, 4, 4, 4};
450  for (int i = 0; i < Rank - 1; ++i) {
451  globalStrides[i] = static_cast<uint64_t>(
452  descriptor->strides[Rank - i - 2] * elementSizeInBytes[tensorDataType]);
453  }
454 }
455 
456 extern "C" MLIR_CUDA_WRAPPERS_EXPORT void *mgpuTensorMapEncodeTiledMemref(
457  int64_t tensorRank, // Dimensionality of tensor
458  void *rankedDescriptor, // Ranked MemRef descriptor
459  const CUtensorMapDataType tensorDataType, // Stride size (in bytes)
460  CUtensorMapInterleave interleave, // Type of interleaved layout
461  CUtensorMapSwizzle swizzle, // Bank swizzling pattern
462  CUtensorMapL2promotion l2Promotion, // L2 promotion size
463  CUtensorMapFloatOOBfill oobFill, // Padding zfill or NaN fill
464  int64_t *inputBoxDims // Tensor size (number of elements)
465 ) {
466  CUtensorMap tensorMap;
467 
468  uint32_t boxDim[5] = {1, 1, 1, 1, 1}, elementStrides[5] = {1, 1, 1, 1, 1};
469  uint64_t globalDim[5] = {1, 1, 1, 1, 1}, globalStrides[5] = {0};
470  uint32_t tensorRank32 = uint32_t(tensorRank);
471 
472  char *globalAddress = nullptr;
473  switch (tensorRank) {
474  case 1:
475  mgpuGetMemRefDataAndShape<1>(rankedDescriptor, &globalAddress, globalDim,
476  globalStrides, tensorDataType);
477  break;
478  case 2:
479  mgpuGetMemRefDataAndShape<2>(rankedDescriptor, &globalAddress, globalDim,
480  globalStrides, tensorDataType);
481  break;
482  case 3:
483  mgpuGetMemRefDataAndShape<3>(rankedDescriptor, &globalAddress, globalDim,
484  globalStrides, tensorDataType);
485  break;
486  case 4:
487  mgpuGetMemRefDataAndShape<4>(rankedDescriptor, &globalAddress, globalDim,
488  globalStrides, tensorDataType);
489  break;
490  case 5:
491  mgpuGetMemRefDataAndShape<5>(rankedDescriptor, &globalAddress, globalDim,
492  globalStrides, tensorDataType);
493  break;
494  default:
495  fprintf(
496  stderr,
497  "'mgpuTensorMapEncodeTiledMemref' failed with 'rank is too high'\n");
498  return nullptr;
499  }
500 
501  for (int64_t r = 0; r < tensorRank; ++r) {
502  boxDim[r] = static_cast<uint32_t>(inputBoxDims[tensorRank - r - 1]);
503  }
504 
505  ScopedContext scopedContext;
506  mgpuTensorMapEncodeTiled(&tensorMap, tensorDataType, tensorRank32,
507  globalAddress, globalDim, globalStrides, boxDim,
508  elementStrides, interleave, swizzle, l2Promotion,
509  oobFill);
510  // Copy created tensor map to device
511  CUdeviceptr dTensorMap;
512  CUDA_REPORT_IF_ERROR(cuMemAlloc(&dTensorMap, sizeof(CUtensorMap)));
513  CUDA_REPORT_IF_ERROR(cuMemcpy(dTensorMap,
514  reinterpret_cast<CUdeviceptr>(&tensorMap),
515  sizeof(CUtensorMap)));
516  return reinterpret_cast<void *>(dTensorMap);
517 }
518 #endif
519 
520 #ifdef MLIR_ENABLE_CUDA_CUSPARSE
521 
522 ///
523 /// Wrapper methods for the cuSparse library.
524 ///
525 
526 // Some macro magic to get float/double alpha and beta on host.
527 // TODO: add support to passing alpha and beta as arguments
528 #define ALPHABETA(dtp, alpha, beta) \
529  __nv_bfloat16(alpha##16bf) = 1.0f; \
530  __nv_bfloat16(beta##16bf) = 1.0f; \
531  __half(alpha##16f) = 1.0f; \
532  __half(beta##16f) = 1.0f; \
533  float(alpha##f) = 1.0f; \
534  float(beta##f) = 1.0f; \
535  double(alpha##d) = 1.0; \
536  double(beta##d) = 1.0; \
537  const void *(alpha##p) = nullptr; \
538  const void *(beta##p) = nullptr; \
539  if (dtp == CUDA_R_16BF || dtp == CUDA_C_16BF) { \
540  (alpha##p) = reinterpret_cast<void *>(&(alpha##16bf)); \
541  (beta##p) = reinterpret_cast<void *>(&(beta##16bf)); \
542  } else if (dtp == CUDA_R_16F || dtp == CUDA_C_16F) { \
543  (alpha##p) = reinterpret_cast<void *>(&(alpha##16f)); \
544  (beta##p) = reinterpret_cast<void *>(&(beta##16f)); \
545  } else if (dtp == CUDA_R_32F || dtp == CUDA_C_32F) { \
546  (alpha##p) = reinterpret_cast<void *>(&(alpha##f)); \
547  (beta##p) = reinterpret_cast<void *>(&(beta##f)); \
548  } else { \
549  (alpha##p) = reinterpret_cast<void *>(&(alpha##d)); \
550  (beta##p) = reinterpret_cast<void *>(&(beta##d)); \
551  }
552 
553 extern "C" MLIR_CUDA_WRAPPERS_EXPORT void mgpuCreateSparseEnv() {
554  // ScopedContext is for cuda initialization.
555  ScopedContext scopedContext;
556  assert(!cusparse_env && "client called mgpuCreateSparseEnv() twice");
557  CUSPARSE_REPORT_IF_ERROR(cusparseCreate(&cusparse_env));
558 }
559 
560 extern "C" MLIR_CUDA_WRAPPERS_EXPORT void mgpuDestroySparseEnv() {
561  assert(cusparse_env && "client did not call mgpuCreateSparseEnv()");
562  CUSPARSE_REPORT_IF_ERROR(cusparseDestroy(cusparse_env));
563  cusparse_env = nullptr;
564 }
565 
566 extern "C" MLIR_CUDA_WRAPPERS_EXPORT void *
567 mgpuCreateDnVec(intptr_t size, void *values, int32_t dtp, CUstream /*stream*/) {
568  cusparseDnVecDescr_t vec = nullptr;
569  auto dTp = static_cast<cudaDataType_t>(dtp);
570  CUSPARSE_REPORT_IF_ERROR(cusparseCreateDnVec(&vec, size, values, dTp))
571  return reinterpret_cast<void *>(vec);
572 }
573 
574 extern "C" MLIR_CUDA_WRAPPERS_EXPORT void
575 mgpuDestroyDnVec(void *v, CUstream /*stream*/) {
576  cusparseDnVecDescr_t vec = reinterpret_cast<cusparseDnVecDescr_t>(v);
577  CUSPARSE_REPORT_IF_ERROR(cusparseDestroyDnVec(vec))
578 }
579 
580 extern "C" MLIR_CUDA_WRAPPERS_EXPORT void *
581 mgpuCreateDnMat(intptr_t rows, intptr_t cols, void *values, int32_t dtp,
582  CUstream /*stream*/) {
583  cusparseDnMatDescr_t mat = nullptr;
584  auto dTp = static_cast<cudaDataType_t>(dtp);
585  CUSPARSE_REPORT_IF_ERROR(cusparseCreateDnMat(&mat, rows, cols, /*ld=*/cols,
586  values, dTp, CUSPARSE_ORDER_ROW))
587  return reinterpret_cast<void *>(mat);
588 }
589 
590 extern "C" MLIR_CUDA_WRAPPERS_EXPORT void
591 mgpuDestroyDnMat(void *m, CUstream /*stream*/) {
592  cusparseDnMatDescr_t mat = reinterpret_cast<cusparseDnMatDescr_t>(m);
593  CUSPARSE_REPORT_IF_ERROR(cusparseDestroyDnMat(mat))
594 }
595 
596 extern "C" MLIR_CUDA_WRAPPERS_EXPORT void *
597 mgpuCreateCoo(intptr_t rows, intptr_t cols, intptr_t nnz, void *rowIdxs,
598  void *colIdxs, void *values, int32_t itp, int32_t dtp,
599  CUstream /*stream*/) {
600  cusparseSpMatDescr_t mat = nullptr;
601  auto iTp = static_cast<cusparseIndexType_t>(itp);
602  auto dTp = static_cast<cudaDataType_t>(dtp);
603  CUSPARSE_REPORT_IF_ERROR(cusparseCreateCoo(&mat, rows, cols, nnz, rowIdxs,
604  colIdxs, values, iTp,
605  CUSPARSE_INDEX_BASE_ZERO, dTp))
606  return reinterpret_cast<void *>(mat);
607 }
608 
609 #ifdef CUSPARSE_COO_AOS // deprecated in cuSPARSE 11.2
610 extern "C" MLIR_CUDA_WRAPPERS_EXPORT void *
611 mgpuCreateCooAoS(intptr_t rows, intptr_t cols, intptr_t nnz, void *idxs,
612  void *values, int32_t itp, int32_t dtp, CUstream /*stream*/) {
613  cusparseSpMatDescr_t mat = nullptr;
614  auto iTp = static_cast<cusparseIndexType_t>(itp);
615  auto dTp = static_cast<cudaDataType_t>(dtp);
616  CUSPARSE_REPORT_IF_ERROR(cusparseCreateCooAoS(
617  &mat, rows, cols, nnz, idxs, values, iTp, CUSPARSE_INDEX_BASE_ZERO, dTp))
618  return reinterpret_cast<void *>(mat);
619 }
620 #endif // CUSPARSE_COO_AOS
621 
622 extern "C" MLIR_CUDA_WRAPPERS_EXPORT void *
623 mgpuCreateCsr(intptr_t rows, intptr_t cols, intptr_t nnz, void *rowPos,
624  void *colIdxs, void *values, int32_t ptp, int32_t itp,
625  int32_t dtp, CUstream /*stream*/) {
626  cusparseSpMatDescr_t mat = nullptr;
627  auto pTp = static_cast<cusparseIndexType_t>(ptp);
628  auto iTp = static_cast<cusparseIndexType_t>(itp);
629  auto dTp = static_cast<cudaDataType_t>(dtp);
630  CUSPARSE_REPORT_IF_ERROR(cusparseCreateCsr(&mat, rows, cols, nnz, rowPos,
631  colIdxs, values, pTp, iTp,
632  CUSPARSE_INDEX_BASE_ZERO, dTp))
633  return reinterpret_cast<void *>(mat);
634 }
635 
636 extern "C" MLIR_CUDA_WRAPPERS_EXPORT void *
637 mgpuCreateCsc(intptr_t rows, intptr_t cols, intptr_t nnz, void *colPos,
638  void *rowIdxs, void *values, int32_t ptp, int32_t itp,
639  int32_t dtp, CUstream /*stream*/) {
640  cusparseSpMatDescr_t mat = nullptr;
641  auto pTp = static_cast<cusparseIndexType_t>(ptp);
642  auto iTp = static_cast<cusparseIndexType_t>(itp);
643  auto dTp = static_cast<cudaDataType_t>(dtp);
644  CUSPARSE_REPORT_IF_ERROR(cusparseCreateCsc(&mat, rows, cols, nnz, colPos,
645  rowIdxs, values, pTp, iTp,
646  CUSPARSE_INDEX_BASE_ZERO, dTp))
647  return reinterpret_cast<void *>(mat);
648 }
649 
650 extern "C" MLIR_CUDA_WRAPPERS_EXPORT void *
651 mgpuCreateBsr(intptr_t brows, intptr_t bcols, intptr_t bnnz, intptr_t rBsz,
652  intptr_t cBsz, void *rowPos, void *colIdxs, void *values,
653  int32_t ptp, int32_t itp, int32_t dtp, CUstream /*stream*/) {
654  cusparseSpMatDescr_t mat = nullptr;
655 #if CUSPARSE_VERSION >= 12100
656  auto pTp = static_cast<cusparseIndexType_t>(ptp);
657  auto iTp = static_cast<cusparseIndexType_t>(itp);
658  auto dTp = static_cast<cudaDataType_t>(dtp);
659  CUSPARSE_REPORT_IF_ERROR(cusparseCreateBsr(
660  &mat, brows, bcols, bnnz, rBsz, cBsz, rowPos, colIdxs, values, pTp, iTp,
661  CUSPARSE_INDEX_BASE_ZERO, dTp, CUSPARSE_ORDER_ROW))
662 #endif
663  return reinterpret_cast<void *>(mat);
664 }
665 
666 extern "C" MLIR_CUDA_WRAPPERS_EXPORT void
667 mgpuDestroySpMat(void *m, CUstream /*stream*/) {
668  cusparseSpMatDescr_t mat = reinterpret_cast<cusparseSpMatDescr_t>(m);
669  CUSPARSE_REPORT_IF_ERROR(cusparseDestroySpMat(mat))
670 }
671 
672 extern "C" MLIR_CUDA_WRAPPERS_EXPORT intptr_t mgpuSpMVBufferSize(
673  int32_t ma, void *a, void *x, void *y, int32_t ctp, CUstream /*stream*/) {
674  assert(cusparse_env && "client did not call mgpuCreateSparseEnv()");
675  cusparseOperation_t modeA = static_cast<cusparseOperation_t>(ma);
676  cusparseSpMatDescr_t matA = reinterpret_cast<cusparseSpMatDescr_t>(a);
677  cusparseDnVecDescr_t vecX = reinterpret_cast<cusparseDnVecDescr_t>(x);
678  cusparseDnVecDescr_t vecY = reinterpret_cast<cusparseDnVecDescr_t>(y);
679  cudaDataType_t cTp = static_cast<cudaDataType_t>(ctp);
680  ALPHABETA(cTp, alpha, beta)
681  size_t bufferSize = 0;
682  CUSPARSE_REPORT_IF_ERROR(cusparseSpMV_bufferSize(
683  cusparse_env, modeA, alphap, matA, vecX, betap, vecY, cTp,
684  CUSPARSE_SPMV_ALG_DEFAULT, &bufferSize))
685  return bufferSize;
686 }
687 
688 extern "C" MLIR_CUDA_WRAPPERS_EXPORT void mgpuSpMV(int32_t ma, void *a, void *x,
689  void *y, int32_t ctp,
690  void *buf,
691  CUstream /*stream*/) {
692  assert(cusparse_env && "client did not call mgpuCreateSparseEnv()");
693  cusparseOperation_t modeA = static_cast<cusparseOperation_t>(ma);
694  cusparseSpMatDescr_t matA = reinterpret_cast<cusparseSpMatDescr_t>(a);
695  cusparseDnVecDescr_t vecX = reinterpret_cast<cusparseDnVecDescr_t>(x);
696  cusparseDnVecDescr_t vecY = reinterpret_cast<cusparseDnVecDescr_t>(y);
697  cudaDataType_t cTp = static_cast<cudaDataType_t>(ctp);
698  ALPHABETA(cTp, alpha, beta)
699  CUSPARSE_REPORT_IF_ERROR(cusparseSpMV(cusparse_env, modeA, alphap, matA, vecX,
700  betap, vecY, cTp,
701  CUSPARSE_SPMV_ALG_DEFAULT, buf))
702 }
703 
704 extern "C" MLIR_CUDA_WRAPPERS_EXPORT intptr_t
705 mgpuSpMMBufferSize(int32_t ma, int32_t mb, void *a, void *b, void *c,
706  int32_t ctp, CUstream /*stream*/) {
707  assert(cusparse_env && "client did not call mgpuCreateSparseEnv()");
708  cusparseOperation_t modeA = static_cast<cusparseOperation_t>(ma);
709  cusparseOperation_t modeB = static_cast<cusparseOperation_t>(mb);
710  cusparseSpMatDescr_t matA = reinterpret_cast<cusparseSpMatDescr_t>(a);
711  cusparseDnMatDescr_t matB = reinterpret_cast<cusparseDnMatDescr_t>(b);
712  cusparseDnMatDescr_t matC = reinterpret_cast<cusparseDnMatDescr_t>(c);
713  cudaDataType_t cTp = static_cast<cudaDataType_t>(ctp);
714  ALPHABETA(cTp, alpha, beta)
715  size_t bufferSize = 0;
716  CUSPARSE_REPORT_IF_ERROR(cusparseSpMM_bufferSize(
717  cusparse_env, modeA, modeB, alphap, matA, matB, betap, matC, cTp,
718  CUSPARSE_SPMM_ALG_DEFAULT, &bufferSize))
719  return bufferSize;
720 }
721 
722 extern "C" MLIR_CUDA_WRAPPERS_EXPORT void mgpuSpMM(int32_t ma, int32_t mb,
723  void *a, void *b, void *c,
724  int32_t ctp, void *buf,
725  CUstream /*stream*/) {
726  assert(cusparse_env && "client did not call mgpuCreateSparseEnv()");
727  cusparseOperation_t modeA = static_cast<cusparseOperation_t>(ma);
728  cusparseOperation_t modeB = static_cast<cusparseOperation_t>(mb);
729  cusparseSpMatDescr_t matA = reinterpret_cast<cusparseSpMatDescr_t>(a);
730  cusparseDnMatDescr_t matB = reinterpret_cast<cusparseDnMatDescr_t>(b);
731  cusparseDnMatDescr_t matC = reinterpret_cast<cusparseDnMatDescr_t>(c);
732  cudaDataType_t cTp = static_cast<cudaDataType_t>(ctp);
733  ALPHABETA(cTp, alpha, beta)
734  CUSPARSE_REPORT_IF_ERROR(cusparseSpMM(cusparse_env, modeA, modeB, alphap,
735  matA, matB, betap, matC, cTp,
736  CUSPARSE_SPMM_ALG_DEFAULT, buf))
737 }
738 
739 extern "C" MLIR_CUDA_WRAPPERS_EXPORT intptr_t
740 mgpuSDDMMBufferSize(int32_t ma, int32_t mb, void *a, void *b, void *c,
741  int32_t ctp, CUstream /*stream*/) {
742  assert(cusparse_env && "client did not call mgpuCreateSparseEnv()");
743  cusparseOperation_t modeA = static_cast<cusparseOperation_t>(ma);
744  cusparseOperation_t modeB = static_cast<cusparseOperation_t>(mb);
745  cusparseDnMatDescr_t matA = reinterpret_cast<cusparseDnMatDescr_t>(a);
746  cusparseDnMatDescr_t matB = reinterpret_cast<cusparseDnMatDescr_t>(b);
747  cusparseSpMatDescr_t matC = reinterpret_cast<cusparseSpMatDescr_t>(c);
748  auto cTp = static_cast<cudaDataType_t>(ctp);
749  ALPHABETA(cTp, alpha, beta)
750  size_t bufferSize = 0;
751  CUSPARSE_REPORT_IF_ERROR(cusparseSDDMM_bufferSize(
752  cusparse_env, modeA, modeB, alphap, matA, matB, betap, matC, cTp,
753  CUSPARSE_SDDMM_ALG_DEFAULT, &bufferSize))
754  return bufferSize;
755 }
756 
757 extern "C" MLIR_CUDA_WRAPPERS_EXPORT void mgpuSDDMM(int32_t ma, int32_t mb,
758  void *a, void *b, void *c,
759  int32_t ctp, void *buf,
760  CUstream /*stream*/) {
761  assert(cusparse_env && "client did not call mgpuCreateSparseEnv()");
762  cusparseOperation_t modeA = static_cast<cusparseOperation_t>(ma);
763  cusparseOperation_t modeB = static_cast<cusparseOperation_t>(mb);
764  cusparseDnMatDescr_t matA = reinterpret_cast<cusparseDnMatDescr_t>(a);
765  cusparseDnMatDescr_t matB = reinterpret_cast<cusparseDnMatDescr_t>(b);
766  cusparseSpMatDescr_t matC = reinterpret_cast<cusparseSpMatDescr_t>(c);
767  auto cTp = static_cast<cudaDataType_t>(ctp);
768  ALPHABETA(cTp, alpha, beta)
769  CUSPARSE_REPORT_IF_ERROR(cusparseSDDMM(cusparse_env, modeA, modeB, alphap,
770  matA, matB, betap, matC, cTp,
771  CUSPARSE_SDDMM_ALG_DEFAULT, buf))
772 }
773 
774 extern "C" MLIR_CUDA_WRAPPERS_EXPORT void *
775 mgpuSpGEMMCreateDescr(CUstream /*stream*/) {
776  cusparseSpGEMMDescr_t spgemmDesc = nullptr;
777  CUSPARSE_REPORT_IF_ERROR(cusparseSpGEMM_createDescr(&spgemmDesc))
778  return reinterpret_cast<void *>(spgemmDesc);
779 }
780 
781 extern "C" MLIR_CUDA_WRAPPERS_EXPORT void
782 mgpuSpGEMMDestroyDescr(void *s, CUstream /*stream*/) {
783  cusparseSpGEMMDescr_t spgemmDesc = reinterpret_cast<cusparseSpGEMMDescr_t>(s);
784  CUSPARSE_REPORT_IF_ERROR(cusparseSpGEMM_destroyDescr(spgemmDesc))
785 }
786 
787 extern "C" MLIR_CUDA_WRAPPERS_EXPORT intptr_t mgpuSpGEMMWorkEstimation(
788  void *s, int32_t ma, int32_t mb, void *a, void *b, void *c, int32_t ctp,
789  intptr_t bs, void *buf, CUstream /*stream*/) {
790  cusparseSpGEMMDescr_t spgemmDesc = reinterpret_cast<cusparseSpGEMMDescr_t>(s);
791  cusparseOperation_t modeA = static_cast<cusparseOperation_t>(ma);
792  cusparseOperation_t modeB = static_cast<cusparseOperation_t>(mb);
793  cusparseSpMatDescr_t matA = reinterpret_cast<cusparseSpMatDescr_t>(a);
794  cusparseSpMatDescr_t matB = reinterpret_cast<cusparseSpMatDescr_t>(b);
795  cusparseSpMatDescr_t matC = reinterpret_cast<cusparseSpMatDescr_t>(c);
796  auto cTp = static_cast<cudaDataType_t>(ctp);
797  ALPHABETA(cTp, alpha, beta)
798  size_t newBufferSize = bs;
799  CUSPARSE_REPORT_IF_ERROR(cusparseSpGEMM_workEstimation(
800  cusparse_env, modeA, modeB, alphap, matA, matB, betap, matC, cTp,
801  CUSPARSE_SPGEMM_DEFAULT, spgemmDesc, &newBufferSize, buf))
802  return newBufferSize;
803 }
804 
805 extern "C" MLIR_CUDA_WRAPPERS_EXPORT intptr_t
806 mgpuSpGEMMCompute(void *s, int32_t ma, int32_t mb, void *a, void *b, void *c,
807  int32_t ctp, intptr_t bsz2, void *buf2, CUstream /*stream*/) {
808  cusparseSpGEMMDescr_t spgemmDesc = reinterpret_cast<cusparseSpGEMMDescr_t>(s);
809  cusparseOperation_t modeA = static_cast<cusparseOperation_t>(ma);
810  cusparseOperation_t modeB = static_cast<cusparseOperation_t>(mb);
811  cusparseSpMatDescr_t matA = reinterpret_cast<cusparseSpMatDescr_t>(a);
812  cusparseSpMatDescr_t matB = reinterpret_cast<cusparseSpMatDescr_t>(b);
813  cusparseSpMatDescr_t matC = reinterpret_cast<cusparseSpMatDescr_t>(c);
814  auto cTp = static_cast<cudaDataType_t>(ctp);
815  ALPHABETA(cTp, alpha, beta)
816  size_t newBufferSize2 = bsz2;
817  CUSPARSE_REPORT_IF_ERROR(cusparseSpGEMM_compute(
818  cusparse_env, modeA, modeB, alphap, matA, matB, betap, matC, cTp,
819  CUSPARSE_SPGEMM_DEFAULT, spgemmDesc, &newBufferSize2, buf2))
820  return newBufferSize2;
821 }
822 
823 extern "C" MLIR_CUDA_WRAPPERS_EXPORT void
824 mgpuSpGEMMCopy(void *s, int32_t ma, int32_t mb, void *a, void *b, void *c,
825  int32_t ctp, CUstream /*stream*/) {
826  cusparseSpGEMMDescr_t spgemmDesc = reinterpret_cast<cusparseSpGEMMDescr_t>(s);
827  cusparseOperation_t modeA = static_cast<cusparseOperation_t>(ma);
828  cusparseOperation_t modeB = static_cast<cusparseOperation_t>(mb);
829  cusparseSpMatDescr_t matA = reinterpret_cast<cusparseSpMatDescr_t>(a);
830  cusparseSpMatDescr_t matB = reinterpret_cast<cusparseSpMatDescr_t>(b);
831  cusparseSpMatDescr_t matC = reinterpret_cast<cusparseSpMatDescr_t>(c);
832  auto cTp = static_cast<cudaDataType_t>(ctp);
833  ALPHABETA(cTp, alpha, beta)
835  cusparseSpGEMM_copy(cusparse_env, modeA, modeB, alphap, matA, matB, betap,
836  matC, cTp, CUSPARSE_SPGEMM_DEFAULT, spgemmDesc))
837 }
838 
839 extern "C" MLIR_CUDA_WRAPPERS_EXPORT void
840 mgpuSpMatGetSize(void *m, void *r, void *c, void *n, CUstream /*stream*/) {
841  cusparseConstSpMatDescr_t matDescr =
842  reinterpret_cast<cusparseConstSpMatDescr_t>(m);
843  int64_t *rows = reinterpret_cast<int64_t *>(r);
844  int64_t *cols = reinterpret_cast<int64_t *>(c);
845  int64_t *nnz = reinterpret_cast<int64_t *>(n);
846  CUSPARSE_REPORT_IF_ERROR(cusparseSpMatGetSize(matDescr, rows, cols, nnz));
847 }
848 
849 extern "C" MLIR_CUDA_WRAPPERS_EXPORT void
850 mgpuSetCsrPointers(void *m, void *p, void *c, void *v, CUstream /*stream*/) {
851  cusparseSpMatDescr_t matDescr = reinterpret_cast<cusparseSpMatDescr_t>(m);
852  CUSPARSE_REPORT_IF_ERROR(cusparseCsrSetPointers(matDescr, p, c, v));
853 }
854 
855 #ifdef MLIR_ENABLE_CUDA_CUSPARSELT
856 
857 ///
858 /// Wrapper methods for the cuSparseLt library.
859 ///
860 
861 struct cusparseLtSpMatHandleAndData {
862  cusparseLtMatDescriptor_t mat;
863  // TODO: the following three are associated with the SpMM operator rather than
864  // the sparse matrix. Create workspace buffers and pass them to the SpMM
865  // execution.
866  cusparseLtMatmulAlgSelection_t alg_sel;
867  cusparseLtMatmulPlan_t plan;
868  cusparseLtMatmulDescriptor_t matmul;
869  void *values{nullptr};
870 };
871 
872 struct cusparseLtDnMatHandleAndData {
873  cusparseLtMatDescriptor_t mat;
874  void *values{nullptr};
875 };
876 
877 static_assert(sizeof(cusparseLtHandle_t) == 11024,
878  "Unexpected cusparseLt handle size");
879 static_assert(sizeof(cusparseLtSpMatHandleAndData) == 44104,
880  "Unexpected cusparseLt sparse matrix handle size");
881 static_assert(sizeof(cusparseLtDnMatHandleAndData) == 11032,
882  "Unexpected cusparseLt dense matrix handle size");
883 
884 extern "C" MLIR_CUDA_WRAPPERS_EXPORT void mgpuCreateSparseLtEnv() {
885  // ScopedContext is for cuda initialization.
886  ScopedContext scopedContext;
887  assert(!cusparseLt_initiated &&
888  "client called mgpuCreateSparseLtEnv() twice");
889  // Note that cuSparseLt still uses cusparseStatus_t.
890  CUSPARSE_REPORT_IF_ERROR(cusparseLtInit(&cusparseLt_env));
891  cusparseLt_initiated = true;
892 }
893 
894 extern "C" MLIR_CUDA_WRAPPERS_EXPORT void mgpuDestroySparseLtEnv() {
895  assert(cusparseLt_initiated && "client did not call mgpuCreateSparseLtEnv()");
896  CUSPARSE_REPORT_IF_ERROR(cusparseLtDestroy(&cusparseLt_env));
897  cusparseLt_initiated = false;
898 }
899 
900 extern "C" MLIR_CUDA_WRAPPERS_EXPORT void
901 mgpuCreateCuSparseLtDnMat(void *dh, intptr_t rows, intptr_t cols, void *values,
902  int32_t dtp, CUstream /*stream*/) {
903  assert(cusparseLt_initiated && "client did not call mgpuCreateSparseLtEnv()");
904  auto dnmat_handle = reinterpret_cast<cusparseLtDnMatHandleAndData *>(dh);
905  dnmat_handle->values = values;
906  auto dTp = static_cast<cudaDataType_t>(dtp);
907  // Assume row-major when deciding lda.
908  const uint32_t alignment = 16;
909  CUSPARSE_REPORT_IF_ERROR(cusparseLtDenseDescriptorInit(
910  &cusparseLt_env, &(dnmat_handle->mat), rows, cols, /*lda=*/cols,
911  alignment, dTp, CUSPARSE_ORDER_ROW))
912 }
913 
914 extern "C" MLIR_CUDA_WRAPPERS_EXPORT void
915 mgpuDestroyCuSparseLtDnMat(void *dh, CUstream /*stream*/) {
916  auto dnmat_handle = reinterpret_cast<cusparseLtDnMatHandleAndData *>(dh);
917  CUSPARSE_REPORT_IF_ERROR(cusparseLtMatDescriptorDestroy(&(dnmat_handle->mat)))
918 }
919 
920 extern "C" MLIR_CUDA_WRAPPERS_EXPORT void
921 mgpuCusparseLtCreate2To4SpMat(void *sh, intptr_t rows, intptr_t cols,
922  void *values, int32_t dtp, CUstream /*stream*/) {
923  assert(cusparseLt_initiated && "client did not call mgpuCreateSparseLtEnv()");
924  auto spmat_handle = reinterpret_cast<cusparseLtSpMatHandleAndData *>(sh);
925  spmat_handle->values = values;
926  auto dTp = static_cast<cudaDataType_t>(dtp);
927  // Assume row-major when deciding lda.
928  const uint32_t alignment = 16;
929  CUSPARSE_REPORT_IF_ERROR(cusparseLtStructuredDescriptorInit(
930  &cusparseLt_env, &(spmat_handle->mat), rows, cols, /*ld=*/cols, alignment,
931  dTp, CUSPARSE_ORDER_ROW, CUSPARSELT_SPARSITY_50_PERCENT))
932 }
933 
934 extern "C" MLIR_CUDA_WRAPPERS_EXPORT void
935 mgpuDestroyCuSparseLtSpMat(void *sh, CUstream /*stream*/) {
936  auto spmat_handle = reinterpret_cast<cusparseLtSpMatHandleAndData *>(sh);
937  CUSPARSE_REPORT_IF_ERROR(cusparseLtMatDescriptorDestroy(&(spmat_handle->mat)))
938 }
939 
940 // Several things are being done in this stage, algorithm selection, planning,
941 // and returning workspace and compressed matrices data buffer sizes.
942 // The parameter prune_flag is used to indicate whether pruning and pruning
943 // check will happen 0 means not prune or prune check, 1 means prune, 2 means
944 // prune & prune check
945 extern "C" MLIR_CUDA_WRAPPERS_EXPORT void
946 mgpuCuSparseLtSpMMBufferSize(void *bs, int32_t ma, int32_t mb, void *a, void *b,
947  void *c, int32_t ctp, int32_t prune_flag,
948  CUstream stream) {
949  assert(cusparseLt_initiated && "client did not call mgpuCreateSparseLtEnv()");
950  // TODO: support more advanced settings, e.g., the input right operand is a
951  // sparse matrix assuming matA is the sparse matrix
952  auto matA = reinterpret_cast<cusparseLtSpMatHandleAndData *>(a);
953  auto matB = reinterpret_cast<cusparseLtDnMatHandleAndData *>(b);
954  auto matC = reinterpret_cast<cusparseLtDnMatHandleAndData *>(c);
955  auto workspace_size = reinterpret_cast<size_t *>(bs);
956  auto compressed_size = &(reinterpret_cast<size_t *>(bs)[1]);
957  auto compressed_buffer_size = &(reinterpret_cast<size_t *>(bs)[2]);
958  auto cTp = static_cast<cusparseComputeType>(ctp);
959 
960  cusparseOperation_t modeA = static_cast<cusparseOperation_t>(ma);
961  cusparseOperation_t modeB = static_cast<cusparseOperation_t>(mb);
962  CUSPARSE_REPORT_IF_ERROR(cusparseLtMatmulDescriptorInit(
963  &cusparseLt_env, &(matA->matmul), modeA, modeB, &(matA->mat),
964  &(matB->mat), &(matC->mat), &(matC->mat), cTp))
965  CUSPARSE_REPORT_IF_ERROR(cusparseLtMatmulAlgSelectionInit(
966  &cusparseLt_env, &(matA->alg_sel), &(matA->matmul),
967  CUSPARSELT_MATMUL_ALG_DEFAULT))
968  int alg = 0;
969  CUSPARSE_REPORT_IF_ERROR(cusparseLtMatmulAlgSetAttribute(
970  &cusparseLt_env, &(matA->alg_sel), CUSPARSELT_MATMUL_ALG_CONFIG_ID, &alg,
971  sizeof(alg)))
972 
973  CUSPARSE_REPORT_IF_ERROR(cusparseLtMatmulPlanInit(
974  &cusparseLt_env, &(matA->plan), &(matA->matmul), &(matA->alg_sel)))
975 
976  // Pruning step (in-place).
977  if (prune_flag > 0)
978  CUSPARSE_REPORT_IF_ERROR(cusparseLtSpMMAPrune(
979  &cusparseLt_env, &(matA->matmul), matA->values, matA->values,
980  CUSPARSELT_PRUNE_SPMMA_STRIP, stream))
981 
982  // Check structure of A.
983  // Note that this adds a synchronization on the stream.
984  // TODO: Do we want that?
985  if (prune_flag == 2) {
986  int *dvalid = (int *)mgpuMemAlloc(sizeof(int), stream, false);
987  CUSPARSE_REPORT_IF_ERROR(cusparseLtSpMMAPruneCheck(
988  &cusparseLt_env, &(matA->matmul), matA->values, dvalid, stream))
989  int valid = 0;
990  mgpuMemcpy(&valid, dvalid, sizeof(int), stream);
991  mgpuStreamSynchronize(stream);
992  mgpuMemFree(dvalid, stream);
993  if (valid != 0)
994  fprintf(stderr, "CUPARSE-LT: sparse matrix is not 2:4; computed results "
995  "will be invalid\n");
996  }
997 
998  CUSPARSE_REPORT_IF_ERROR(cusparseLtMatmulGetWorkspace(
999  &cusparseLt_env, &(matA->plan), workspace_size))
1000  CUSPARSE_REPORT_IF_ERROR(cusparseLtSpMMACompressedSize(
1001  &cusparseLt_env, &(matA->plan), compressed_size, compressed_buffer_size))
1002 }
1003 
1004 extern "C" MLIR_CUDA_WRAPPERS_EXPORT void
1005 mgpuCuSparseLtSpMM(void *a, void *b, void *c, void *d_workspace,
1006  void *dA_compressed, void *dA_compressedBuffer,
1007  CUstream stream) {
1008  assert(cusparseLt_initiated && "client did not call mgpuCreateSparseLtEnv()");
1009  auto matA = reinterpret_cast<cusparseLtSpMatHandleAndData *>(a);
1010  auto matB = reinterpret_cast<cusparseLtDnMatHandleAndData *>(b);
1011  auto matC = reinterpret_cast<cusparseLtDnMatHandleAndData *>(c);
1012 
1013  ALPHABETA(CUDA_R_32F, alpha, beta)
1015  cusparseLtSpMMACompress(&cusparseLt_env, &(matA->plan), (matA->values),
1016  dA_compressed, dA_compressedBuffer, stream))
1017 
1018  // TODO: add support to multi-stream execution
1019  // Perform the matrix multiplication. D = A*B+C using C==D for now
1021  cusparseLtMatmul(&cusparseLt_env, &(matA->plan), alphap, dA_compressed,
1022  matB->values, betap, matC->values,
1023  /*dD*/ matC->values, d_workspace, nullptr, 0))
1024 
1025  CUSPARSE_REPORT_IF_ERROR(cusparseLtMatDescriptorDestroy(&(matA->mat)))
1026  // destroy the plan associated with the sparse matrix
1027  CUSPARSE_REPORT_IF_ERROR(cusparseLtMatmulPlanDestroy(&(matA->plan)))
1028 }
1029 
1030 #endif // MLIR_ENABLE_CUDA_CUSPARSELT
1031 #endif // MLIR_ENABLE_CUDA_CUSPARSE
#define CUSPARSE_REPORT_IF_ERROR(expr)
bool isDebugEnabled()
Helper method that checks environment value for debugging.
MLIR_CUDA_WRAPPERS_EXPORT void mgpuStreamWaitEvent(CUstream stream, CUevent event)
#define MLIR_CUDA_WRAPPERS_EXPORT
MLIR_CUDA_WRAPPERS_EXPORT void mgpuModuleUnload(CUmodule module)
#define CUDA_REPORT_IF_ERROR(expr)
static thread_local int32_t defaultDevice
MLIR_CUDA_WRAPPERS_EXPORT void mgpuMemHostRegisterMemRef(int64_t rank, StridedMemRefType< char, 1 > *descriptor, int64_t elementSizeBytes)
Registers a memref with the CUDA runtime.
MLIR_CUDA_WRAPPERS_EXPORT void mgpuMemHostUnregister(void *ptr)
MLIR_CUDA_WRAPPERS_EXPORT void mgpuEventRecord(CUevent event, CUstream stream)
MLIR_CUDA_WRAPPERS_EXPORT void mgpuMemcpy(void *dst, void *src, size_t sizeBytes, CUstream stream)
const char * kDebugEnvironmentVariable
MLIR_CUDA_WRAPPERS_EXPORT void mgpuMemset16(void *dst, unsigned short value, size_t count, CUstream stream)
MLIR_CUDA_WRAPPERS_EXPORT void mgpuMemset32(void *dst, unsigned int value, size_t count, CUstream stream)
MLIR_CUDA_WRAPPERS_EXPORT CUmodule mgpuModuleLoadJIT(void *data, int optLevel)
MLIR_CUDA_WRAPPERS_EXPORT CUfunction mgpuModuleGetFunction(CUmodule module, const char *name)
#define debug_print(fmt,...)
MLIR_CUDA_WRAPPERS_EXPORT CUevent mgpuEventCreate()
CUdevice getDefaultCuDevice()
MLIR_CUDA_WRAPPERS_EXPORT void mgpuMemHostRegister(void *ptr, uint64_t sizeBytes)
Helper functions for writing mlir example code.
MLIR_CUDA_WRAPPERS_EXPORT void mgpuStreamSynchronize(CUstream stream)
MLIR_CUDA_WRAPPERS_EXPORT CUstream mgpuStreamCreate()
MLIR_CUDA_WRAPPERS_EXPORT void mgpuMemFree(void *ptr, CUstream)
MLIR_CUDA_WRAPPERS_EXPORT void * mgpuMemAlloc(uint64_t sizeBytes, CUstream stream, bool isHostShared)
MLIR_CUDA_WRAPPERS_EXPORT CUmodule mgpuModuleLoad(void *data, size_t)
MLIR_CUDA_WRAPPERS_EXPORT void mgpuSetDefaultDevice(int32_t device)
MLIR_CUDA_WRAPPERS_EXPORT void mgpuStreamDestroy(CUstream stream)
MLIR_CUDA_WRAPPERS_EXPORT void mgpuLaunchKernel(CUfunction function, intptr_t gridX, intptr_t gridY, intptr_t gridZ, intptr_t blockX, intptr_t blockY, intptr_t blockZ, int32_t smem, CUstream stream, void **params, void **extra, size_t)
MLIR_CUDA_WRAPPERS_EXPORT void mgpuMemHostUnregisterMemRef(int64_t rank, StridedMemRefType< char, 1 > *descriptor, int64_t elementSizeBytes)
Unregisters a memref with the CUDA runtime.
MLIR_CUDA_WRAPPERS_EXPORT void mgpuEventSynchronize(CUevent event)
MLIR_CUDA_WRAPPERS_EXPORT void mgpuEventDestroy(CUevent event)
int64_t cols
int64_t rows
const FrozenRewritePatternSet GreedyRewriteConfig config
StridedMemRef descriptor type with static rank.
Definition: CRunnerUtils.h:131
int64_t sizes[N]
Definition: CRunnerUtils.h:135