MLIR 22.0.0git
GPUHeuristics.cpp
Go to the documentation of this file.
1//===- GPUHeuristics.cpp - Heuristics Implementation for Transforms -------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8
10
12#include "llvm/ADT/ArrayRef.h"
13#include "llvm/ADT/STLExtras.h"
14#include "llvm/Support/Debug.h"
15#include "llvm/Support/DebugLog.h"
16#include "llvm/Support/InterleavedRange.h"
17#include "llvm/Support/MathExtras.h"
18#include "llvm/Support/raw_ostream.h"
19#include <cmath>
20#include <numeric>
21
22using namespace mlir;
23
24#define DEBUG_TYPE "linalg-transforms"
25
27 return gpu::GPUThreadMappingAttr::get(ctx, gpu::MappingId::LinearDim0);
28}
30 return gpu::GPUThreadMappingAttr::get(ctx, gpu::MappingId::LinearDim1);
31}
33 return gpu::GPUThreadMappingAttr::get(ctx, gpu::MappingId::LinearDim2);
34}
35
37 int totalNumThreads,
38 int64_t desiredBitAlignment,
39 ArrayRef<int64_t> copySizes,
40 bool favorPredication,
41 int64_t elementalBitwidth) {
42 assert(!copySizes.empty() && copySizes.size() <= 3 &&
43 "only 1,2,3-D copies are supported for now");
44
45 LDBG() << "START CopyMappingInfo, favorPredication: " << favorPredication;
46 LDBG() << "--copy shape: " << llvm::interleaved(copySizes);
47
48 // Greedily find the largest vector size that can be used to copy the most
49 // minor dimension: we are in the business of filling kMaxVectorLoadBitWidth
50 // contiguous memory transactions with as few threads as possible.
51 int64_t desiredVectorSize = CopyMappingInfo::maxContiguousElementsToTransfer(
52 desiredBitAlignment, copySizes.back(), elementalBitwidth);
53
54 LDBG() << "--greedily determined vectorSize: " << desiredVectorSize
55 << " elements of " << elementalBitwidth << "b each -> "
56 << (desiredVectorSize * elementalBitwidth)
57 << "b total out of a max of " << kMaxVectorLoadBitWidth << "b";
58
59 status = inferNumThreads(totalNumThreads, copySizes, desiredVectorSize,
60 favorPredication);
62 return;
63
64 LDBG() << "--copy: " << llvm::interleaved(copySizes) << "\n"
65 << "--numThreads: " << llvm::interleaved(this->numThreads) << "\n"
66 << "--vectorSize: " << this->vectorSize;
67 assert(this->numThreads.size() == copySizes.size() &&
68 "compute copy mapping expected same number of threads and copy sizes");
69
70 // Compute the smallest bounding box.
71 this->smallestBoundingTileSizes = llvm::to_vector(
72 llvm::map_range(llvm::zip(copySizes, this->numThreads), [](auto &&pair) {
73 int64_t size, numThreads;
74 std::tie(size, numThreads) = pair;
75 return llvm::divideCeilSigned(size, numThreads);
76 }));
77 SmallVector<Attribute> allThreadMappings{linearId2(ctx), linearId1(ctx),
78 linearId0(ctx)};
79
80 // Set the thread mapping.
81 this->threadMapping =
82 llvm::to_vector(ArrayRef(allThreadMappings)
83 .take_back(this->smallestBoundingTileSizes.size()));
84 LDBG() << *this;
85}
86
87int64_t transform::gpu::CopyMappingInfo::maxContiguousElementsToTransfer(
88 int64_t desiredBitAlignment, int64_t numContiguousElements,
89 int64_t elementalBitwidth) {
90 assert(kMaxVectorLoadBitWidth % elementalBitwidth == 0 &&
91 "elemental bitwidth does not divide kMaxVectorLoadBitWidth");
92 assert(desiredBitAlignment % elementalBitwidth == 0 &&
93 "elemental bitwidth does not divide desired bit alignment");
94 return std::gcd(
95 std::gcd(desiredBitAlignment / elementalBitwidth, numContiguousElements),
96 kMaxVectorLoadBitWidth / elementalBitwidth);
97}
98
99/// Get the list of all factors that divide `val`, not just the prime factors.
101 SmallVector<int64_t> factors;
102 factors.reserve(val);
103 for (int64_t factor = 1; factor <= val; ++factor) {
104 if (val % factor != 0)
105 continue;
106 factors.push_back(factor);
107 }
108 factors.push_back(val);
109 return factors;
110}
111
113 int64_t res = 1;
114 for (auto val : vals)
115 res *= val;
116 return res;
117}
118
119/// Extract `result` from `sizes` with the following constraints:
120/// 1. sizes[i] % result[i] for all i
121/// 2. product_of_threadsPerDim <= maxNumThreads
122/// 3. if `currentIndex` is sizes.size() - 1, then threadsPerDim[currentIndex]
123/// must be sizes[currentIndex].
124/// This is used to greedily extract the maximum number of threads usable for
125/// mapping a copy of size `sizes`, while being bounded by `totalNumThreads` and
126/// ensuring coalesced access along the most minor dimension.
127/// Return the number of threads used in the range:
128/// threadsPerDim[currentIndex .. sizes.end()]
129// The implementation uses a dynamic programming approach to greedily extract
130// the best combination under the constraints.
131// TODO: Implementation details can be improved but putting effort there is a
132// tradeoffs: `sizes` is expected to be of small rank and contain small values.
134 int64_t currentIndex,
135 int64_t maxNumThreads) {
136 assert(static_cast<size_t>(currentIndex) < sizes.size() &&
137 "currentIndex out of bounds");
138 std::string indent(2 * currentIndex, '-');
139 if (static_cast<size_t>(currentIndex) == sizes.size() - 1) {
140 LDBG() << indent << "mandated globalBest: " << sizes[currentIndex];
141 return SmallVector<int64_t>{sizes[currentIndex]};
142 }
143
144 int64_t best = 0;
145 int64_t s = sizes[currentIndex];
146 SmallVector<int64_t> factors = getFactors(s);
147 SmallVector<int64_t> localThreadsPerDim;
148 localThreadsPerDim.reserve(sizes.size());
149 LDBG() << indent << "maximizeNumThreads in " << s
150 << " with limit: " << maxNumThreads;
151 for (auto factor : factors) {
152 auto nestedThreadsPerDim =
153 maximizeNumThreads(sizes, currentIndex + 1, maxNumThreads / factor);
154 int64_t localBest = factor * product(nestedThreadsPerDim);
155 if (localBest > best && localBest <= maxNumThreads) {
156 LDBG() << indent << "new localBest: " << localBest;
157 LDBG() << indent << "nestedThreadsPerDim: "
158 << llvm::interleaved(nestedThreadsPerDim);
159 localThreadsPerDim.clear();
160 localThreadsPerDim.push_back(factor);
161 llvm::append_range(localThreadsPerDim, nestedThreadsPerDim);
162 best = localBest;
163 }
164 }
165
166 LDBG() << indent << "found globalBest: " << best;
167 LDBG() << indent << "numThreads: " << llvm::interleaved(localThreadsPerDim);
168 return localThreadsPerDim;
169}
170
172transform::gpu::CopyMappingInfo::inferNumThreads(int64_t totalNumThreads,
173 ArrayRef<int64_t> sizes,
174 int64_t desiredVectorSize,
175 bool favorPredication) {
176
177 if (!favorPredication) {
178 int64_t localVectorSize = desiredVectorSize;
179 for (; localVectorSize >= 1; localVectorSize /= 2) {
180 // Attempt to map the copy with predication and current fixed vector size:
181 // 1. if the status is Success, we are done.
182 // 2. if the status is Invalid, we fail immediately, no amount of
183 // vector size reduction can offset the bad tile size selection from the
184 // higher-level.
185 // 3. if the status is RequiresPredication, we try again with a smaller
186 // vector size.
187 Status status =
188 inferNumThreadsImpl(totalNumThreads, sizes, localVectorSize);
189 if (status == Status::Success || status == Status::Invalid)
190 return status;
191
192 LDBG() << "requires predication, try reducing vector size to "
193 << (localVectorSize / 2);
194 }
195 }
196
197 // If we have not yet returned, it means that we have tried all vector sizes
198 // and we still require predication. Restart from the original vector size and
199 // do not attempt to
200 return inferNumThreadsImpl(totalNumThreads, sizes, desiredVectorSize);
201}
202
204transform::gpu::CopyMappingInfo::inferNumThreadsImpl(
205 int64_t totalNumThreads, ArrayRef<int64_t> sizes,
206 int64_t desiredVectorSize) {
207 assert(sizes.back() % desiredVectorSize == 0 &&
208 "most-minor size not divisible by actualVectorSize");
209
210 LDBG() << "inferNumThreadsImpl with totalNumThreads: " << totalNumThreads
211 << " and vectorSize: " << desiredVectorSize;
212
213 // Scale the most minor size to account for the chosen vector size and
214 // maximize the number of threads without exceeding the total number of
215 // threads.
216 SmallVector<int64_t> scaledSizes(sizes);
217 scaledSizes.back() /= desiredVectorSize;
218 if (scaledSizes.back() > totalNumThreads) {
219 LDBG() << "--Too few threads given the required vector size -> FAIL";
220 return Status::Invalid;
221 }
222 SmallVector<int64_t> inferredNumThreads =
223 maximizeNumThreads(scaledSizes, 0, totalNumThreads);
224
225 LDBG() << "inferred numThreads: " << llvm::interleaved(inferredNumThreads);
226 LDBG() << "computed actualVectorSize: " << desiredVectorSize;
227
228 // Corner case: we cannot use more threads than available. If the dimension of
229 // the copy is so bad it is because higher-level tiling did not do its job, we
230 // do not try to recover from it here.
231 int64_t totalNumThreadsUsed = product(inferredNumThreads);
232 LDBG() << "--totalNumThreadsUsed: " << totalNumThreadsUsed;
233 if (totalNumThreadsUsed == 0 || totalNumThreadsUsed > totalNumThreads) {
234 LDBG() << "--Too few threads given the required vector size -> FAIL";
235 return Status::Invalid;
236 }
237
238 this->vectorSize = desiredVectorSize;
239 this->numThreads = inferredNumThreads;
240 if (totalNumThreadsUsed == totalNumThreads)
241 return Status::Success;
242
243 return Status::RequiresPredication;
244}
245
246void transform::gpu::CopyMappingInfo::print(llvm::raw_ostream &os) const {
247 os << "MappingInfo{"
248 << "CopyMappingInfo: " << "valid: " << (status != Status::Invalid) << ", "
249 << "vectorSize: " << vectorSize << ", numThreads: {"
250 << llvm::interleaved(numThreads) << "}, smallestBoundingTileSizes: {"
251 << llvm::interleaved(smallestBoundingTileSizes) << "}, threadMapping: {"
252 << llvm::interleaved(threadMapping) << "}}";
253}
static Attribute linearId1(MLIRContext *ctx)
static SmallVector< int64_t > getFactors(int64_t val)
Get the list of all factors that divide val, not just the prime factors.
static SmallVector< int64_t > maximizeNumThreads(ArrayRef< int64_t > sizes, int64_t currentIndex, int64_t maxNumThreads)
Extract result from sizes with the following constraints:
static int64_t product(ArrayRef< int64_t > vals)
static Attribute linearId0(MLIRContext *ctx)
static Attribute linearId2(MLIRContext *ctx)
Attributes are known-constant values of operations.
Definition Attributes.h:25
MLIRContext is the top-level object for a collection of MLIR operations.
Definition MLIRContext.h:63
Include the generated interface declarations.
SmallVector< Attribute > threadMapping
Thread mapping attributes, one per entry of numThreads.
Status
Status of the mapping computation, invalid usually means too many threads are required and we fail to...
int64_t vectorSize
Most minor vector size (i.e. 1-D), in number of elements, used in a copy.
Status status
The status of a particular copy mapping.
CopyMappingInfo(MLIRContext *ctx, int totalNumThreads, int64_t desiredBitAlignment, ArrayRef< int64_t > sizes, bool favorPredication=false, int64_t elementalBitwidth=32)
Greedily compute the MappingInfo to use to perform a copy of sizes elements of bitwidth elementalBitw...
static constexpr int64_t kMaxVectorLoadBitWidth
Static quantity determining the number of bits to target in an individual copy.
void print(llvm::raw_ostream &os) const
SmallVector< int64_t > smallestBoundingTileSizes
Explicit computation / injection of the smallest bounding tile sizes after mapping to numThreads.
SmallVector< int64_t > numThreads
Number of threads to use for the copy mapping, from most major to most minor dims (i....