MLIR  20.0.0git
TransformUtils.h
Go to the documentation of this file.
1 //===- TransformsUtils.h - Tensor Transformation Utilities-------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 #ifndef MLIR_DIALECT_TENSOR_TRANSFORMS_TRANSFORMUTILS_H
9 #define MLIR_DIALECT_TENSOR_TRANSFORMS_TRANSFORMUTILS_H
10 
12 #include "mlir/IR/PatternMatch.h"
13 
14 namespace mlir {
15 namespace tensor {
16 
17 //===----------------------------------------------------------------------===//
18 // Extract slice from `tensor.collapse_shape`
19 //===----------------------------------------------------------------------===//
20 
21 /// This class assists with generating IR required to materialize an
22 /// arbitrary-sized slice from the result of a CollapseShapeOp. In order to
23 /// accomplish this, a loop nest or similar operation must be created by the
24 /// caller. The purpose of the loop nest is to generate a "tiling by 1" of all
25 /// sliced dimensions. The "tiling by 1" assembles all elements of the result
26 /// tile over dimensions that would have been impossible to directly slice.
27 ///
28 /// The class provides three methods:
29 /// 1. `ExtractSliceFromCollapseHelper::create`: emits IR that should
30 /// appear before the loop nest and populates the internal state.
31 /// 2. `ExtractSliceFromCollapseHelper::getIterationSpaceSizes`: returns
32 /// parameters used by the caller to construct the loop nest.
33 /// 3. `ExtractSliceFromCollapseHelper::emitLoopNestBody`:
34 /// emits IR to construct a "size-1 tile" of the desired result and returns a
35 /// set of ranges where the tile should be inserted into the destination
36 /// tensor.
37 ///
38 /// ### Intended usage:
39 ///
40 /// The caller should first call `ExtractSliceFromCollapseHelper::create` and
41 /// then create a destination tensor that is the same size as the desired slice.
42 /// The caller then creates a loop nest that iterates over the multi-dimensional
43 /// iteration space defined by `[0, ub[0]) x [0, ub[1]] x ... x [0, ub[N-1]]`
44 /// where `ub` is the upper bound given by
45 /// `ExtractSliceFromCollapseHelper::getIterationSpaceSizes`. Inside the body of
46 /// the loop nest, the caller should call
47 /// `ExtractSliceFromCollapseHelper::emitLoopNestBody` and provide the induction
48 /// variables. This returns a sub-tile and a set of ranges that describe where
49 /// this tile should be inserted into the result by the caller. For a complete
50 /// example of usage, see the examples in the TestTensorTransforms pass.
51 ///
52 /// ### Example:
53 /// Consider the following IR:
54 /// ```
55 /// %0 = linalg.generic ... -> tensor<3x?x?x11x?xf32>
56 /// %1 = tensor.collapse_shape %0 [[0, 1, 2], [3, 4]]
57 /// : tensor<3x?x?x11x?xf32> into tensor<?x?xf32>
58 /// %2 = tensor.extract_slice %1 [%offt0, %offt1][%size0, %size1][1, 1]
59 /// : tensor<?x?xf32> to tensor<?x?xf32>
60 /// ```
61 ///
62 /// We can construct %2 by generating the following, which only uses `%0`:
63 ///
64 /// ```
65 /// %dest = tensor.empty(%size0, %size1) : tensor<?x?xf32>
66 /// %1 = tensor.dim %0, %c1 : tensor<3x?x?x11x?xf32>
67 /// %2 = tensor.dim %0, %c2 : tensor<3x?x?x11x?xf32>
68 /// %3 = tensor.dim %0, %c4 : tensor<3x?x?x11x?xf32>
69 ///
70 /// %result = scf.for %iv0 = %c0 to %arg2 step %c1 iter_args(%arg6 = %dest) ->
71 /// (tensor<?x?xf32>) {
72 /// %5 = scf.for %iv1 = %c0 to %arg4 step %c1 iter_args(%arg8 = %arg6)
73 /// -> (tensor<?x?xf32>) {
74 /// %lin0 = (affine.apply) %iv0 + %offt0
75 /// %lin1 = (affine.apply) %iv1 + %offt1
76 ///
77 /// %mi0:3 = affine.delinearize_index %lin0 into (%c3, %1, %2)
78 /// %mi1:2 = affine.delinearize_index %lin1 into (%c11, %3)
79 ///
80 /// %sub_tile = tensor.extract_slice %0
81 /// [%mi0#0, %mi0#1, %mi0#2, %mi1#0, %mi1#1]
82 /// [1, 1, 1, 1, 1]
83 /// [1, 1, 1, 1, 1]
84 /// : tensor<3x?x?x11x?xf32> to tensor<1x1x1x1x1xf32>
85 /// %sub_tile_collapsed = tensor.collapse_shape %sub_tile
86 /// [[0, 1, 2], [3, 4]]
87 /// : tensor<1x1x1x1x1xf32> into tensor<1x1xf3
88 ///
89 /// %12 = tensor.insert_slice %sub_tile_collapsed into
90 /// %arg8[%iv0, %iv1] [1, 1] [1, 1]
91 /// : tensor<1x1xf32> into tensor<?x?xf32>
92 /// scf.yield %12 : tensor<?x?xf32>
93 /// }
94 /// scf.yield %5 : tensor<?x?xf32>
95 /// }
96 /// ```
97 ///
98 /// ### Explanation of example:
99 ///
100 /// Each step above is explained below.
101 ///
102 /// #### Step 0: Create %dest and materialization of shapes.
103 /// This step is self-explanatory and performed by the caller. It can be
104 /// done before or after calling `ExtractSliceFromCollapseHelper::create`,
105 /// which materializes the source shape (`%0, %1, %2`).
106 ///
107 /// #### Step 1: Create loop nest.
108 ///
109 /// The caller creates the loop nest (depicted here is `scf.for`, but any other
110 /// similar op can be used). The iteration should start at zero and proceed with
111 /// step size 1 to the upper bounds given by
112 /// `ExtractSliceFromCollapseHelper::getIterationSpaceSizes`. This forms the
113 /// basis for the "tiling by 1".
114 ///
115 /// #### Step 2: Transform (%iv0, %iv1) from the index space of %3 to the index
116 /// space of %0.
117 ///
118 /// This step is performed by
119 /// `ExtractSliceFromCollapseHelper::emitLoopNestBody`.
120 ///
121 /// The induction variables `%iv0` and `%iv1` live in the
122 /// index space of %2 (for dimensions 0 and 1, respectively). `%lin0` and
123 /// `%lin1` are the result of inverting or resolve the index space
124 /// transformation represented by the slice operation, accounting for offset and
125 /// stride. Subsequently, `%mi0` and `%mi1` are the result of applying the
126 /// inverse index space transformation represented by `tensor.collapse_shape`.
127 /// This is accomplished using `affine.delinearize_index`. Note that %iv0
128 /// and %iv1 now correspond to multi-indices `%mi0:3` and `%mi1:2`.
129 ///
130 /// #### Step 3: Extract a sub-tile slice from the source.
131 ///
132 /// This step is also performed by
133 /// `ExtractSliceFromCollapseHelper::emitLoopNestBody`.
134 ///
135 /// The indices `%mi0` and `%mi1` are used to extract a slice from %0. This
136 /// slice is then collapsed down to match the result rank.
137 ///
138 /// #### Step 4: Insert sub-tile into the destination
139 ///
140 /// This step is performed by the caller using the results of
141 /// `ExtractSliceFromCollapseHelper::emitLoopNestBody`.
142 ///
143 /// In the above example, the slice insertion parameters are straightforward,
144 /// but in other possible situations, the slice parameters are more complicated,
145 /// which is why this helper calculates them for the caller. These other
146 /// situations correspond to:
147 /// 1. The presence of linearized dimensions that are not sliced
148 /// 2. The presence of non-linearized dimensions that are sliced.
150 public:
151  /// Given a CollapseShapeOp and a set of ranges describing the desired slice
152  /// of its result, emits IR to materialize the shapes of the input and output
153  /// tensors, and returns an instance of the initialized class. Returns failure
154  /// if the slice is rank-reducing.
155  static FailureOr<ExtractSliceFromCollapseHelper>
156  create(OpBuilder &b, tensor::CollapseShapeOp op, ArrayRef<Range> sliceParams);
157 
158  /// Given a CollapseShapeOp and an ExtractSliceOp acting on its result, emits
159  /// IR to materialize the shapes of the input and output tensors of the
160  /// CollapseShapeOp, and returns an instance of the initialized class. Returns
161  /// failure if the slice is rank-reducing.
162  static FailureOr<ExtractSliceFromCollapseHelper>
163  create(OpBuilder &b, tensor::CollapseShapeOp collapseOp,
164  tensor::ExtractSliceOp extractOp);
165 
167  tensor::CollapseShapeOp collapseShapeOp,
168  ArrayRef<OpFoldResult> collapseShapeInputShape,
169  ArrayRef<OpFoldResult> collapseShapeOutputShape,
170  ArrayRef<Range> extractSliceParams,
171  const llvm::SmallBitVector &linearizedDimensions,
172  const llvm::SmallBitVector &slicedDimensions, ArrayRef<Value> tiledSizes)
173  : collapseShapeOp(collapseShapeOp),
174  collapseShapeInputShape(collapseShapeInputShape),
175  collapseShapeOutputShape(collapseShapeOutputShape),
176  sliceParams(extractSliceParams),
177  linearizedDimensions(linearizedDimensions),
178  slicedDimensions(slicedDimensions), tiledSizes(tiledSizes) {}
179 
180  /// Return the upper bounds of the iteration space (with 0 offset and stride
181  /// 1) required to create the desired slice. Note that this is not the same
182  /// as the `sizes` parameters of the ExtractSliceOp because not all dimensions
183  /// of the slice are required to be tiled to form the result.
184  const SmallVector<Value> &getIterationSpaceSizes() { return tiledSizes; }
185 
186  /// Generates the IR inside of the caller's loop nest for 1) inverting the
187  /// index mappings of the ExtractSliceOp->CollapseShapeOp chain and 2)
188  /// extracting the CollapseShapeOp source tensor tile for this specified
189  /// iteration space point `tileInductionVars` and 3) calculating where to
190  /// insert the extracted tile. The returned pair consists of the results of
191  /// (2) and (3) and should be used by the caller to insert into the
192  /// destination tensor.
193  std::pair<Value, SmallVector<Range>>
194  emitLoopNestBody(OpBuilder &builder, Location loc,
195  ValueRange tileInductionVars);
196 
197 private:
198  tensor::CollapseShapeOp collapseShapeOp;
199  SmallVector<OpFoldResult> collapseShapeInputShape;
200  SmallVector<OpFoldResult> collapseShapeOutputShape;
201  SmallVector<Range> sliceParams;
202  llvm::SmallBitVector linearizedDimensions;
203  llvm::SmallBitVector slicedDimensions;
204  SmallVector<Value> tiledSizes;
205 };
206 
207 /// Tries to simplify a `tensor.collapse_shape` operation by inserting a single
208 /// rank-reducing `tensor.extract_slice` operation. The `extract_slice` op will
209 /// either take the place of the source, allowing for a new, simpler
210 /// `collapse_shape` op to replace `op`, or the `collapse_shape` op will be
211 /// completely replaced by the `extract_slice` result. Either way, `op` is
212 /// replaced and the new op is returned.
213 ///
214 /// ### Example:
215 /// ```
216 /// %result = tensor.collapse_shape %0 [[0, 1], [2, 3]]
217 /// : tensor<?x1x30x10xf32> to tensor<?x300xf32>
218 /// ```
219 /// can be transformed to
220 ///
221 /// ```
222 /// %tmp = tensor.extract_slice %0 [0, 0, 0, 0]
223 /// [0, %dim1, 30, 30]
224 /// [1, 1, 1 1]
225 /// : tensor<?x1x30x10xf32> to tensor<?x30x10xf32>
226 /// %result = tensor.collapse_shape %tmp [[0], [1, 2]]
227 /// : tensor<?x30x10xf32> to tensor<?x300xf32>
228 /// ```
229 ///
230 /// ### Example:
231 ///
232 /// ```
233 /// %result = tensor.collapse_shape %1 [[0, 1], [2]]
234 /// : tensor<?x1x30xf32> to tensor<?x30xf32>
235 /// ```
236 /// can be transformed to
237 /// ```
238 /// %result = tensor.extract_slice %1 [0, 0, 0]
239 /// [%dim2, 1, 30]
240 /// [1, 1, 1]
241 /// : tensor<?x1x30xf32> to tensor<?x30xf32>
242 /// ```
243 ///
244 /// ### Unsupported cases:
245 ///
246 /// This transform doesn't yet support reducing the rank of the reassociation
247 /// indices, which would require inserting a `tensor.expand_shape` op similar to
248 /// the following example:
249 /// ```
250 /// %result = tensor.collapse_shape %0 [[0, 1], [2, 3]]
251 /// : tensor<1x1x30x10xf32> to tensor<1x300xf32>
252 /// ```
253 /// can be transformed to
254 /// ```
255 /// %tmp = tensor.extract_slice %0 [0, 0, 0, 0]
256 /// [0, 1, 30, 30]
257 /// [1, 1, 1 1]
258 /// : tensor<1x1x30x10xf32> to tensor<30x10xf32>
259 /// %result0 = tensor.collapse_shape %tmp [[0, 1]]
260 /// : tensor<30x10xf32> to tensor<300xf32>
261 /// %result1 = tensor.expand_shape %tmp [[0, 1], [2]] :... tensor<1x300xf32>
262 /// ```
263 ///
264 FailureOr<Operation *>
265 simplifyCollapseShapeWithRankReducingExtractSlice(tensor::CollapseShapeOp op,
266  RewriterBase &rewriter);
267 } // namespace tensor
268 } // namespace mlir
269 
270 #endif // MLIR_DIALECT_TENSOR_TRANSFORMS_TRANSFORMUTILS_H
This class defines the main interface for locations in MLIR and acts as a non-nullable wrapper around...
Definition: Location.h:66
This class helps build Operations.
Definition: Builders.h:215
This class coordinates the application of a rewrite on a set of IR, providing a way for clients to tr...
Definition: PatternMatch.h:400
This class provides an abstraction over the different types of ranges over Values.
Definition: ValueRange.h:381
This class assists with generating IR required to materialize an arbitrary-sized slice from the resul...
std::pair< Value, SmallVector< Range > > emitLoopNestBody(OpBuilder &builder, Location loc, ValueRange tileInductionVars)
Generates the IR inside of the caller's loop nest for 1) inverting the index mappings of the ExtractS...
static FailureOr< ExtractSliceFromCollapseHelper > create(OpBuilder &b, tensor::CollapseShapeOp op, ArrayRef< Range > sliceParams)
Given a CollapseShapeOp and a set of ranges describing the desired slice of its result,...
const SmallVector< Value > & getIterationSpaceSizes()
Return the upper bounds of the iteration space (with 0 offset and stride 1) required to create the de...
ExtractSliceFromCollapseHelper(tensor::CollapseShapeOp collapseShapeOp, ArrayRef< OpFoldResult > collapseShapeInputShape, ArrayRef< OpFoldResult > collapseShapeOutputShape, ArrayRef< Range > extractSliceParams, const llvm::SmallBitVector &linearizedDimensions, const llvm::SmallBitVector &slicedDimensions, ArrayRef< Value > tiledSizes)
FailureOr< Operation * > simplifyCollapseShapeWithRankReducingExtractSlice(tensor::CollapseShapeOp op, RewriterBase &rewriter)
Tries to simplify a tensor.collapse_shape operation by inserting a single rank-reducing tensor....
Include the generated interface declarations.