MLIR  20.0.0git
SparseTensorRuntime.cpp
Go to the documentation of this file.
1 //===- SparseTensorRuntime.cpp - SparseTensor runtime support lib ---------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements a light-weight runtime support library for
10 // manipulating sparse tensors from MLIR. More specifically, it provides
11 // C-API wrappers so that MLIR-generated code can call into the C++ runtime
12 // support library. The functionality provided in this library is meant
13 // to simplify benchmarking, testing, and debugging of MLIR code operating
14 // on sparse tensors. However, the provided functionality is **not**
15 // part of core MLIR itself.
16 //
17 // The following memory-resident sparse storage schemes are supported:
18 //
19 // (a) A coordinate scheme for temporarily storing and lexicographically
20 // sorting a sparse tensor by coordinate (SparseTensorCOO).
21 //
22 // (b) A "one-size-fits-all" sparse tensor storage scheme defined by
23 // per-dimension sparse/dense annnotations together with a dimension
24 // ordering used by MLIR compiler-generated code (SparseTensorStorage).
25 //
26 // The following external formats are supported:
27 //
28 // (1) Matrix Market Exchange (MME): *.mtx
29 // https://math.nist.gov/MatrixMarket/formats.html
30 //
31 // (2) Formidable Repository of Open Sparse Tensors and Tools (FROSTT): *.tns
32 // http://frostt.io/tensors/file-formats.html
33 //
34 // Two public APIs are supported:
35 //
36 // (I) Methods operating on MLIR buffers (memrefs) to interact with sparse
37 // tensors. These methods should be used exclusively by MLIR
38 // compiler-generated code.
39 //
40 // (II) Methods that accept C-style data structures to interact with sparse
41 // tensors. These methods can be used by any external runtime that wants
42 // to interact with MLIR compiler-generated code.
43 //
44 // In both cases (I) and (II), the SparseTensorStorage format is externally
45 // only visible as an opaque pointer.
46 //
47 //===----------------------------------------------------------------------===//
48 
50 
51 #ifdef MLIR_CRUNNERUTILS_DEFINE_FUNCTIONS
52 
57 
58 #include <cstring>
59 #include <numeric>
60 
61 using namespace mlir::sparse_tensor;
62 
63 //===----------------------------------------------------------------------===//
64 //
65 // Utilities for manipulating `StridedMemRefType`.
66 //
67 //===----------------------------------------------------------------------===//
68 
69 namespace {
70 
71 #define ASSERT_NO_STRIDE(MEMREF) \
72  do { \
73  assert((MEMREF) && "Memref is nullptr"); \
74  assert(((MEMREF)->strides[0] == 1) && "Memref has non-trivial stride"); \
75  } while (false)
76 
77 #define MEMREF_GET_USIZE(MEMREF) \
78  detail::checkOverflowCast<uint64_t>((MEMREF)->sizes[0])
79 
80 #define ASSERT_USIZE_EQ(MEMREF, SZ) \
81  assert(detail::safelyEQ(MEMREF_GET_USIZE(MEMREF), (SZ)) && \
82  "Memref size mismatch")
83 
84 #define MEMREF_GET_PAYLOAD(MEMREF) ((MEMREF)->data + (MEMREF)->offset)
85 
86 /// Initializes the memref with the provided size and data pointer. This
87 /// is designed for functions which want to "return" a memref that aliases
88 /// into memory owned by some other object (e.g., `SparseTensorStorage`),
89 /// without doing any actual copying. (The "return" is in scarequotes
90 /// because the `_mlir_ciface_` calling convention migrates any returned
91 /// memrefs into an out-parameter passed before all the other function
92 /// parameters.)
93 template <typename DataSizeT, typename T>
94 static inline void aliasIntoMemref(DataSizeT size, T *data,
96  ref.basePtr = ref.data = data;
97  ref.offset = 0;
98  using MemrefSizeT = std::remove_reference_t<decltype(ref.sizes[0])>;
99  ref.sizes[0] = detail::checkOverflowCast<MemrefSizeT>(size);
100  ref.strides[0] = 1;
101 }
102 
103 } // anonymous namespace
104 
105 extern "C" {
106 
107 //===----------------------------------------------------------------------===//
108 //
109 // Public functions which operate on MLIR buffers (memrefs) to interact
110 // with sparse tensors (which are only visible as opaque pointers externally).
111 //
112 //===----------------------------------------------------------------------===//
113 
114 #define CASE(p, c, v, P, C, V) \
115  if (posTp == (p) && crdTp == (c) && valTp == (v)) { \
116  switch (action) { \
117  case Action::kEmpty: { \
118  return SparseTensorStorage<P, C, V>::newEmpty( \
119  dimRank, dimSizes, lvlRank, lvlSizes, lvlTypes, dim2lvl, lvl2dim); \
120  } \
121  case Action::kFromReader: { \
122  assert(ptr && "Received nullptr for SparseTensorReader object"); \
123  SparseTensorReader &reader = *static_cast<SparseTensorReader *>(ptr); \
124  return static_cast<void *>(reader.readSparseTensor<P, C, V>( \
125  lvlRank, lvlSizes, lvlTypes, dim2lvl, lvl2dim)); \
126  } \
127  case Action::kPack: { \
128  assert(ptr && "Received nullptr for SparseTensorStorage object"); \
129  intptr_t *buffers = static_cast<intptr_t *>(ptr); \
130  return SparseTensorStorage<P, C, V>::newFromBuffers( \
131  dimRank, dimSizes, lvlRank, lvlSizes, lvlTypes, dim2lvl, lvl2dim, \
132  dimRank, buffers); \
133  } \
134  case Action::kSortCOOInPlace: { \
135  assert(ptr && "Received nullptr for SparseTensorStorage object"); \
136  auto &tensor = *static_cast<SparseTensorStorage<P, C, V> *>(ptr); \
137  tensor.sortInPlace(); \
138  return ptr; \
139  } \
140  } \
141  fprintf(stderr, "unknown action %d\n", static_cast<uint32_t>(action)); \
142  exit(1); \
143  }
144 
145 #define CASE_SECSAME(p, v, P, V) CASE(p, p, v, P, P, V)
146 
147 // Assume index_type is in fact uint64_t, so that _mlir_ciface_newSparseTensor
148 // can safely rewrite kIndex to kU64. We make this assertion to guarantee
149 // that this file cannot get out of sync with its header.
150 static_assert(std::is_same<index_type, uint64_t>::value,
151  "Expected index_type == uint64_t");
152 
153 // The Swiss-army-knife for sparse tensor creation.
154 void *_mlir_ciface_newSparseTensor( // NOLINT
157  StridedMemRefType<LevelType, 1> *lvlTypesRef,
160  OverheadType crdTp, PrimaryType valTp, Action action, void *ptr) {
161  ASSERT_NO_STRIDE(dimSizesRef);
162  ASSERT_NO_STRIDE(lvlSizesRef);
163  ASSERT_NO_STRIDE(lvlTypesRef);
164  ASSERT_NO_STRIDE(dim2lvlRef);
165  ASSERT_NO_STRIDE(lvl2dimRef);
166  const uint64_t dimRank = MEMREF_GET_USIZE(dimSizesRef);
167  const uint64_t lvlRank = MEMREF_GET_USIZE(lvlSizesRef);
168  ASSERT_USIZE_EQ(lvlTypesRef, lvlRank);
169  ASSERT_USIZE_EQ(dim2lvlRef, lvlRank);
170  ASSERT_USIZE_EQ(lvl2dimRef, dimRank);
171  const index_type *dimSizes = MEMREF_GET_PAYLOAD(dimSizesRef);
172  const index_type *lvlSizes = MEMREF_GET_PAYLOAD(lvlSizesRef);
173  const LevelType *lvlTypes = MEMREF_GET_PAYLOAD(lvlTypesRef);
174  const index_type *dim2lvl = MEMREF_GET_PAYLOAD(dim2lvlRef);
175  const index_type *lvl2dim = MEMREF_GET_PAYLOAD(lvl2dimRef);
176 
177  // Rewrite kIndex to kU64, to avoid introducing a bunch of new cases.
178  // This is safe because of the static_assert above.
179  if (posTp == OverheadType::kIndex)
180  posTp = OverheadType::kU64;
181  if (crdTp == OverheadType::kIndex)
182  crdTp = OverheadType::kU64;
183 
184  // Double matrices with all combinations of overhead storage.
186  uint64_t, double);
188  uint32_t, double);
190  uint16_t, double);
192  uint8_t, double);
194  uint64_t, double);
196  uint32_t, double);
198  uint16_t, double);
200  uint8_t, double);
202  uint64_t, double);
204  uint32_t, double);
206  uint16_t, double);
208  uint8_t, double);
210  uint64_t, double);
212  uint32_t, double);
214  uint16_t, double);
216  uint8_t, double);
217 
218  // Float matrices with all combinations of overhead storage.
220  uint64_t, float);
222  uint32_t, float);
224  uint16_t, float);
226  uint8_t, float);
228  uint64_t, float);
230  uint32_t, float);
232  uint16_t, float);
234  uint8_t, float);
236  uint64_t, float);
238  uint32_t, float);
240  uint16_t, float);
242  uint8_t, float);
244  uint64_t, float);
246  uint32_t, float);
248  uint16_t, float);
250  uint8_t, float);
251 
252  // Two-byte floats with both overheads of the same type.
253  CASE_SECSAME(OverheadType::kU64, PrimaryType::kF16, uint64_t, f16);
254  CASE_SECSAME(OverheadType::kU64, PrimaryType::kBF16, uint64_t, bf16);
255  CASE_SECSAME(OverheadType::kU32, PrimaryType::kF16, uint32_t, f16);
256  CASE_SECSAME(OverheadType::kU32, PrimaryType::kBF16, uint32_t, bf16);
257  CASE_SECSAME(OverheadType::kU16, PrimaryType::kF16, uint16_t, f16);
258  CASE_SECSAME(OverheadType::kU16, PrimaryType::kBF16, uint16_t, bf16);
259  CASE_SECSAME(OverheadType::kU8, PrimaryType::kF16, uint8_t, f16);
260  CASE_SECSAME(OverheadType::kU8, PrimaryType::kBF16, uint8_t, bf16);
261 
262  // Integral matrices with both overheads of the same type.
263  CASE_SECSAME(OverheadType::kU64, PrimaryType::kI64, uint64_t, int64_t);
264  CASE_SECSAME(OverheadType::kU64, PrimaryType::kI32, uint64_t, int32_t);
265  CASE_SECSAME(OverheadType::kU64, PrimaryType::kI16, uint64_t, int16_t);
266  CASE_SECSAME(OverheadType::kU64, PrimaryType::kI8, uint64_t, int8_t);
267  CASE_SECSAME(OverheadType::kU32, PrimaryType::kI64, uint32_t, int64_t);
268  CASE_SECSAME(OverheadType::kU32, PrimaryType::kI32, uint32_t, int32_t);
269  CASE_SECSAME(OverheadType::kU32, PrimaryType::kI16, uint32_t, int16_t);
270  CASE_SECSAME(OverheadType::kU32, PrimaryType::kI8, uint32_t, int8_t);
271  CASE_SECSAME(OverheadType::kU16, PrimaryType::kI64, uint16_t, int64_t);
272  CASE_SECSAME(OverheadType::kU16, PrimaryType::kI32, uint16_t, int32_t);
273  CASE_SECSAME(OverheadType::kU16, PrimaryType::kI16, uint16_t, int16_t);
274  CASE_SECSAME(OverheadType::kU16, PrimaryType::kI8, uint16_t, int8_t);
275  CASE_SECSAME(OverheadType::kU8, PrimaryType::kI64, uint8_t, int64_t);
276  CASE_SECSAME(OverheadType::kU8, PrimaryType::kI32, uint8_t, int32_t);
277  CASE_SECSAME(OverheadType::kU8, PrimaryType::kI16, uint8_t, int16_t);
278  CASE_SECSAME(OverheadType::kU8, PrimaryType::kI8, uint8_t, int8_t);
279 
280  // Complex matrices with wide overhead.
281  CASE_SECSAME(OverheadType::kU64, PrimaryType::kC64, uint64_t, complex64);
282  CASE_SECSAME(OverheadType::kU64, PrimaryType::kC32, uint64_t, complex32);
283 
284  // Unsupported case (add above if needed).
285  fprintf(stderr, "unsupported combination of types: <P=%d, C=%d, V=%d>\n",
286  static_cast<int>(posTp), static_cast<int>(crdTp),
287  static_cast<int>(valTp));
288  exit(1);
289 }
290 #undef CASE
291 #undef CASE_SECSAME
292 
293 #define IMPL_SPARSEVALUES(VNAME, V) \
294  void _mlir_ciface_sparseValues##VNAME(StridedMemRefType<V, 1> *ref, \
295  void *tensor) { \
296  assert(ref &&tensor); \
297  std::vector<V> *v; \
298  static_cast<SparseTensorStorageBase *>(tensor)->getValues(&v); \
299  assert(v); \
300  aliasIntoMemref(v->size(), v->data(), *ref); \
301  }
302 MLIR_SPARSETENSOR_FOREVERY_V(IMPL_SPARSEVALUES)
303 #undef IMPL_SPARSEVALUES
304 
305 #define IMPL_GETOVERHEAD(NAME, TYPE, LIB) \
306  void _mlir_ciface_##NAME(StridedMemRefType<TYPE, 1> *ref, void *tensor, \
307  index_type lvl) { \
308  assert(ref &&tensor); \
309  std::vector<TYPE> *v; \
310  static_cast<SparseTensorStorageBase *>(tensor)->LIB(&v, lvl); \
311  assert(v); \
312  aliasIntoMemref(v->size(), v->data(), *ref); \
313  }
314 
315 #define IMPL_SPARSEPOSITIONS(PNAME, P) \
316  IMPL_GETOVERHEAD(sparsePositions##PNAME, P, getPositions)
317 MLIR_SPARSETENSOR_FOREVERY_O(IMPL_SPARSEPOSITIONS)
318 #undef IMPL_SPARSEPOSITIONS
319 
320 #define IMPL_SPARSECOORDINATES(CNAME, C) \
321  IMPL_GETOVERHEAD(sparseCoordinates##CNAME, C, getCoordinates)
322 MLIR_SPARSETENSOR_FOREVERY_O(IMPL_SPARSECOORDINATES)
323 #undef IMPL_SPARSECOORDINATES
324 
325 #define IMPL_SPARSECOORDINATESBUFFER(CNAME, C) \
326  IMPL_GETOVERHEAD(sparseCoordinatesBuffer##CNAME, C, getCoordinatesBuffer)
327 MLIR_SPARSETENSOR_FOREVERY_O(IMPL_SPARSECOORDINATESBUFFER)
328 #undef IMPL_SPARSECOORDINATESBUFFER
329 
330 #undef IMPL_GETOVERHEAD
331 
332 #define IMPL_LEXINSERT(VNAME, V) \
333  void _mlir_ciface_lexInsert##VNAME( \
334  void *t, StridedMemRefType<index_type, 1> *lvlCoordsRef, \
335  StridedMemRefType<V, 0> *vref) { \
336  assert(t &&vref); \
337  auto &tensor = *static_cast<SparseTensorStorageBase *>(t); \
338  ASSERT_NO_STRIDE(lvlCoordsRef); \
339  index_type *lvlCoords = MEMREF_GET_PAYLOAD(lvlCoordsRef); \
340  assert(lvlCoords); \
341  V *value = MEMREF_GET_PAYLOAD(vref); \
342  tensor.lexInsert(lvlCoords, *value); \
343  }
345 #undef IMPL_LEXINSERT
346 
347 #define IMPL_EXPINSERT(VNAME, V) \
348  void _mlir_ciface_expInsert##VNAME( \
349  void *t, StridedMemRefType<index_type, 1> *lvlCoordsRef, \
350  StridedMemRefType<V, 1> *vref, StridedMemRefType<bool, 1> *fref, \
351  StridedMemRefType<index_type, 1> *aref, index_type count) { \
352  assert(t); \
353  auto &tensor = *static_cast<SparseTensorStorageBase *>(t); \
354  ASSERT_NO_STRIDE(lvlCoordsRef); \
355  ASSERT_NO_STRIDE(vref); \
356  ASSERT_NO_STRIDE(fref); \
357  ASSERT_NO_STRIDE(aref); \
358  ASSERT_USIZE_EQ(vref, MEMREF_GET_USIZE(fref)); \
359  index_type *lvlCoords = MEMREF_GET_PAYLOAD(lvlCoordsRef); \
360  V *values = MEMREF_GET_PAYLOAD(vref); \
361  bool *filled = MEMREF_GET_PAYLOAD(fref); \
362  index_type *added = MEMREF_GET_PAYLOAD(aref); \
363  uint64_t expsz = vref->sizes[0]; \
364  tensor.expInsert(lvlCoords, values, filled, added, count, expsz); \
365  }
367 #undef IMPL_EXPINSERT
368 
370  char *filename, StridedMemRefType<index_type, 1> *dimShapeRef,
371  PrimaryType valTp) {
372  ASSERT_NO_STRIDE(dimShapeRef);
373  const uint64_t dimRank = MEMREF_GET_USIZE(dimShapeRef);
374  const index_type *dimShape = MEMREF_GET_PAYLOAD(dimShapeRef);
375  auto *reader = SparseTensorReader::create(filename, dimRank, dimShape, valTp);
376  return static_cast<void *>(reader);
377 }
378 
380  StridedMemRefType<index_type, 1> *out, void *p) {
381  assert(out && p);
382  SparseTensorReader &reader = *static_cast<SparseTensorReader *>(p);
383  auto *dimSizes = const_cast<uint64_t *>(reader.getDimSizes());
384  aliasIntoMemref(reader.getRank(), dimSizes, *out);
385 }
386 
387 #define IMPL_GETNEXT(VNAME, V, CNAME, C) \
388  bool _mlir_ciface_getSparseTensorReaderReadToBuffers##CNAME##VNAME( \
389  void *p, StridedMemRefType<index_type, 1> *dim2lvlRef, \
390  StridedMemRefType<index_type, 1> *lvl2dimRef, \
391  StridedMemRefType<C, 1> *cref, StridedMemRefType<V, 1> *vref) { \
392  assert(p); \
393  auto &reader = *static_cast<SparseTensorReader *>(p); \
394  ASSERT_NO_STRIDE(dim2lvlRef); \
395  ASSERT_NO_STRIDE(lvl2dimRef); \
396  ASSERT_NO_STRIDE(cref); \
397  ASSERT_NO_STRIDE(vref); \
398  const uint64_t dimRank = reader.getRank(); \
399  const uint64_t lvlRank = MEMREF_GET_USIZE(dim2lvlRef); \
400  const uint64_t cSize = MEMREF_GET_USIZE(cref); \
401  const uint64_t vSize = MEMREF_GET_USIZE(vref); \
402  ASSERT_USIZE_EQ(lvl2dimRef, dimRank); \
403  assert(cSize >= lvlRank * reader.getNSE()); \
404  assert(vSize >= reader.getNSE()); \
405  (void)dimRank; \
406  (void)cSize; \
407  (void)vSize; \
408  index_type *dim2lvl = MEMREF_GET_PAYLOAD(dim2lvlRef); \
409  index_type *lvl2dim = MEMREF_GET_PAYLOAD(lvl2dimRef); \
410  C *lvlCoordinates = MEMREF_GET_PAYLOAD(cref); \
411  V *values = MEMREF_GET_PAYLOAD(vref); \
412  return reader.readToBuffers<C, V>(lvlRank, dim2lvl, lvl2dim, \
413  lvlCoordinates, values); \
414  }
415 MLIR_SPARSETENSOR_FOREVERY_V_O(IMPL_GETNEXT)
416 #undef IMPL_GETNEXT
417 
419  void *p, index_type dimRank, index_type nse,
420  StridedMemRefType<index_type, 1> *dimSizesRef) {
421  assert(p);
422  ASSERT_NO_STRIDE(dimSizesRef);
423  assert(dimRank != 0);
424  index_type *dimSizes = MEMREF_GET_PAYLOAD(dimSizesRef);
425  std::ostream &file = *static_cast<std::ostream *>(p);
426  file << dimRank << " " << nse << '\n';
427  for (index_type d = 0; d < dimRank - 1; d++)
428  file << dimSizes[d] << " ";
429  file << dimSizes[dimRank - 1] << '\n';
430 }
431 
432 #define IMPL_OUTNEXT(VNAME, V) \
433  void _mlir_ciface_outSparseTensorWriterNext##VNAME( \
434  void *p, index_type dimRank, \
435  StridedMemRefType<index_type, 1> *dimCoordsRef, \
436  StridedMemRefType<V, 0> *vref) { \
437  assert(p &&vref); \
438  ASSERT_NO_STRIDE(dimCoordsRef); \
439  const index_type *dimCoords = MEMREF_GET_PAYLOAD(dimCoordsRef); \
440  std::ostream &file = *static_cast<std::ostream *>(p); \
441  for (index_type d = 0; d < dimRank; d++) \
442  file << (dimCoords[d] + 1) << " "; \
443  V *value = MEMREF_GET_PAYLOAD(vref); \
444  file << *value << '\n'; \
445  }
446 MLIR_SPARSETENSOR_FOREVERY_V(IMPL_OUTNEXT)
447 #undef IMPL_OUTNEXT
448 
449 //===----------------------------------------------------------------------===//
450 //
451 // Public functions which accept only C-style data structures to interact
452 // with sparse tensors (which are only visible as opaque pointers externally).
453 //
454 //===----------------------------------------------------------------------===//
455 
456 index_type sparseLvlSize(void *tensor, index_type l) {
457  return static_cast<SparseTensorStorageBase *>(tensor)->getLvlSize(l);
458 }
459 
460 index_type sparseDimSize(void *tensor, index_type d) {
461  return static_cast<SparseTensorStorageBase *>(tensor)->getDimSize(d);
462 }
463 
464 void endLexInsert(void *tensor) {
465  return static_cast<SparseTensorStorageBase *>(tensor)->endLexInsert();
466 }
467 
468 void delSparseTensor(void *tensor) {
469  delete static_cast<SparseTensorStorageBase *>(tensor);
470 }
471 
472 char *getTensorFilename(index_type id) {
473  constexpr size_t bufSize = 80;
474  char var[bufSize];
475  snprintf(var, bufSize, "TENSOR%" PRIu64, id);
476  char *env = getenv(var);
477  if (!env) {
478  fprintf(stderr, "Environment variable %s is not set\n", var);
479  exit(1);
480  }
481  return env;
482 }
483 
485  return static_cast<SparseTensorReader *>(p)->getNSE();
486 }
487 
488 void delSparseTensorReader(void *p) {
489  delete static_cast<SparseTensorReader *>(p);
490 }
491 
492 void *createSparseTensorWriter(char *filename) {
493  std::ostream *file =
494  (filename[0] == 0) ? &std::cout : new std::ofstream(filename);
495  *file << "# extended FROSTT format\n";
496  return static_cast<void *>(file);
497 }
498 
499 void delSparseTensorWriter(void *p) {
500  std::ostream *file = static_cast<std::ostream *>(p);
501  file->flush();
502  assert(file->good());
503  if (file != &std::cout)
504  delete file;
505 }
506 
507 } // extern "C"
508 
509 #undef MEMREF_GET_PAYLOAD
510 #undef ASSERT_USIZE_EQ
511 #undef MEMREF_GET_USIZE
512 #undef ASSERT_NO_STRIDE
513 
514 #endif // MLIR_CRUNNERUTILS_DEFINE_FUNCTIONS
#define CASE(ONAME, O)
#define MLIR_SPARSETENSOR_FOREVERY_O(DO)
Definition: Enums.h:71
#define MLIR_SPARSETENSOR_FOREVERY_V_O(DO)
Definition: Enums.h:122
#define MLIR_SPARSETENSOR_FOREVERY_V(DO)
Definition: Enums.h:96
MLIR_CRUNNERUTILS_EXPORT index_type sparseDimSize(void *tensor, index_type d)
Tensor-storage method to get the size of the given dimension.
MLIR_CRUNNERUTILS_EXPORT index_type sparseLvlSize(void *tensor, index_type l)
Tensor-storage method to get the size of the given level.
MLIR_CRUNNERUTILS_EXPORT void delSparseTensor(void *tensor)
Releases the memory for the tensor-storage object.
MLIR_CRUNNERUTILS_EXPORT index_type getSparseTensorReaderNSE(void *p)
Returns the number of stored elements for the sparse tensor being read.
MLIR_CRUNNERUTILS_EXPORT void * _mlir_ciface_createCheckedSparseTensorReader(char *filename, StridedMemRefType< index_type, 1 > *dimShapeRef, PrimaryType valTp)
Constructs a new SparseTensorReader object, opens the file, reads the header, and validates that the ...
MLIR_CRUNNERUTILS_EXPORT void _mlir_ciface_outSparseTensorWriterMetaData(void *p, index_type dimRank, index_type nse, StridedMemRefType< index_type, 1 > *dimSizesRef)
Outputs the sparse tensor dim-rank, nse, and dim-shape.
MLIR_CRUNNERUTILS_EXPORT void delSparseTensorReader(void *p)
Releases the SparseTensorReader and closes the associated file.
MLIR_CRUNNERUTILS_EXPORT void _mlir_ciface_getSparseTensorReaderDimSizes(StridedMemRefType< index_type, 1 > *out, void *p)
SparseTensorReader method to obtain direct access to the dimension-sizes array.
MLIR_CRUNNERUTILS_EXPORT void * _mlir_ciface_newSparseTensor(StridedMemRefType< index_type, 1 > *dimSizesRef, StridedMemRefType< index_type, 1 > *lvlSizesRef, StridedMemRefType< LevelType, 1 > *lvlTypesRef, StridedMemRefType< index_type, 1 > *dim2lvlRef, StridedMemRefType< index_type, 1 > *lvl2dimRef, OverheadType posTp, OverheadType crdTp, PrimaryType valTp, Action action, void *ptr)
This is the "swiss army knife" method for materializing sparse tensors into the computation.
MLIR_CRUNNERUTILS_EXPORT char * getTensorFilename(index_type id)
Helper function to read a sparse tensor filename from the environment, defined with the naming conven...
MLIR_CRUNNERUTILS_EXPORT void endLexInsert(void *tensor)
Tensor-storage method to finalize lexicographic insertions.
MLIR_CRUNNERUTILS_EXPORT void delSparseTensorWriter(void *p)
Finalizes the outputing of a sparse tensor to a file and releases the SparseTensorWriter.
MLIR_CRUNNERUTILS_EXPORT void * createSparseTensorWriter(char *filename)
Creates a SparseTensorWriter for outputting a sparse tensor to a file with the given file name.
#define IMPL_EXPINSERT(VNAME, V)
Definition: Storage.cpp:93
#define IMPL_LEXINSERT(VNAME, V)
Definition: Storage.cpp:86
This class abstracts over the information stored in file headers, as well as providing the buffers an...
Definition: File.h:87
const uint64_t * getDimSizes() const
Gets the dimension-sizes array.
Definition: File.h:183
static SparseTensorReader * create(const char *filename, uint64_t dimRank, const uint64_t *dimShape, PrimaryType valTp)
Factory method to allocate a new reader, open the file, read the header, and validate that the actual...
Definition: File.h:112
uint64_t getRank() const
Gets the dimension-rank of the tensor.
Definition: File.h:168
Abstract base class for SparseTensorStorage<P,C,V>.
Definition: Storage.h:63
std::complex< double > complex64
Definition: Enums.h:78
OverheadType
Encoding of overhead types (both position overhead and coordinate overhead), for "overloading" @newSp...
Definition: Enums.h:51
Action
The actions performed by @newSparseTensor.
Definition: Enums.h:146
PrimaryType
Encoding of the elemental type, for "overloading" @newSparseTensor.
Definition: Enums.h:82
std::complex< float > complex32
Definition: Enums.h:79
uint64_t index_type
This type is used in the public API at all places where MLIR expects values with the built-in type "i...
Definition: Enums.h:47
StridedMemRef descriptor type specialized for rank 1.
Definition: CRunnerUtils.h:169
StridedMemRef descriptor type with static rank.
Definition: CRunnerUtils.h:131
This enum defines all the sparse representations supportable by the SparseTensor dialect.
Definition: Enums.h:238