
PolyhedronH  mlir::presburger::detail::defineHRep (int numVars, int numSymbols=0) 

MPInt  mlir::presburger::detail::getIndex (const ConeV &cone) 
 Get the index of a cone, i.e., the volume of the parallelepiped spanned by its generators, which is equal to the number of integer points in its fundamental parallelepiped. More...


ConeV  mlir::presburger::detail::getDual (ConeH cone) 
 Given a cone in Hrepresentation, return its dual. More...


ConeH  mlir::presburger::detail::getDual (ConeV cone) 
 Given a cone in Vrepresentation, return its dual. More...


GeneratingFunction  mlir::presburger::detail::computeUnimodularConeGeneratingFunction (ParamPoint vertex, int sign, const ConeH &cone) 
 Compute the generating function for a unimodular cone. More...


std::optional< ParamPoint >  mlir::presburger::detail::solveParametricEquations (FracMatrix equations) 
 Find the solution of a set of equations that express affine constraints between a set of variables and a set of parameters. More...


std::vector< std::pair< PresburgerSet, GeneratingFunction > >  mlir::presburger::detail::computeChamberDecomposition (unsigned numSymbols, ArrayRef< std::pair< PresburgerSet, GeneratingFunction >> regionsAndGeneratingFunctions) 
 Given a list of possibly intersecting regions (PresburgerSet) and the generating functions active in each region, produce a pairwise disjoint list of regions (chambers) and identify the generating function of the polytope in each chamber. More...


std::vector< std::pair< PresburgerSet, GeneratingFunction > >  mlir::presburger::detail::computePolytopeGeneratingFunction (const PolyhedronH &poly) 
 Compute the generating function corresponding to a polytope. More...


Point  mlir::presburger::detail::getNonOrthogonalVector (ArrayRef< Point > vectors) 
 Find a vector that is not orthogonal to any of the given vectors, i.e., has nonzero dot product with those of the given vectors that are not null. More...


QuasiPolynomial  mlir::presburger::detail::getCoefficientInRationalFunction (unsigned power, ArrayRef< QuasiPolynomial > num, ArrayRef< Fraction > den) 
 Find the coefficient of a given power of s in a rational function given by P(s)/Q(s), where P is a polynomial, in which the coefficients are QuasiPolynomials over d parameters (distinct from s), and and Q is a polynomial with Fraction coefficients. More...


QuasiPolynomial  mlir::presburger::detail::computeNumTerms (const GeneratingFunction &gf) 
 Find the number of terms in a generating function, as a quasipolynomial in the parameter space of the input function. More...

