MLIR  20.0.0git
Matrix.h
Go to the documentation of this file.
1 //===- Matrix.h - MLIR Matrix Class -----------------------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This is a simple 2D matrix class that supports reading, writing, resizing,
10 // swapping rows, and swapping columns. It can hold integers (DynamicAPInt) or
11 // rational numbers (Fraction).
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #ifndef MLIR_ANALYSIS_PRESBURGER_MATRIX_H
16 #define MLIR_ANALYSIS_PRESBURGER_MATRIX_H
17 
19 #include "llvm/ADT/ArrayRef.h"
20 #include "llvm/Support/raw_ostream.h"
21 #include <cassert>
22 
23 namespace mlir {
24 namespace presburger {
25 using llvm::ArrayRef;
27 using llvm::raw_ostream;
28 using llvm::SmallVector;
29 
30 /// This is a class to represent a resizable matrix.
31 ///
32 /// More columns and rows can be reserved than are currently used. The data is
33 /// stored as a single 1D array, viewed as a 2D matrix with nRows rows and
34 /// nReservedColumns columns, stored in row major form. Thus the element at
35 /// (i, j) is stored at data[i*nReservedColumns + j]. The reserved but unused
36 /// columns always have all zero values. The reserved rows are just reserved
37 /// space in the underlying SmallVector's capacity.
38 /// This class only works for the types DynamicAPInt and Fraction, since the
39 /// method implementations are in the Matrix.cpp file. Only these two types have
40 /// been explicitly instantiated there.
41 template <typename T>
42 class Matrix {
43  static_assert(std::is_same_v<T, DynamicAPInt> || std::is_same_v<T, Fraction>,
44  "T must be DynamicAPInt or Fraction.");
45 
46 public:
47  Matrix() = delete;
48 
49  /// Construct a matrix with the specified number of rows and columns.
50  /// The number of reserved rows and columns will be at least the number
51  /// specified, and will always be sufficient to accomodate the number of rows
52  /// and columns specified.
53  ///
54  /// Initially, the entries are initialized to ero.
55  Matrix(unsigned rows, unsigned columns, unsigned reservedRows = 0,
56  unsigned reservedColumns = 0);
57 
58  /// Return the identity matrix of the specified dimension.
59  static Matrix identity(unsigned dimension);
60 
61  /// Access the element at the specified row and column.
62  T &at(unsigned row, unsigned column) {
63  assert(row < nRows && "Row outside of range");
64  assert(column < nColumns && "Column outside of range");
65  return data[row * nReservedColumns + column];
66  }
67 
68  T at(unsigned row, unsigned column) const {
69  assert(row < nRows && "Row outside of range");
70  assert(column < nColumns && "Column outside of range");
71  return data[row * nReservedColumns + column];
72  }
73 
74  T &operator()(unsigned row, unsigned column) { return at(row, column); }
75 
76  T operator()(unsigned row, unsigned column) const { return at(row, column); }
77 
78  bool operator==(const Matrix<T> &m) const;
79 
80  /// Swap the given columns.
81  void swapColumns(unsigned column, unsigned otherColumn);
82 
83  /// Swap the given rows.
84  void swapRows(unsigned row, unsigned otherRow);
85 
86  unsigned getNumRows() const { return nRows; }
87 
88  unsigned getNumColumns() const { return nColumns; }
89 
90  /// Return the maximum number of rows/columns that can be added without
91  /// incurring a reallocation.
92  unsigned getNumReservedRows() const;
93  unsigned getNumReservedColumns() const { return nReservedColumns; }
94 
95  /// Reserve enough space to resize to the specified number of rows without
96  /// reallocations.
97  void reserveRows(unsigned rows);
98 
99  /// Get a [Mutable]ArrayRef corresponding to the specified row.
100  MutableArrayRef<T> getRow(unsigned row);
101  ArrayRef<T> getRow(unsigned row) const;
102 
103  /// Set the specified row to `elems`.
104  void setRow(unsigned row, ArrayRef<T> elems);
105 
106  /// Insert columns having positions pos, pos + 1, ... pos + count - 1.
107  /// Columns that were at positions 0 to pos - 1 will stay where they are;
108  /// columns that were at positions pos to nColumns - 1 will be pushed to the
109  /// right. pos should be at most nColumns.
110  void insertColumns(unsigned pos, unsigned count);
111  void insertColumn(unsigned pos);
112 
113  /// Insert rows having positions pos, pos + 1, ... pos + count - 1.
114  /// Rows that were at positions 0 to pos - 1 will stay where they are;
115  /// rows that were at positions pos to nColumns - 1 will be pushed to the
116  /// right. pos should be at most nRows.
117  void insertRows(unsigned pos, unsigned count);
118  void insertRow(unsigned pos);
119 
120  /// Remove the columns having positions pos, pos + 1, ... pos + count - 1.
121  /// Rows that were at positions 0 to pos - 1 will stay where they are;
122  /// columns that were at positions pos + count - 1 or later will be pushed to
123  /// the right. The columns to be deleted must be valid rows: pos + count - 1
124  /// must be at most nColumns - 1.
125  void removeColumns(unsigned pos, unsigned count);
126  void removeColumn(unsigned pos);
127 
128  /// Remove the rows having positions pos, pos + 1, ... pos + count - 1.
129  /// Rows that were at positions 0 to pos - 1 will stay where they are;
130  /// rows that were at positions pos + count - 1 or later will be pushed to the
131  /// right. The rows to be deleted must be valid rows: pos + count - 1 must be
132  /// at most nRows - 1.
133  void removeRows(unsigned pos, unsigned count);
134  void removeRow(unsigned pos);
135 
136  void copyRow(unsigned sourceRow, unsigned targetRow);
137 
138  void fillRow(unsigned row, const T &value);
139  void fillRow(unsigned row, int64_t value) { fillRow(row, T(value)); }
140 
141  /// Add `scale` multiples of the source row to the target row.
142  void addToRow(unsigned sourceRow, unsigned targetRow, const T &scale);
143  void addToRow(unsigned sourceRow, unsigned targetRow, int64_t scale) {
144  addToRow(sourceRow, targetRow, T(scale));
145  }
146  /// Add `scale` multiples of the rowVec row to the specified row.
147  void addToRow(unsigned row, ArrayRef<T> rowVec, const T &scale);
148 
149  /// Multiply the specified row by a factor of `scale`.
150  void scaleRow(unsigned row, const T &scale);
151 
152  /// Add `scale` multiples of the source column to the target column.
153  void addToColumn(unsigned sourceColumn, unsigned targetColumn,
154  const T &scale);
155  void addToColumn(unsigned sourceColumn, unsigned targetColumn,
156  int64_t scale) {
157  addToColumn(sourceColumn, targetColumn, T(scale));
158  }
159 
160  /// Negate the specified column.
161  void negateColumn(unsigned column);
162 
163  /// Negate the specified row.
164  void negateRow(unsigned row);
165 
166  /// Negate the entire matrix.
167  void negateMatrix();
168 
169  /// The given vector is interpreted as a row vector v. Post-multiply v with
170  /// this matrix, say M, and return vM.
172 
173  /// The given vector is interpreted as a column vector v. Pre-multiply v with
174  /// this matrix, say M, and return Mv.
176 
177  /// Resize the matrix to the specified dimensions. If a dimension is smaller,
178  /// the values are truncated; if it is bigger, the new values are initialized
179  /// to zero.
180  ///
181  /// Due to the representation of the matrix, resizing vertically (adding rows)
182  /// is less expensive than increasing the number of columns beyond
183  /// nReservedColumns.
184  void resize(unsigned newNRows, unsigned newNColumns);
185  void resizeHorizontally(unsigned newNColumns);
186  void resizeVertically(unsigned newNRows);
187 
188  /// Add an extra row at the bottom of the matrix and return its position.
189  unsigned appendExtraRow();
190  /// Same as above, but copy the given elements into the row. The length of
191  /// `elems` must be equal to the number of columns.
192  unsigned appendExtraRow(ArrayRef<T> elems);
193 
194  // Transpose the matrix without modifying it.
195  Matrix<T> transpose() const;
196 
197  // Copy the cells in the intersection of
198  // the rows between `fromRows` and `toRows` and
199  // the columns between `fromColumns` and `toColumns`, both inclusive.
200  Matrix<T> getSubMatrix(unsigned fromRow, unsigned toRow, unsigned fromColumn,
201  unsigned toColumn) const;
202 
203  /// Split the rows of a matrix into two matrices according to which bits are
204  /// 1 and which are 0 in a given bitset.
205  ///
206  /// The first matrix returned has the rows corresponding to 1 and the second
207  /// corresponding to 2.
208  std::pair<Matrix<T>, Matrix<T>> splitByBitset(ArrayRef<int> indicator);
209 
210  /// Print the matrix.
211  void print(raw_ostream &os) const;
212  void dump() const;
213 
214  /// Return whether the Matrix is in a consistent state with all its
215  /// invariants satisfied.
216  bool hasConsistentState() const;
217 
218  /// Move the columns in the source range [srcPos, srcPos + num) to the
219  /// specified destination [dstPos, dstPos + num), while moving the columns
220  /// adjacent to the source range to the left/right of the shifted columns.
221  ///
222  /// When moving the source columns right (i.e. dstPos > srcPos), columns that
223  /// were at positions [0, srcPos) and [dstPos + num, nCols) will stay where
224  /// they are; columns that were at positions [srcPos, srcPos + num) will be
225  /// moved to [dstPos, dstPos + num); and columns that were at positions
226  /// [srcPos + num, dstPos + num) will be moved to [srcPos, dstPos).
227  /// Equivalently, the columns [srcPos + num, dstPos + num) are interchanged
228  /// with [srcPos, srcPos + num).
229  /// For example, if m = |0 1 2 3 4 5| then:
230  /// m.moveColumns(1, 3, 2) will result in m = |0 4 1 2 3 5|; or
231  /// m.moveColumns(1, 2, 4) will result in m = |0 3 4 5 1 2|.
232  ///
233  /// The left shift operation (i.e. dstPos < srcPos) works in a similar way.
234  void moveColumns(unsigned srcPos, unsigned num, unsigned dstPos);
235 
236 protected:
237  /// The current number of rows, columns, and reserved columns. The underlying
238  /// data vector is viewed as an nRows x nReservedColumns matrix, of which the
239  /// first nColumns columns are currently in use, and the remaining are
240  /// reserved columns filled with zeros.
242 
243  /// Stores the data. data.size() is equal to nRows * nReservedColumns.
244  /// data.capacity() / nReservedColumns is the number of reserved rows.
246 };
247 
248 extern template class Matrix<DynamicAPInt>;
249 extern template class Matrix<Fraction>;
250 
251 // An inherited class for integer matrices, with no new data attributes.
252 // This is only used for the matrix-related methods which apply only
253 // to integers (hermite normal form computation and row normalisation).
255 public:
256  IntMatrix(unsigned rows, unsigned columns, unsigned reservedRows = 0,
257  unsigned reservedColumns = 0)
258  : Matrix<DynamicAPInt>(rows, columns, reservedRows, reservedColumns) {}
259 
260  IntMatrix(Matrix<DynamicAPInt> m) : Matrix<DynamicAPInt>(std::move(m)) {}
261 
262  /// Return the identity matrix of the specified dimension.
263  static IntMatrix identity(unsigned dimension);
264 
265  /// Given the current matrix M, returns the matrices H, U such that H is the
266  /// column hermite normal form of M, i.e. H = M * U, where U is unimodular and
267  /// the matrix H has the following restrictions:
268  /// - H is lower triangular.
269  /// - The leading coefficient (the first non-zero entry from the top, called
270  /// the pivot) of a non-zero column is always strictly below of the leading
271  /// coefficient of the column before it; moreover, it is positive.
272  /// - The elements to the right of the pivots are zero and the elements to
273  /// the left of the pivots are nonnegative and strictly smaller than the
274  /// pivot.
275  std::pair<IntMatrix, IntMatrix> computeHermiteNormalForm() const;
276 
277  /// Divide the first `nCols` of the specified row by their GCD.
278  /// Returns the GCD of the first `nCols` of the specified row.
279  DynamicAPInt normalizeRow(unsigned row, unsigned nCols);
280  /// Divide the columns of the specified row by their GCD.
281  /// Returns the GCD of the columns of the specified row.
282  DynamicAPInt normalizeRow(unsigned row);
283 
284  // Compute the determinant of the matrix (cubic time).
285  // Stores the integer inverse of the matrix in the pointer
286  // passed (if any). The pointer is unchanged if the inverse
287  // does not exist, which happens iff det = 0.
288  // For a matrix M, the integer inverse is the matrix M' such that
289  // M x M' = M'  M = det(M) x I.
290  // Assert-fails if the matrix is not square.
291  DynamicAPInt determinant(IntMatrix *inverse = nullptr) const;
292 };
293 
294 // An inherited class for rational matrices, with no new data attributes.
295 // This class is for functionality that only applies to matrices of fractions.
296 class FracMatrix : public Matrix<Fraction> {
297 public:
298  FracMatrix(unsigned rows, unsigned columns, unsigned reservedRows = 0,
299  unsigned reservedColumns = 0)
300  : Matrix<Fraction>(rows, columns, reservedRows, reservedColumns){};
301 
303 
304  explicit FracMatrix(IntMatrix m);
305 
306  /// Return the identity matrix of the specified dimension.
307  static FracMatrix identity(unsigned dimension);
308 
309  // Compute the determinant of the matrix (cubic time).
310  // Stores the inverse of the matrix in the pointer
311  // passed (if any). The pointer is unchanged if the inverse
312  // does not exist, which happens iff det = 0.
313  // Assert-fails if the matrix is not square.
314  Fraction determinant(FracMatrix *inverse = nullptr) const;
315 
316  // Computes the Gram-Schmidt orthogonalisation
317  // of the rows of matrix (cubic time).
318  // The rows of the matrix must be linearly independent.
319  FracMatrix gramSchmidt() const;
320 
321  // Run LLL basis reduction on the matrix, modifying it in-place.
322  // The parameter is what [the original
323  // paper](https://www.cs.cmu.edu/~avrim/451f11/lectures/lect1129_LLL.pdf)
324  // calls `y`, usually 3/4.
325  void LLL(Fraction delta);
326 
327  // Multiply each row of the matrix by the LCM of the denominators, thereby
328  // converting it to an integer matrix.
329  IntMatrix normalizeRows() const;
330 };
331 
332 } // namespace presburger
333 } // namespace mlir
334 
335 #endif // MLIR_ANALYSIS_PRESBURGER_MATRIX_H
int64_t rows
FracMatrix(unsigned rows, unsigned columns, unsigned reservedRows=0, unsigned reservedColumns=0)
Definition: Matrix.h:298
FracMatrix(Matrix< Fraction > m)
Definition: Matrix.h:302
IntMatrix(Matrix< DynamicAPInt > m)
Definition: Matrix.h:260
IntMatrix(unsigned rows, unsigned columns, unsigned reservedRows=0, unsigned reservedColumns=0)
Definition: Matrix.h:256
This is a class to represent a resizable matrix.
Definition: Matrix.h:42
void moveColumns(unsigned srcPos, unsigned num, unsigned dstPos)
Move the columns in the source range [srcPos, srcPos + num) to the specified destination [dstPos,...
Definition: Matrix.cpp:266
bool hasConsistentState() const
Return whether the Matrix is in a consistent state with all its invariants satisfied.
Definition: Matrix.cpp:435
void insertRows(unsigned pos, unsigned count)
Insert rows having positions pos, pos + 1, ...
Definition: Matrix.cpp:216
unsigned getNumRows() const
Definition: Matrix.h:86
void swapColumns(unsigned column, unsigned otherColumn)
Swap the given columns.
Definition: Matrix.cpp:120
T & operator()(unsigned row, unsigned column)
Definition: Matrix.h:74
unsigned nRows
The current number of rows, columns, and reserved columns.
Definition: Matrix.h:241
void removeColumn(unsigned pos)
Definition: Matrix.cpp:194
unsigned appendExtraRow()
Add an extra row at the bottom of the matrix and return its position.
Definition: Matrix.cpp:65
unsigned nReservedColumns
Definition: Matrix.h:241
void addToColumn(unsigned sourceColumn, unsigned targetColumn, const T &scale)
Add scale multiples of the source column to the target column.
Definition: Matrix.cpp:319
Matrix< T > getSubMatrix(unsigned fromRow, unsigned toRow, unsigned fromColumn, unsigned toColumn) const
Definition: Matrix.cpp:384
void print(raw_ostream &os) const
Print the matrix.
Definition: Matrix.cpp:400
void copyRow(unsigned sourceRow, unsigned targetRow)
Definition: Matrix.cpp:244
void scaleRow(unsigned row, const T &scale)
Multiply the specified row by a factor of scale.
Definition: Matrix.cpp:313
void insertColumn(unsigned pos)
Definition: Matrix.cpp:148
T at(unsigned row, unsigned column) const
Definition: Matrix.h:68
MutableArrayRef< T > getRow(unsigned row)
Get a [Mutable]ArrayRef corresponding to the specified row.
Definition: Matrix.cpp:130
void removeColumns(unsigned pos, unsigned count)
Remove the columns having positions pos, pos + 1, ...
Definition: Matrix.cpp:198
void addToColumn(unsigned sourceColumn, unsigned targetColumn, int64_t scale)
Definition: Matrix.h:155
void insertColumns(unsigned pos, unsigned count)
Insert columns having positions pos, pos + 1, ...
Definition: Matrix.cpp:152
void setRow(unsigned row, ArrayRef< T > elems)
Set the specified row to elems.
Definition: Matrix.cpp:140
std::pair< Matrix< T >, Matrix< T > > splitByBitset(ArrayRef< int > indicator)
Split the rows of a matrix into two matrices according to which bits are 1 and which are 0 in a given...
Definition: Matrix.cpp:418
void fillRow(unsigned row, int64_t value)
Definition: Matrix.h:139
void removeRow(unsigned pos)
Definition: Matrix.cpp:230
bool operator==(const Matrix< T > &m) const
We cannot use the default implementation of operator== as it compares fields like reservedColumns etc...
Definition: Matrix.cpp:33
SmallVector< T, 16 > data
Stores the data.
Definition: Matrix.h:245
unsigned getNumColumns() const
Definition: Matrix.h:88
void resizeVertically(unsigned newNRows)
Definition: Matrix.cpp:104
unsigned getNumReservedRows() const
Return the maximum number of rows/columns that can be added without incurring a reallocation.
Definition: Matrix.cpp:55
unsigned getNumReservedColumns() const
Definition: Matrix.h:93
Matrix< T > transpose() const
Definition: Matrix.cpp:80
SmallVector< T, 8 > preMultiplyWithRow(ArrayRef< T > rowVec) const
The given vector is interpreted as a row vector v.
Definition: Matrix.cpp:346
static Matrix identity(unsigned dimension)
Return the identity matrix of the specified dimension.
Definition: Matrix.cpp:47
void insertRow(unsigned pos)
Definition: Matrix.cpp:212
SmallVector< T, 8 > postMultiplyWithColumn(ArrayRef< T > colVec) const
The given vector is interpreted as a column vector v.
Definition: Matrix.cpp:357
void negateMatrix()
Negate the entire matrix.
Definition: Matrix.cpp:340
void swapRows(unsigned row, unsigned otherRow)
Swap the given rows.
Definition: Matrix.cpp:110
void resizeHorizontally(unsigned newNColumns)
Definition: Matrix.cpp:90
void reserveRows(unsigned rows)
Reserve enough space to resize to the specified number of rows without reallocations.
Definition: Matrix.cpp:60
void negateColumn(unsigned column)
Negate the specified column.
Definition: Matrix.cpp:328
void resize(unsigned newNRows, unsigned newNColumns)
Resize the matrix to the specified dimensions.
Definition: Matrix.cpp:98
void fillRow(unsigned row, const T &value)
Definition: Matrix.cpp:252
void addToRow(unsigned sourceRow, unsigned targetRow, const T &scale)
Add scale multiples of the source row to the target row.
Definition: Matrix.cpp:299
T operator()(unsigned row, unsigned column) const
Definition: Matrix.h:76
void negateRow(unsigned row)
Negate the specified row.
Definition: Matrix.cpp:334
T & at(unsigned row, unsigned column)
Access the element at the specified row and column.
Definition: Matrix.h:62
void addToRow(unsigned sourceRow, unsigned targetRow, int64_t scale)
Definition: Matrix.h:143
void removeRows(unsigned pos, unsigned count)
Remove the rows having positions pos, pos + 1, ...
Definition: Matrix.cpp:234
Include the generated interface declarations.
A class to represent fractions.
Definition: Fraction.h:29