MLIR 22.0.0git
IntegerRelation.h
Go to the documentation of this file.
1//===- IntegerRelation.h - MLIR IntegerRelation Class ---------*- C++ -*---===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// A class to represent a relation over integer tuples. A relation is
10// represented as a constraint system over a space of tuples of integer valued
11// variables supporting symbolic variables and existential quantification.
12//
13//===----------------------------------------------------------------------===//
14
15#ifndef MLIR_ANALYSIS_PRESBURGER_INTEGERRELATION_H
16#define MLIR_ANALYSIS_PRESBURGER_INTEGERRELATION_H
17
22#include "llvm/ADT/DynamicAPInt.h"
23#include "llvm/ADT/Sequence.h"
24#include "llvm/ADT/SmallVector.h"
25#include "llvm/Support/LogicalResult.h"
26#include <optional>
27
28namespace mlir {
29namespace presburger {
30using llvm::DynamicAPInt;
31using llvm::failure;
32using llvm::int64fromDynamicAPInt;
33using llvm::LogicalResult;
34using llvm::SmallVectorImpl;
35using llvm::success;
36
37class IntegerRelation;
39class PresburgerSet;
41struct SymbolicLexOpt;
42
43/// The type of bound: equal, lower bound or upper bound.
44enum class BoundType { EQ, LB, UB };
45
46/// An IntegerRelation represents the set of points from a PresburgerSpace that
47/// satisfy a list of affine constraints. Affine constraints can be inequalities
48/// or equalities in the form:
49///
50/// Inequality: c_0*x_0 + c_1*x_1 + .... + c_{n-1}*x_{n-1} + c_n >= 0
51/// Equality : c_0*x_0 + c_1*x_1 + .... + c_{n-1}*x_{n-1} + c_n == 0
52///
53/// where c_0, c_1, ..., c_n are integers and n is the total number of
54/// variables in the space.
55///
56/// Such a relation corresponds to the set of integer points lying in a convex
57/// polyhedron. For example, consider the relation:
58/// (x) -> (y) : (1 <= x <= 7, x = 2y)
59/// These can be thought of as points in the polyhedron:
60/// (x, y) : (1 <= x <= 7, x = 2y)
61/// This relation contains the pairs (2, 1), (4, 2), and (6, 3).
62///
63/// Since IntegerRelation makes a distinction between dimensions, VarKind::Range
64/// and VarKind::Domain should be used to refer to dimension variables.
66public:
67 /// All derived classes of IntegerRelation.
76
77 /// Constructs a relation reserving memory for the specified number
78 /// of constraints and variables.
79 IntegerRelation(unsigned numReservedInequalities,
80 unsigned numReservedEqualities, unsigned numReservedCols,
83 numReservedEqualities, numReservedCols),
84 inequalities(0, space.getNumVars() + 1, numReservedInequalities,
85 numReservedCols) {
86 assert(numReservedCols >= space.getNumVars() + 1);
87 }
88
89 /// Constructs a relation with the specified number of dimensions and symbols.
91 : IntegerRelation(/*numReservedInequalities=*/0,
92 /*numReservedEqualities=*/0,
93 /*numReservedCols=*/space.getNumVars() + 1, space) {}
94
95 virtual ~IntegerRelation() = default;
96
97 /// Return a system with no constraints, i.e., one which is satisfied by all
98 /// points.
102
103 /// Return an empty system containing an invalid equation 0 = 1.
105 IntegerRelation result(0, 1, space.getNumVars() + 1, space);
106 SmallVector<int64_t> invalidEq(space.getNumVars() + 1, 0);
107 invalidEq.back() = 1;
108 result.addEquality(invalidEq);
109 return result;
110 }
111
112 /// Return the kind of this IntegerRelation.
113 virtual Kind getKind() const { return Kind::IntegerRelation; }
114
115 static bool classof(const IntegerRelation *cst) { return true; }
116
117 // Clones this object.
118 std::unique_ptr<IntegerRelation> clone() const;
119
120 /// Returns a reference to the underlying space.
121 const PresburgerSpace &getSpace() const { return space; }
122
123 /// Set the space to `oSpace`, which should have the same number of ids as
124 /// the current space.
125 void setSpace(const PresburgerSpace &oSpace);
126
127 /// Set the space to `oSpace`, which should not have any local ids.
128 /// `oSpace` can have fewer ids than the current space; in that case, the
129 /// the extra ids in `this` that are not accounted for by `oSpace` will be
130 /// considered as local ids. `oSpace` should not have more ids than the
131 /// current space; this will result in an assert failure.
132 void setSpaceExceptLocals(const PresburgerSpace &oSpace);
133
134 /// Set the identifier for the ith variable of the specified kind of the
135 /// IntegerRelation's PresburgerSpace. The index is relative to the kind of
136 /// the variable.
137 void setId(VarKind kind, unsigned i, Identifier id);
138
139 void resetIds() { space.resetIds(); }
140
141 /// Get the identifiers for the variables of specified varKind. Calls resetIds
142 /// on the relations space if identifiers are not enabled.
144
145 /// Returns a copy of the space without locals.
147 return PresburgerSpace::getRelationSpace(space.getNumDomainVars(),
148 space.getNumRangeVars(),
149 space.getNumSymbolVars());
150 }
151
152 /// Appends constraints from `other` into `this`. This is equivalent to an
153 /// intersection with no simplification of any sort attempted.
154 void append(const IntegerRelation &other);
155
156 /// Finds an equality that equates the specified variable to a constant.
157 /// Returns the position of the equality row. If 'symbolic' is set to true,
158 /// symbols are also treated like a constant, i.e., an affine function of the
159 /// symbols is also treated like a constant. Returns -1 if such an equality
160 /// could not be found.
161 int findEqualityToConstant(unsigned pos, bool symbolic = false) const;
162
163 /// Return the intersection of the two relations.
164 /// If there are locals, they will be merged.
166
167 /// Return whether `this` and `other` are equal. This is integer-exact
168 /// and somewhat expensive, since it uses the integer emptiness check
169 /// (see IntegerRelation::findIntegerSample()).
170 bool isEqual(const IntegerRelation &other) const;
171
172 /// Perform a quick equality check on `this` and `other`. The relations are
173 /// equal if the check return true, but may or may not be equal if the check
174 /// returns false. The equality check is performed in a plain manner, by
175 /// comparing if all the equalities and inequalities in `this` and `other`
176 /// are the same.
177 bool isObviouslyEqual(const IntegerRelation &other) const;
178
179 /// Return whether this is a subset of the given IntegerRelation. This is
180 /// integer-exact and somewhat expensive, since it uses the integer emptiness
181 /// check (see IntegerRelation::findIntegerSample()).
182 bool isSubsetOf(const IntegerRelation &other) const;
183
184 /// Returns the value at the specified equality row and column.
185 inline DynamicAPInt atEq(unsigned i, unsigned j) const {
186 return equalities(i, j);
187 }
188 /// The same, but casts to int64_t. This is unsafe and will assert-fail if the
189 /// value does not fit in an int64_t.
190 inline int64_t atEq64(unsigned i, unsigned j) const {
191 return int64_t(equalities(i, j));
192 }
193 inline DynamicAPInt &atEq(unsigned i, unsigned j) { return equalities(i, j); }
194
195 /// Returns the value at the specified inequality row and column.
196 inline DynamicAPInt atIneq(unsigned i, unsigned j) const {
197 return inequalities(i, j);
198 }
199
200 /// The same, but casts to int64_t. This is unsafe and will assert-fail if the
201 /// value does not fit in an int64_t.
202 inline int64_t atIneq64(unsigned i, unsigned j) const {
203 return int64_t(inequalities(i, j));
204 }
205 inline DynamicAPInt &atIneq(unsigned i, unsigned j) {
206 return inequalities(i, j);
207 }
208
209 unsigned getNumConstraints() const {
211 }
212
213 /// Unified indexing into the constraints. Index into the inequalities
214 /// if i < getNumInequalities() and into the equalities otherwise.
215 inline int64_t atConstraint64(unsigned i, unsigned j) const {
216 assert(i < getNumConstraints());
217 unsigned numIneqs = getNumInequalities();
218 return i < numIneqs ? atIneq64(i, j) : atEq64(i - numIneqs, j);
219 }
220 inline DynamicAPInt &atConstraint(unsigned i, unsigned j) {
221 assert(i < getNumConstraints());
222 unsigned numIneqs = getNumInequalities();
223 return i < numIneqs ? atIneq(i, j) : atEq(i - numIneqs, j);
224 }
225
226 unsigned getNumDomainVars() const { return space.getNumDomainVars(); }
227 unsigned getNumRangeVars() const { return space.getNumRangeVars(); }
228 unsigned getNumSymbolVars() const { return space.getNumSymbolVars(); }
229 unsigned getNumLocalVars() const { return space.getNumLocalVars(); }
230
231 unsigned getNumDimVars() const { return space.getNumDimVars(); }
232 unsigned getNumDimAndSymbolVars() const {
233 return space.getNumDimAndSymbolVars();
234 }
235 unsigned getNumVars() const { return space.getNumVars(); }
236
237 /// Returns the number of columns in the constraint system.
238 inline unsigned getNumCols() const { return space.getNumVars() + 1; }
239
240 inline unsigned getNumEqualities() const { return equalities.getNumRows(); }
241
242 inline unsigned getNumInequalities() const {
243 return inequalities.getNumRows();
244 }
245
246 inline unsigned getNumReservedEqualities() const {
247 return equalities.getNumReservedRows();
248 }
249
250 inline unsigned getNumReservedInequalities() const {
251 return inequalities.getNumReservedRows();
252 }
253
254 inline ArrayRef<DynamicAPInt> getEquality(unsigned idx) const {
255 return equalities.getRow(idx);
256 }
257 inline ArrayRef<DynamicAPInt> getInequality(unsigned idx) const {
258 return inequalities.getRow(idx);
259 }
260 /// The same, but casts to int64_t. This is unsafe and will assert-fail if the
261 /// value does not fit in an int64_t.
262 inline SmallVector<int64_t, 8> getEquality64(unsigned idx) const {
263 return getInt64Vec(equalities.getRow(idx));
264 }
265 inline SmallVector<int64_t, 8> getInequality64(unsigned idx) const {
266 return getInt64Vec(inequalities.getRow(idx));
267 }
268
269 inline IntMatrix getInequalities() const { return inequalities; }
270
271 /// Get the number of vars of the specified kind.
272 unsigned getNumVarKind(VarKind kind) const {
273 return space.getNumVarKind(kind);
274 }
275
276 /// Return the index at which the specified kind of vars starts.
277 unsigned getVarKindOffset(VarKind kind) const {
278 return space.getVarKindOffset(kind);
279 }
280
281 /// Return the index at Which the specified kind of vars ends.
282 unsigned getVarKindEnd(VarKind kind) const {
283 return space.getVarKindEnd(kind);
284 }
285
286 /// Return an interator over the variables of the specified kind
287 /// starting at the relevant offset. The return type is auto in
288 /// keeping with the convention for iterators.
289 auto iterVarKind(VarKind kind) {
290 return llvm::seq(getVarKindOffset(kind), getVarKindEnd(kind));
291 }
292
293 /// Get the number of elements of the specified kind in the range
294 /// [varStart, varLimit).
295 unsigned getVarKindOverlap(VarKind kind, unsigned varStart,
296 unsigned varLimit) const {
297 return space.getVarKindOverlap(kind, varStart, varLimit);
298 }
299
300 /// Return the VarKind of the var at the specified position.
301 VarKind getVarKindAt(unsigned pos) const { return space.getVarKindAt(pos); }
302
303 /// The struct CountsSnapshot stores the count of each VarKind, and also of
304 /// each constraint type. getCounts() returns a CountsSnapshot object
305 /// describing the current state of the IntegerRelation. truncate() truncates
306 /// all vars of each VarKind and all constraints of both kinds beyond the
307 /// counts in the specified CountsSnapshot object. This can be used to achieve
308 /// rudimentary rollback support. As long as none of the existing constraints
309 /// or vars are disturbed, and only additional vars or constraints are added,
310 /// this addition can be rolled back using truncate.
312 public:
313 CountsSnapshot(const PresburgerSpace &space, unsigned numIneqs,
314 unsigned numEqs)
315 : space(space), numIneqs(numIneqs), numEqs(numEqs) {}
316 const PresburgerSpace &getSpace() const { return space; };
317 unsigned getNumIneqs() const { return numIneqs; }
318 unsigned getNumEqs() const { return numEqs; }
319
320 private:
322 unsigned numIneqs, numEqs;
323 };
324 CountsSnapshot getCounts() const;
325 void truncate(const CountsSnapshot &counts);
326
327 /// Insert `num` variables of the specified kind at position `pos`.
328 /// Positions are relative to the kind of variable. The coefficient columns
329 /// corresponding to the added variables are initialized to zero. Return the
330 /// absolute column position (i.e., not relative to the kind of variable)
331 /// of the first added variable.
332 virtual unsigned insertVar(VarKind kind, unsigned pos, unsigned num = 1);
333
334 /// Append `num` variables of the specified kind after the last variable
335 /// of that kind. The coefficient columns corresponding to the added variables
336 /// are initialized to zero. Return the absolute column position (i.e., not
337 /// relative to the kind of variable) of the first appended variable.
338 unsigned appendVar(VarKind kind, unsigned num = 1);
339
340 /// Adds an inequality (>= 0) from the coefficients specified in `inEq`.
345 /// Adds an equality from the coefficients specified in `eq`.
350
351 /// Eliminate the `posB^th` local variable, replacing every instance of it
352 /// with the `posA^th` local variable. This should be used when the two
353 /// local variables are known to always take the same values.
354 virtual void eliminateRedundantLocalVar(unsigned posA, unsigned posB);
355
356 /// Removes variables of the specified kind with the specified pos (or
357 /// within the specified range) from the system. The specified location is
358 /// relative to the first variable of the specified kind.
359 void removeVar(VarKind kind, unsigned pos);
360 virtual void removeVarRange(VarKind kind, unsigned varStart,
361 unsigned varLimit);
362
363 /// Removes the specified variable from the system.
364 void removeVar(unsigned pos);
365
366 void removeEquality(unsigned pos);
367 void removeInequality(unsigned pos);
368 void removeConstraint(unsigned pos);
369
370 /// Remove the (in)equalities at positions [start, end).
371 void removeEqualityRange(unsigned start, unsigned end);
372 void removeInequalityRange(unsigned start, unsigned end);
373
374 /// Get the lexicographically minimum rational point satisfying the
375 /// constraints. Returns an empty optional if the relation is empty or if
376 /// the lexmin is unbounded. Symbols are not supported and will result in
377 /// assert-failure. Note that Domain is minimized first, then range.
379
380 /// Same as above, but returns lexicographically minimal integer point.
381 /// Note: this should be used only when the lexmin is really required.
382 /// For a generic integer sampling operation, findIntegerSample is more
383 /// robust and should be preferred. Note that Domain is minimized first, then
384 /// range.
386
387 /// Swap the posA^th variable with the posB^th variable.
388 virtual void swapVar(unsigned posA, unsigned posB);
389
390 /// Removes all equalities and inequalities.
391 void clearConstraints();
392
393 /// Sets the `values.size()` variables starting at `po`s to the specified
394 /// values and removes them.
395 void setAndEliminate(unsigned pos, ArrayRef<DynamicAPInt> values);
396 void setAndEliminate(unsigned pos, ArrayRef<int64_t> values) {
398 }
399
400 /// Replaces the contents of this IntegerRelation with `other`.
401 virtual void clearAndCopyFrom(const IntegerRelation &other);
402
403 /// Gather positions of all lower and upper bounds of the variable at `pos`,
404 /// and optionally any equalities on it. In addition, the bounds are to be
405 /// independent of variables in position range [`offset`, `offset` + `num`).
406 void
407 getLowerAndUpperBoundIndices(unsigned pos,
408 SmallVectorImpl<unsigned> *lbIndices,
409 SmallVectorImpl<unsigned> *ubIndices,
410 SmallVectorImpl<unsigned> *eqIndices = nullptr,
411 unsigned offset = 0, unsigned num = 0) const;
412
413 /// Checks for emptiness by performing variable elimination on all
414 /// variables, running the GCD test on each equality constraint, and
415 /// checking for invalid constraints. Returns true if the GCD test fails for
416 /// any equality, or if any invalid constraints are discovered on any row.
417 /// Returns false otherwise.
418 bool isEmpty() const;
419
420 /// Performs GCD checks and invalid constraint checks.
421 bool isObviouslyEmpty() const;
422
423 /// Runs the GCD test on all equality constraints. Returns true if this test
424 /// fails on any equality. Returns false otherwise.
425 /// This test can be used to disprove the existence of a solution. If it
426 /// returns true, no integer solution to the equality constraints can exist.
427 bool isEmptyByGCDTest() const;
428
429 /// Returns true if the set of constraints is found to have no solution,
430 /// false if a solution exists. Uses the same algorithm as
431 /// `findIntegerSample`.
432 bool isIntegerEmpty() const;
433
434 /// Returns a matrix where each row is a vector along which the polytope is
435 /// bounded. The span of the returned vectors is guaranteed to contain all
436 /// such vectors. The returned vectors are NOT guaranteed to be linearly
437 /// independent. This function should not be called on empty sets.
439
440 /// Find an integer sample point satisfying the constraints using a
441 /// branch and bound algorithm with generalized basis reduction, with some
442 /// additional processing using Simplex for unbounded sets.
443 ///
444 /// Returns an integer sample point if one exists, or an empty Optional
445 /// otherwise. The returned value also includes values of local ids.
446 std::optional<SmallVector<DynamicAPInt, 8>> findIntegerSample() const;
447
448 /// Compute an overapproximation of the number of integer points in the
449 /// relation. Symbol vars currently not supported. If the computed
450 /// overapproximation is infinite, an empty optional is returned.
451 std::optional<DynamicAPInt> computeVolume() const;
452
453 /// Returns true if the given point satisfies the constraints, or false
454 /// otherwise. Takes the values of all vars including locals.
455 bool containsPoint(ArrayRef<DynamicAPInt> point) const;
457 return containsPoint(getDynamicAPIntVec(point));
458 }
459 /// Given the values of non-local vars, return a satisfying assignment to the
460 /// local if one exists, or an empty optional otherwise.
461 std::optional<SmallVector<DynamicAPInt, 8>>
463 std::optional<SmallVector<DynamicAPInt, 8>>
467
468 /// Returns a `DivisonRepr` representing the division representation of local
469 /// variables in the constraint system.
470 ///
471 /// If `repr` is not `nullptr`, the equality and pairs of inequality
472 /// constraints identified by their position indices using which an explicit
473 /// representation for each local variable can be computed are set in `repr`
474 /// in the form of a `MaybeLocalRepr` struct. If no such inequality
475 /// pair/equality can be found, the kind attribute in `MaybeLocalRepr` is set
476 /// to None.
477 DivisionRepr getLocalReprs(std::vector<MaybeLocalRepr> *repr = nullptr) const;
478
479 /// Adds a constant bound for the specified variable.
480 void addBound(BoundType type, unsigned pos, const DynamicAPInt &value);
481 void addBound(BoundType type, unsigned pos, int64_t value) {
482 addBound(type, pos, DynamicAPInt(value));
483 }
484
485 /// Adds a constant bound for the specified expression.
487 const DynamicAPInt &value);
488 void addBound(BoundType type, ArrayRef<int64_t> expr, int64_t value) {
489 addBound(type, getDynamicAPIntVec(expr), DynamicAPInt(value));
490 }
491
492 /// Adds a new local variable as the floordiv of an affine function of other
493 /// variables, the coefficients of which are provided in `dividend` and with
494 /// respect to a positive constant `divisor`. Two constraints are added to the
495 /// system to capture equivalence with the floordiv:
496 /// q = dividend floordiv c <=> c*q <= dividend <= c*q + c - 1.
497 /// Returns the column position of the new local variable.
499 const DynamicAPInt &divisor);
500 unsigned addLocalFloorDiv(ArrayRef<int64_t> dividend, int64_t divisor) {
501 return addLocalFloorDiv(getDynamicAPIntVec(dividend),
502 DynamicAPInt(divisor));
503 }
504
505 /// Adds a new local variable as the modulus of an affine function of other
506 /// variables, the coefficients of which are provided in `exprs`. The modulus
507 /// is with respect to a positive constant `modulus`. The function returns the
508 /// absolute index of the new local variable representing the result of the
509 /// modulus operation. Two new local variables are added to the system, one
510 /// representing the floor div with respect to the modulus and one
511 /// representing the mod. Three constraints are added to the system to capture
512 /// the equivalance. The first two are required to compute the result of the
513 /// floor division `q`, and the third computes the equality relation:
514 /// result = exprs - modulus * q.
516 const DynamicAPInt &modulus);
517 unsigned addLocalModulo(ArrayRef<int64_t> exprs, int64_t modulus) {
518 return addLocalModulo(getDynamicAPIntVec(exprs), DynamicAPInt(modulus));
519 }
520
521 /// Projects out (aka eliminates) `num` variables starting at position
522 /// `pos`. The resulting constraint system is the shadow along the dimensions
523 /// that still exist. This method may not always be integer exact.
524 // TODO: deal with integer exactness when necessary - can return a value to
525 // mark exactness for example.
526 void projectOut(unsigned pos, unsigned num);
527 inline void projectOut(unsigned pos) { return projectOut(pos, 1); }
528
529 /// The function removes some constraints that do not impose any bound on the
530 /// specified variable.
531 ///
532 /// The set of constraints (equations/inequalities) can be modeled as an
533 /// undirected graph where:
534 /// 1. Variables are the nodes.
535 /// 2. Constraints are the edges connecting those nodes.
536 ///
537 /// Variables and constraints belonging to different connected components
538 /// are irrelevant to each other. This property allows for safe pruning of
539 /// constraints.
540 ///
541 /// For example, given the following constraints:
542 /// - Inequalities: (1) d0 + d1 > 0, (2) d1 >= 2, (3) d4 > 5
543 /// - Equalities: (4) d3 + d4 = 1, (5) d0 - d2 = 3
544 ///
545 /// These form two connected components:
546 /// - Component 1: {d0, d1, d2} (related by constraints 1, 2, 5)
547 /// - Component 2: {d3, d4} (related by constraint 4)
548 ///
549 /// If we are querying the bound of variable `d0`, constraints related to
550 /// Component 2 (e.g., constraints 3 and 4) can be safely pruned as they
551 /// have no impact on the solution space of Component 1.
552 /// This function prunes irrelevant constraints by identifying all variables
553 /// and constraints that belong to the same connected component as the
554 /// target variable.
555 void pruneOrthogonalConstraints(unsigned pos);
556
557 /// Tries to fold the specified variable to a constant using a trivial
558 /// equality detection; if successful, the constant is substituted for the
559 /// variable everywhere in the constraint system and then removed from the
560 /// system.
561 LogicalResult constantFoldVar(unsigned pos);
562
563 /// This method calls `constantFoldVar` for the specified range of variables,
564 /// `num` variables starting at position `pos`.
565 void constantFoldVarRange(unsigned pos, unsigned num);
566
567 /// Updates the constraints to be the smallest bounding (enclosing) box that
568 /// contains the points of `this` set and that of `other`, with the symbols
569 /// being treated specially. For each of the dimensions, the min of the lower
570 /// bounds (symbolic) and the max of the upper bounds (symbolic) is computed
571 /// to determine such a bounding box. `other` is expected to have the same
572 /// dimensional variables as this constraint system (in the same order).
573 ///
574 /// E.g.:
575 /// 1) this = {0 <= d0 <= 127},
576 /// other = {16 <= d0 <= 192},
577 /// output = {0 <= d0 <= 192}
578 /// 2) this = {s0 + 5 <= d0 <= s0 + 20},
579 /// other = {s0 + 1 <= d0 <= s0 + 9},
580 /// output = {s0 + 1 <= d0 <= s0 + 20}
581 /// 3) this = {0 <= d0 <= 5, 1 <= d1 <= 9}
582 /// other = {2 <= d0 <= 6, 5 <= d1 <= 15},
583 /// output = {0 <= d0 <= 6, 1 <= d1 <= 15}
584 LogicalResult unionBoundingBox(const IntegerRelation &other);
585
586 /// Returns the smallest known constant bound for the extent of the specified
587 /// variable (pos^th), i.e., the smallest known constant that is greater
588 /// than or equal to 'exclusive upper bound' - 'lower bound' of the
589 /// variable. This constant bound is guaranteed to be non-negative. Returns
590 /// std::nullopt if it's not a constant. This method employs trivial (low
591 /// complexity / cost) checks and detection. Symbolic variables are treated
592 /// specially, i.e., it looks for constant differences between affine
593 /// expressions involving only the symbolic variables. `lb` and `ub` (along
594 /// with the `boundFloorDivisor`) are set to represent the lower and upper
595 /// bound associated with the constant difference: `lb`, `ub` have the
596 /// coefficients, and `boundFloorDivisor`, their divisor. `minLbPos` and
597 /// `minUbPos` if non-null are set to the position of the constant lower bound
598 /// and upper bound respectively (to the same if they are from an
599 /// equality). Ex: if the lower bound is [(s0 + s2 - 1) floordiv 32] for a
600 /// system with three symbolic variables, *lb = [1, 0, 1], lbDivisor = 32. See
601 /// comments at function definition for examples.
602 std::optional<DynamicAPInt> getConstantBoundOnDimSize(
603 unsigned pos, SmallVectorImpl<DynamicAPInt> *lb = nullptr,
604 DynamicAPInt *boundFloorDivisor = nullptr,
605 SmallVectorImpl<DynamicAPInt> *ub = nullptr, unsigned *minLbPos = nullptr,
606 unsigned *minUbPos = nullptr) const;
607 /// The same, but casts to int64_t. This is unsafe and will assert-fail if the
608 /// value does not fit in an int64_t.
609 std::optional<int64_t> getConstantBoundOnDimSize64(
610 unsigned pos, SmallVectorImpl<int64_t> *lb = nullptr,
611 int64_t *boundFloorDivisor = nullptr,
612 SmallVectorImpl<int64_t> *ub = nullptr, unsigned *minLbPos = nullptr,
613 unsigned *minUbPos = nullptr) const {
614 SmallVector<DynamicAPInt, 8> ubDynamicAPInt, lbDynamicAPInt;
615 DynamicAPInt boundFloorDivisorDynamicAPInt;
616 std::optional<DynamicAPInt> result = getConstantBoundOnDimSize(
617 pos, &lbDynamicAPInt, &boundFloorDivisorDynamicAPInt, &ubDynamicAPInt,
618 minLbPos, minUbPos);
619 if (lb)
620 *lb = getInt64Vec(lbDynamicAPInt);
621 if (ub)
622 *ub = getInt64Vec(ubDynamicAPInt);
623 if (boundFloorDivisor)
624 *boundFloorDivisor = static_cast<int64_t>(boundFloorDivisorDynamicAPInt);
625 return llvm::transformOptional(result, int64fromDynamicAPInt);
626 }
627
628 /// Returns the constant bound for the pos^th variable if there is one;
629 /// std::nullopt otherwise.
630 std::optional<DynamicAPInt> getConstantBound(BoundType type,
631 unsigned pos) const;
632 /// The same, but casts to int64_t. This is unsafe and will assert-fail if the
633 /// value does not fit in an int64_t.
634 std::optional<int64_t> getConstantBound64(BoundType type,
635 unsigned pos) const {
636 return llvm::transformOptional(getConstantBound(type, pos),
637 int64fromDynamicAPInt);
638 }
639
640 /// Removes constraints that are independent of (i.e., do not have a
641 /// coefficient) variables in the range [pos, pos + num).
642 void removeIndependentConstraints(unsigned pos, unsigned num);
643
644 /// Returns true if the set can be trivially detected as being
645 /// hyper-rectangular on the specified contiguous set of variables.
646 bool isHyperRectangular(unsigned pos, unsigned num) const;
647
648 /// Removes duplicate constraints, trivially true constraints, and constraints
649 /// that can be detected as redundant as a result of differing only in their
650 /// constant term part. A constraint of the form <non-negative constant> >= 0
651 /// is considered trivially true. This method is a linear time method on the
652 /// constraints, does a single scan, and updates in place. It also normalizes
653 /// constraints by their GCD and performs GCD tightening on inequalities.
655
656 /// A more expensive check than `removeTrivialRedundancy` to detect redundant
657 /// inequalities.
659
660 /// Removes redundant constraints using Simplex. Although the algorithm can
661 /// theoretically take exponential time in the worst case (rare), it is known
662 /// to perform much better in the average case. If V is the number of vertices
663 /// in the polytope and C is the number of constraints, the algorithm takes
664 /// O(VC) time.
666
667 void removeDuplicateDivs();
668
669 /// Simplify the constraint system by removing canonicalizing constraints and
670 /// removing redundant constraints.
671 void simplify();
672
673 /// Converts variables of kind srcKind in the range [varStart, varLimit) to
674 /// variables of kind dstKind. If `pos` is given, the variables are placed at
675 /// position `pos` of dstKind, otherwise they are placed after all the other
676 /// variables of kind dstKind. The internal ordering among the moved variables
677 /// is preserved.
678 void convertVarKind(VarKind srcKind, unsigned varStart, unsigned varLimit,
679 VarKind dstKind, unsigned pos);
680 void convertVarKind(VarKind srcKind, unsigned varStart, unsigned varLimit,
681 VarKind dstKind) {
682 convertVarKind(srcKind, varStart, varLimit, dstKind,
683 getNumVarKind(dstKind));
684 }
685 void convertToLocal(VarKind kind, unsigned varStart, unsigned varLimit) {
686 convertVarKind(kind, varStart, varLimit, VarKind::Local);
687 }
688
689 /// Merge and align symbol variables of `this` and `other` with respect to
690 /// identifiers. After this operation the symbol variables of both relations
691 /// have the same identifiers in the same order.
693
694 /// Adds additional local vars to the sets such that they both have the union
695 /// of the local vars in each set, without changing the set of points that
696 /// lie in `this` and `other`.
697 ///
698 /// While taking union, if a local var in `other` has a division
699 /// representation which is a duplicate of division representation, of another
700 /// local var, it is not added to the final union of local vars and is instead
701 /// merged. The new ordering of local vars is:
702 ///
703 /// [Local vars of `this`] [Non-merged local vars of `other`]
704 ///
705 /// The relative ordering of local vars is same as before.
706 ///
707 /// After merging, if the `i^th` local variable in one set has a known
708 /// division representation, then the `i^th` local variable in the other set
709 /// either has the same division representation or no known division
710 /// representation.
711 ///
712 /// The spaces of both relations should be compatible.
713 ///
714 /// Returns the number of non-merged local vars of `other`, i.e. the number of
715 /// locals that have been added to `this`.
716 unsigned mergeLocalVars(IntegerRelation &other);
717
718 /// Check whether all local ids have a division representation.
719 bool hasOnlyDivLocals() const;
720
721 /// Changes the partition between dimensions and symbols. Depending on the new
722 /// symbol count, either a chunk of dimensional variables immediately before
723 /// the split become symbols, or some of the symbols immediately after the
724 /// split become dimensions.
725 void setDimSymbolSeparation(unsigned newSymbolCount) {
726 space.setVarSymbolSeparation(newSymbolCount);
727 }
728
729 /// Return a set corresponding to all points in the domain of the relation.
731
732 /// Return a set corresponding to all points in the range of the relation.
734
735 /// Intersect the given `poly` with the domain in-place.
736 ///
737 /// Formally, let the relation `this` be R: A -> B and poly is C, then this
738 /// operation modifies R to be (A intersection C) -> B.
739 void intersectDomain(const IntegerPolyhedron &poly);
740
741 /// Intersect the given `poly` with the range in-place.
742 ///
743 /// Formally, let the relation `this` be R: A -> B and poly is C, then this
744 /// operation modifies R to be A -> (B intersection C).
745 void intersectRange(const IntegerPolyhedron &poly);
746
747 /// Invert the relation i.e., swap its domain and range.
748 ///
749 /// Formally, let the relation `this` be R: A -> B, then this operation
750 /// modifies R to be B -> A.
751 void inverse();
752
753 /// Let the relation `this` be R1, and the relation `rel` be R2. Modifies R1
754 /// to be the composition of R1 and R2: R1;R2.
755 ///
756 /// Formally, if R1: A -> B, and R2: B -> C, then this function returns a
757 /// relation R3: A -> C such that a point (a, c) belongs to R3 iff there
758 /// exists b such that (a, b) is in R1 and, (b, c) is in R2.
759 void compose(const IntegerRelation &rel);
760
761 /// Given a relation `rel`, apply the relation to the domain of this relation.
762 ///
763 /// R1: i -> j : (0 <= i < 2, j = i)
764 /// R2: i -> k : (k = i floordiv 2)
765 /// R3: k -> j : (0 <= k < 1, 2k <= j <= 2k + 1)
766 ///
767 /// R1 = {(0, 0), (1, 1)}. R2 maps both 0 and 1 to 0.
768 /// So R3 = {(0, 0), (0, 1)}.
769 ///
770 /// Formally, R1.applyDomain(R2) = R2.inverse().compose(R1).
771 void applyDomain(const IntegerRelation &rel);
772
773 /// Given a relation `rel`, apply the relation to the range of this relation.
774 ///
775 /// Formally, R1.applyRange(R2) is the same as R1.compose(R2) but we provide
776 /// this for uniformity with `applyDomain`.
777 void applyRange(const IntegerRelation &rel);
778
779 /// Let the relation `this` be R1, and the relation `rel` be R2. Requires
780 /// R1 and R2 to have the same domain.
781 ///
782 /// Let R3 be the rangeProduct of R1 and R2. Then x R3 (y, z) iff
783 /// (x R1 y and x R2 z).
784 ///
785 /// Example:
786 ///
787 /// R1: (i, j) -> k : f(i, j, k) = 0
788 /// R2: (i, j) -> l : g(i, j, l) = 0
789 /// R1.rangeProduct(R2): (i, j) -> (k, l) : f(i, j, k) = 0 and g(i, j, l) = 0
791
792 /// Given a relation `other: (A -> B)`, this operation merges the symbol and
793 /// local variables and then takes the composition of `other` on `this: (B ->
794 /// C)`. The resulting relation represents tuples of the form: `A -> C`.
795 void mergeAndCompose(const IntegerRelation &other);
796
797 /// Compute an equivalent representation of the same set, such that all local
798 /// vars in all disjuncts have division representations. This representation
799 /// may involve local vars that correspond to divisions, and may also be a
800 /// union of convex disjuncts.
802
803 /// Compute the symbolic integer lexmin of the relation.
804 ///
805 /// This finds, for every assignment to the symbols and domain,
806 /// the lexicographically minimum value attained by the range.
807 ///
808 /// For example, the symbolic lexmin of the set
809 ///
810 /// (x, y)[a, b, c] : (a <= x, b <= x, x <= c)
811 ///
812 /// can be written as
813 ///
814 /// x = a if b <= a, a <= c
815 /// x = b if a < b, b <= c
816 ///
817 /// This function is stored in the `lexopt` function in the result.
818 /// Some assignments to the symbols might make the set empty.
819 /// Such points are not part of the function's domain.
820 /// In the above example, this happens when max(a, b) > c.
821 ///
822 /// For some values of the symbols, the lexmin may be unbounded.
823 /// `SymbolicLexOpt` stores these parts of the symbolic domain in a separate
824 /// `PresburgerSet`, `unboundedDomain`.
826
827 /// Same as findSymbolicIntegerLexMin but produces lexmax instead of lexmin
829
830 /// Finds a constraint with a non-zero coefficient at `colIdx` in equality
831 /// (isEq=true) or inequality (isEq=false) constraints. Returns the position
832 /// of the row if it was found or none otherwise.
833 std::optional<unsigned> findConstraintWithNonZeroAt(unsigned colIdx,
834 bool isEq) const;
835
836 /// Return the set difference of this set and the given set, i.e.,
837 /// return `this \ set`.
839
840 // Remove equalities which have only zero coefficients.
842
843 // Verify whether the relation is full-dimensional, i.e.,
844 // no equality holds for the relation.
845 //
846 // If there are no variables, it always returns true.
847 // If there is at least one variable and the relation is empty, it returns
848 // false.
849 bool isFullDim();
850
851 void print(raw_ostream &os) const;
852 void dump() const;
853
854protected:
855 /// Checks all rows of equality/inequality constraints for trivial
856 /// contradictions (for example: 1 == 0, 0 >= 1), which may have surfaced
857 /// after elimination. Returns true if an invalid constraint is found;
858 /// false otherwise.
859 bool hasInvalidConstraint() const;
860
861 /// Returns the constant lower bound if isLower is true, and the upper
862 /// bound if isLower is false.
863 template <bool isLower>
864 std::optional<DynamicAPInt> computeConstantLowerOrUpperBound(unsigned pos);
865 /// The same, but casts to int64_t. This is unsafe and will assert-fail if the
866 /// value does not fit in an int64_t.
867 template <bool isLower>
868 std::optional<int64_t> computeConstantLowerOrUpperBound64(unsigned pos) {
870 int64fromDynamicAPInt);
871 }
872
873 /// Eliminates a single variable at `position` from equality and inequality
874 /// constraints. Returns `success` if the variable was eliminated, and
875 /// `failure` otherwise.
876 inline LogicalResult gaussianEliminateVar(unsigned position) {
877 return success(gaussianEliminateVars(position, position + 1) == 1);
878 }
879
880 /// Removes local variables using equalities. Each equality is checked if it
881 /// can be reduced to the form: `e = affine-expr`, where `e` is a local
882 /// variable and `affine-expr` is an affine expression not containing `e`.
883 /// If an equality satisfies this form, the local variable is replaced in
884 /// each constraint and then removed. The equality used to replace this local
885 /// variable is also removed.
887
888 /// Eliminates variables from equality and inequality constraints
889 /// in column range [posStart, posLimit).
890 /// Returns the number of variables eliminated.
891 unsigned gaussianEliminateVars(unsigned posStart, unsigned posLimit);
892
893 /// Perform a Gaussian elimination operation to reduce all equations to
894 /// standard form. Returns whether the constraint system was modified.
895 bool gaussianEliminate();
896
897 /// Eliminates the variable at the specified position using Fourier-Motzkin
898 /// variable elimination, but uses Gaussian elimination if there is an
899 /// equality involving that variable. If the result of the elimination is
900 /// integer exact, `*isResultIntegerExact` is set to true. If `darkShadow` is
901 /// set to true, a potential under approximation (subset) of the rational
902 /// shadow / exact integer shadow is computed.
903 // See implementation comments for more details.
904 virtual void fourierMotzkinEliminate(unsigned pos, bool darkShadow = false,
905 bool *isResultIntegerExact = nullptr);
906
907 /// Tightens inequalities given that we are dealing with integer spaces. This
908 /// is similar to the GCD test but applied to inequalities. The constant term
909 /// can be reduced to the preceding multiple of the GCD of the coefficients,
910 /// i.e.,
911 /// 64*i - 100 >= 0 => 64*i - 128 >= 0 (since 'i' is an integer). This is a
912 /// fast method (linear in the number of coefficients).
914
915 /// Normalized each constraints by the GCD of its coefficients.
917
918 /// Returns true if the pos^th column is all zero for both inequalities and
919 /// equalities.
920 bool isColZero(unsigned pos) const;
921
922 /// Checks for identical inequalities and eliminates redundant inequalities.
923 /// Returns whether the constraint system was modified.
925
926 /// Returns false if the fields corresponding to various variable counts, or
927 /// equality/inequality buffer sizes aren't consistent; true otherwise. This
928 /// is meant to be used within an assert internally.
929 virtual bool hasConsistentState() const;
930
931 /// Prints the number of constraints, dimensions, symbols and locals in the
932 /// IntegerRelation.
933 virtual void printSpace(raw_ostream &os) const;
934
935 /// Removes variables in the column range [varStart, varLimit), and copies any
936 /// remaining valid data into place, updates member variables, and resizes
937 /// arrays as needed.
938 void removeVarRange(unsigned varStart, unsigned varLimit);
939
940 /// Truncate the vars of the specified kind to the specified number by
941 /// dropping some vars at the end. `num` must be less than the current number.
942 void truncateVarKind(VarKind kind, unsigned num);
943
944 /// Truncate the vars to the number in the space of the specified
945 /// CountsSnapshot.
946 void truncateVarKind(VarKind kind, const CountsSnapshot &counts);
947
948 /// A parameter that controls detection of an unrealistic number of
949 /// constraints. If the number of constraints is this many times the number of
950 /// variables, we consider such a system out of line with the intended use
951 /// case of IntegerRelation.
952 // The rationale for 32 is that in the typical simplest of cases, an
953 // variable is expected to have one lower bound and one upper bound
954 // constraint. With a level of tiling or a connection to another variable
955 // through a div or mod, an extra pair of bounds gets added. As a limit, we
956 // don't expect a variable to have more than 32 lower/upper/equality
957 // constraints. This is conservatively set low and can be raised if needed.
958 constexpr static unsigned kExplosionFactor = 32;
959
961
962 /// Coefficients of affine equalities (in == 0 form).
964
965 /// Coefficients of affine inequalities (in >= 0 form).
967};
968
970 rel.print(os);
971 return os;
972}
973
974/// An IntegerPolyhedron represents the set of points from a PresburgerSpace
975/// that satisfy a list of affine constraints. Affine constraints can be
976/// inequalities or equalities in the form:
977///
978/// Inequality: c_0*x_0 + c_1*x_1 + .... + c_{n-1}*x_{n-1} + c_n >= 0
979/// Equality : c_0*x_0 + c_1*x_1 + .... + c_{n-1}*x_{n-1} + c_n == 0
980///
981/// where c_0, c_1, ..., c_n are integers and n is the total number of
982/// variables in the space.
983///
984/// An IntegerPolyhedron is similar to an IntegerRelation but it does not make a
985/// distinction between Domain and Range variables. Internally,
986/// IntegerPolyhedron is implemented as a IntegerRelation with zero domain vars.
987///
988/// Since IntegerPolyhedron does not make a distinction between kinds of
989/// dimensions, VarKind::SetDim should be used to refer to dimension
990/// variables.
992public:
993 /// Constructs a set reserving memory for the specified number
994 /// of constraints and variables.
995 IntegerPolyhedron(unsigned numReservedInequalities,
996 unsigned numReservedEqualities, unsigned numReservedCols,
997 const PresburgerSpace &space)
998 : IntegerRelation(numReservedInequalities, numReservedEqualities,
999 numReservedCols, space) {
1000 assert(space.getNumDomainVars() == 0 &&
1001 "Number of domain vars should be zero in Set kind space.");
1002 }
1003
1004 /// Constructs a relation with the specified number of dimensions and
1005 /// symbols.
1007 : IntegerPolyhedron(/*numReservedInequalities=*/0,
1008 /*numReservedEqualities=*/0,
1009 /*numReservedCols=*/space.getNumVars() + 1, space) {}
1010
1011 /// Constructs a relation with the specified number of dimensions and symbols
1012 /// and adds the given inequalities.
1014 const IntMatrix &inequalities)
1016 for (unsigned i = 0, e = inequalities.getNumRows(); i < e; i++)
1017 addInequality(inequalities.getRow(i));
1018 }
1019
1020 /// Constructs a relation with the specified number of dimensions and symbols
1021 /// and adds the given inequalities, after normalizing row-wise to integer
1022 /// values.
1024 const FracMatrix &inequalities)
1026 IntMatrix ineqsNormalized = inequalities.normalizeRows();
1027 for (unsigned i = 0, e = inequalities.getNumRows(); i < e; i++)
1028 addInequality(ineqsNormalized.getRow(i));
1029 }
1030
1031 /// Construct a set from an IntegerRelation. The relation should have
1032 /// no domain vars.
1034 : IntegerRelation(rel) {
1035 assert(space.getNumDomainVars() == 0 &&
1036 "Number of domain vars should be zero in Set kind space.");
1037 }
1038
1039 /// Construct a set from an IntegerRelation, but instead of creating a copy,
1040 /// use move constructor. The relation should have no domain vars.
1042 assert(space.getNumDomainVars() == 0 &&
1043 "Number of domain vars should be zero in Set kind space.");
1044 }
1045
1046 /// Return a system with no constraints, i.e., one which is satisfied by all
1047 /// points.
1051
1052 /// Return the kind of this IntegerRelation.
1053 Kind getKind() const override { return Kind::IntegerPolyhedron; }
1054
1055 static bool classof(const IntegerRelation *cst) {
1056 return cst->getKind() >= Kind::IntegerPolyhedron &&
1058 }
1059
1060 // Clones this object.
1061 std::unique_ptr<IntegerPolyhedron> clone() const;
1062
1063 /// Insert `num` variables of the specified kind at position `pos`.
1064 /// Positions are relative to the kind of variable. Return the absolute
1065 /// column position (i.e., not relative to the kind of variable) of the
1066 /// first added variable.
1067 unsigned insertVar(VarKind kind, unsigned pos, unsigned num = 1) override;
1068
1069 /// Return the intersection of the two relations.
1070 /// If there are locals, they will be merged.
1071 IntegerPolyhedron intersect(const IntegerPolyhedron &other) const;
1072
1073 /// Return the set difference of this set and the given set, i.e.,
1074 /// return `this \ set`.
1075 PresburgerSet subtract(const PresburgerSet &other) const;
1076};
1077
1078} // namespace presburger
1079} // namespace mlir
1080
1081#endif // MLIR_ANALYSIS_PRESBURGER_INTEGERRELATION_H
return success()
Class storing division representation of local variables of a constraint system.
Definition Utils.h:117
An Identifier stores a pointer to an object, such as a Value or an Operation.
An IntegerPolyhedron represents the set of points from a PresburgerSpace that satisfy a list of affin...
IntegerPolyhedron(IntegerRelation &&rel)
Construct a set from an IntegerRelation, but instead of creating a copy, use move constructor.
IntegerPolyhedron(const IntegerRelation &rel)
Construct a set from an IntegerRelation.
static bool classof(const IntegerRelation *cst)
IntegerPolyhedron(const PresburgerSpace &space, const FracMatrix &inequalities)
Constructs a relation with the specified number of dimensions and symbols and adds the given inequali...
IntegerPolyhedron intersect(const IntegerPolyhedron &other) const
Return the intersection of the two relations.
IntegerPolyhedron(const PresburgerSpace &space, const IntMatrix &inequalities)
Constructs a relation with the specified number of dimensions and symbols and adds the given inequali...
Kind getKind() const override
Return the kind of this IntegerRelation.
unsigned insertVar(VarKind kind, unsigned pos, unsigned num=1) override
Insert num variables of the specified kind at position pos.
PresburgerSet subtract(const PresburgerSet &other) const
Return the set difference of this set and the given set, i.e., return this \ set.
IntegerPolyhedron(const PresburgerSpace &space)
Constructs a relation with the specified number of dimensions and symbols.
IntegerPolyhedron(unsigned numReservedInequalities, unsigned numReservedEqualities, unsigned numReservedCols, const PresburgerSpace &space)
Constructs a set reserving memory for the specified number of constraints and variables.
std::unique_ptr< IntegerPolyhedron > clone() const
static IntegerPolyhedron getUniverse(const PresburgerSpace &space)
Return a system with no constraints, i.e., one which is satisfied by all points.
An IntegerRelation represents the set of points from a PresburgerSpace that satisfy a list of affine ...
DynamicAPInt & atIneq(unsigned i, unsigned j)
Kind
All derived classes of IntegerRelation.
std::optional< DynamicAPInt > getConstantBoundOnDimSize(unsigned pos, SmallVectorImpl< DynamicAPInt > *lb=nullptr, DynamicAPInt *boundFloorDivisor=nullptr, SmallVectorImpl< DynamicAPInt > *ub=nullptr, unsigned *minLbPos=nullptr, unsigned *minUbPos=nullptr) const
Returns the smallest known constant bound for the extent of the specified variable (pos^th),...
void setId(VarKind kind, unsigned i, Identifier id)
Set the identifier for the ith variable of the specified kind of the IntegerRelation's PresburgerSpac...
void addInequality(ArrayRef< int64_t > inEq)
virtual void swapVar(unsigned posA, unsigned posB)
Swap the posA^th variable with the posB^th variable.
void setAndEliminate(unsigned pos, ArrayRef< int64_t > values)
auto iterVarKind(VarKind kind)
Return an interator over the variables of the specified kind starting at the relevant offset.
SmallVector< int64_t, 8 > getEquality64(unsigned idx) const
The same, but casts to int64_t.
void removeIndependentConstraints(unsigned pos, unsigned num)
Removes constraints that are independent of (i.e., do not have a coefficient) variables in the range ...
void compose(const IntegerRelation &rel)
Let the relation this be R1, and the relation rel be R2.
int64_t atEq64(unsigned i, unsigned j) const
The same, but casts to int64_t.
void applyRange(const IntegerRelation &rel)
Given a relation rel, apply the relation to the range of this relation.
unsigned getVarKindEnd(VarKind kind) const
Return the index at Which the specified kind of vars ends.
ArrayRef< Identifier > getIds(VarKind kind)
Get the identifiers for the variables of specified varKind.
PresburgerSpace getSpaceWithoutLocals() const
Returns a copy of the space without locals.
void removeTrivialRedundancy()
Removes duplicate constraints, trivially true constraints, and constraints that can be detected as re...
unsigned addLocalModulo(ArrayRef< DynamicAPInt > exprs, const DynamicAPInt &modulus)
Adds a new local variable as the modulus of an affine function of other variables,...
static IntegerRelation getEmpty(const PresburgerSpace &space)
Return an empty system containing an invalid equation 0 = 1.
void addBound(BoundType type, unsigned pos, int64_t value)
static constexpr unsigned kExplosionFactor
A parameter that controls detection of an unrealistic number of constraints.
ArrayRef< DynamicAPInt > getEquality(unsigned idx) const
std::optional< unsigned > findConstraintWithNonZeroAt(unsigned colIdx, bool isEq) const
Finds a constraint with a non-zero coefficient at colIdx in equality (isEq=true) or inequality (isEq=...
void removeInequalityRange(unsigned start, unsigned end)
void convertVarKind(VarKind srcKind, unsigned varStart, unsigned varLimit, VarKind dstKind)
void normalizeConstraintsByGCD()
Normalized each constraints by the GCD of its coefficients.
static bool classof(const IntegerRelation *cst)
void truncate(const CountsSnapshot &counts)
virtual void eliminateRedundantLocalVar(unsigned posA, unsigned posB)
Eliminate the posB^th local variable, replacing every instance of it with the posA^th local variable.
std::optional< DynamicAPInt > computeConstantLowerOrUpperBound(unsigned pos)
Returns the constant lower bound if isLower is true, and the upper bound if isLower is false.
void removeEqualityRange(unsigned start, unsigned end)
Remove the (in)equalities at positions [start, end).
LogicalResult constantFoldVar(unsigned pos)
Tries to fold the specified variable to a constant using a trivial equality detection; if successful,...
bool isObviouslyEqual(const IntegerRelation &other) const
Perform a quick equality check on this and other.
IntegerPolyhedron getRangeSet() const
Return a set corresponding to all points in the range of the relation.
std::optional< SmallVector< DynamicAPInt, 8 > > containsPointNoLocal(ArrayRef< DynamicAPInt > point) const
Given the values of non-local vars, return a satisfying assignment to the local if one exists,...
SmallVector< int64_t, 8 > getInequality64(unsigned idx) const
unsigned getNumVarKind(VarKind kind) const
Get the number of vars of the specified kind.
bool isEmptyByGCDTest() const
Runs the GCD test on all equality constraints.
void simplify()
Simplify the constraint system by removing canonicalizing constraints and removing redundant constrai...
void convertVarKind(VarKind srcKind, unsigned varStart, unsigned varLimit, VarKind dstKind, unsigned pos)
Converts variables of kind srcKind in the range [varStart, varLimit) to variables of kind dstKind.
std::optional< int64_t > computeConstantLowerOrUpperBound64(unsigned pos)
The same, but casts to int64_t.
void addBound(BoundType type, unsigned pos, const DynamicAPInt &value)
Adds a constant bound for the specified variable.
unsigned appendVar(VarKind kind, unsigned num=1)
Append num variables of the specified kind after the last variable of that kind.
void intersectRange(const IntegerPolyhedron &poly)
Intersect the given poly with the range in-place.
ArrayRef< DynamicAPInt > getInequality(unsigned idx) const
IntegerRelation rangeProduct(const IntegerRelation &rel)
Let the relation this be R1, and the relation rel be R2.
void print(raw_ostream &os) const
unsigned addLocalFloorDiv(ArrayRef< int64_t > dividend, int64_t divisor)
bool isIntegerEmpty() const
Returns true if the set of constraints is found to have no solution, false if a solution exists.
VarKind getVarKindAt(unsigned pos) const
Return the VarKind of the var at the specified position.
void addEquality(ArrayRef< int64_t > eq)
DynamicAPInt atIneq(unsigned i, unsigned j) const
Returns the value at the specified inequality row and column.
virtual unsigned insertVar(VarKind kind, unsigned pos, unsigned num=1)
Insert num variables of the specified kind at position pos.
bool containsPoint(ArrayRef< DynamicAPInt > point) const
Returns true if the given point satisfies the constraints, or false otherwise.
std::optional< SmallVector< DynamicAPInt, 8 > > findIntegerSample() const
Find an integer sample point satisfying the constraints using a branch and bound algorithm with gener...
bool hasInvalidConstraint() const
Checks all rows of equality/inequality constraints for trivial contradictions (for example: 1 == 0,...
LogicalResult unionBoundingBox(const IntegerRelation &other)
Updates the constraints to be the smallest bounding (enclosing) box that contains the points of this ...
IntegerRelation(unsigned numReservedInequalities, unsigned numReservedEqualities, unsigned numReservedCols, const PresburgerSpace &space)
Constructs a relation reserving memory for the specified number of constraints and variables.
bool containsPoint(ArrayRef< int64_t > point) const
bool isHyperRectangular(unsigned pos, unsigned num) const
Returns true if the set can be trivially detected as being hyper-rectangular on the specified contigu...
void convertToLocal(VarKind kind, unsigned varStart, unsigned varLimit)
IntMatrix getBoundedDirections() const
Returns a matrix where each row is a vector along which the polytope is bounded.
LogicalResult gaussianEliminateVar(unsigned position)
Eliminates a single variable at position from equality and inequality constraints.
void clearConstraints()
Removes all equalities and inequalities.
int64_t atConstraint64(unsigned i, unsigned j) const
Unified indexing into the constraints.
DynamicAPInt atEq(unsigned i, unsigned j) const
Returns the value at the specified equality row and column.
std::optional< int64_t > getConstantBoundOnDimSize64(unsigned pos, SmallVectorImpl< int64_t > *lb=nullptr, int64_t *boundFloorDivisor=nullptr, SmallVectorImpl< int64_t > *ub=nullptr, unsigned *minLbPos=nullptr, unsigned *minUbPos=nullptr) const
The same, but casts to int64_t.
IntegerRelation intersect(IntegerRelation other) const
Return the intersection of the two relations.
std::optional< DynamicAPInt > computeVolume() const
Compute an overapproximation of the number of integer points in the relation.
MaybeOptimum< SmallVector< DynamicAPInt, 8 > > findIntegerLexMin() const
Same as above, but returns lexicographically minimal integer point.
const PresburgerSpace & getSpace() const
Returns a reference to the underlying space.
SymbolicLexOpt findSymbolicIntegerLexMin() const
Compute the symbolic integer lexmin of the relation.
void setSpace(const PresburgerSpace &oSpace)
Set the space to oSpace, which should have the same number of ids as the current space.
int findEqualityToConstant(unsigned pos, bool symbolic=false) const
Finds an equality that equates the specified variable to a constant.
static IntegerRelation getUniverse(const PresburgerSpace &space)
Return a system with no constraints, i.e., one which is satisfied by all points.
void inverse()
Invert the relation i.e., swap its domain and range.
void append(const IntegerRelation &other)
Appends constraints from other into this.
void applyDomain(const IntegerRelation &rel)
Given a relation rel, apply the relation to the domain of this relation.
void intersectDomain(const IntegerPolyhedron &poly)
Intersect the given poly with the domain in-place.
unsigned addLocalFloorDiv(ArrayRef< DynamicAPInt > dividend, const DynamicAPInt &divisor)
Adds a new local variable as the floordiv of an affine function of other variables,...
PresburgerRelation subtract(const PresburgerRelation &set) const
Return the set difference of this set and the given set, i.e., return this \ set.
bool isEqual(const IntegerRelation &other) const
Return whether this and other are equal.
virtual void printSpace(raw_ostream &os) const
Prints the number of constraints, dimensions, symbols and locals in the IntegerRelation.
void addEquality(ArrayRef< DynamicAPInt > eq)
Adds an equality from the coefficients specified in eq.
void setDimSymbolSeparation(unsigned newSymbolCount)
Changes the partition between dimensions and symbols.
void removeRedundantConstraints()
Removes redundant constraints using Simplex.
PresburgerRelation computeReprWithOnlyDivLocals() const
Compute an equivalent representation of the same set, such that all local vars in all disjuncts have ...
void removeRedundantInequalities()
A more expensive check than removeTrivialRedundancy to detect redundant inequalities.
bool isObviouslyEmpty() const
Performs GCD checks and invalid constraint checks.
DynamicAPInt & atEq(unsigned i, unsigned j)
IntMatrix equalities
Coefficients of affine equalities (in == 0 form).
SymbolicLexOpt findSymbolicIntegerLexMax() const
Same as findSymbolicIntegerLexMin but produces lexmax instead of lexmin.
bool gaussianEliminate()
Perform a Gaussian elimination operation to reduce all equations to standard form.
std::optional< SmallVector< DynamicAPInt, 8 > > containsPointNoLocal(ArrayRef< int64_t > point) const
void truncateVarKind(VarKind kind, unsigned num)
Truncate the vars of the specified kind to the specified number by dropping some vars at the end.
virtual Kind getKind() const
Return the kind of this IntegerRelation.
void constantFoldVarRange(unsigned pos, unsigned num)
This method calls constantFoldVar for the specified range of variables, num variables starting at pos...
bool isEmpty() const
Checks for emptiness by performing variable elimination on all variables, running the GCD test on eac...
unsigned getNumCols() const
Returns the number of columns in the constraint system.
IntegerRelation(const PresburgerSpace &space)
Constructs a relation with the specified number of dimensions and symbols.
void getLowerAndUpperBoundIndices(unsigned pos, SmallVectorImpl< unsigned > *lbIndices, SmallVectorImpl< unsigned > *ubIndices, SmallVectorImpl< unsigned > *eqIndices=nullptr, unsigned offset=0, unsigned num=0) const
Gather positions of all lower and upper bounds of the variable at pos, and optionally any equalities ...
void gcdTightenInequalities()
Tightens inequalities given that we are dealing with integer spaces.
void removeVar(VarKind kind, unsigned pos)
Removes variables of the specified kind with the specified pos (or within the specified range) from t...
void setSpaceExceptLocals(const PresburgerSpace &oSpace)
Set the space to oSpace, which should not have any local ids.
unsigned gaussianEliminateVars(unsigned posStart, unsigned posLimit)
Eliminates variables from equality and inequality constraints in column range [posStart,...
void mergeAndCompose(const IntegerRelation &other)
Given a relation other: (A -> B), this operation merges the symbol and local variables and then takes...
IntegerPolyhedron getDomainSet() const
Return a set corresponding to all points in the domain of the relation.
void addBound(BoundType type, ArrayRef< int64_t > expr, int64_t value)
DivisionRepr getLocalReprs(std::vector< MaybeLocalRepr > *repr=nullptr) const
Returns a DivisonRepr representing the division representation of local variables in the constraint s...
bool hasOnlyDivLocals() const
Check whether all local ids have a division representation.
std::optional< DynamicAPInt > getConstantBound(BoundType type, unsigned pos) const
Returns the constant bound for the pos^th variable if there is one; std::nullopt otherwise.
virtual void clearAndCopyFrom(const IntegerRelation &other)
Replaces the contents of this IntegerRelation with other.
void projectOut(unsigned pos, unsigned num)
Projects out (aka eliminates) num variables starting at position pos.
void addInequality(ArrayRef< DynamicAPInt > inEq)
Adds an inequality (>= 0) from the coefficients specified in inEq.
unsigned getVarKindOverlap(VarKind kind, unsigned varStart, unsigned varLimit) const
Get the number of elements of the specified kind in the range [varStart, varLimit).
void mergeAndAlignSymbols(IntegerRelation &other)
Merge and align symbol variables of this and other with respect to identifiers.
void removeRedundantLocalVars()
Removes local variables using equalities.
unsigned mergeLocalVars(IntegerRelation &other)
Adds additional local vars to the sets such that they both have the union of the local vars in each s...
virtual ~IntegerRelation()=default
MaybeOptimum< SmallVector< Fraction, 8 > > findRationalLexMin() const
Get the lexicographically minimum rational point satisfying the constraints.
DynamicAPInt & atConstraint(unsigned i, unsigned j)
IntMatrix inequalities
Coefficients of affine inequalities (in >= 0 form).
virtual bool hasConsistentState() const
Returns false if the fields corresponding to various variable counts, or equality/inequality buffer s...
unsigned addLocalModulo(ArrayRef< int64_t > exprs, int64_t modulus)
std::optional< int64_t > getConstantBound64(BoundType type, unsigned pos) const
The same, but casts to int64_t.
bool isSubsetOf(const IntegerRelation &other) const
Return whether this is a subset of the given IntegerRelation.
std::unique_ptr< IntegerRelation > clone() const
void setAndEliminate(unsigned pos, ArrayRef< DynamicAPInt > values)
Sets the values.size() variables starting at pos to the specified values and removes them.
bool isColZero(unsigned pos) const
Returns true if the pos^th column is all zero for both inequalities and equalities.
void pruneOrthogonalConstraints(unsigned pos)
The function removes some constraints that do not impose any bound on the specified variable.
unsigned getVarKindOffset(VarKind kind) const
Return the index at which the specified kind of vars starts.
int64_t atIneq64(unsigned i, unsigned j) const
The same, but casts to int64_t.
virtual void removeVarRange(VarKind kind, unsigned varStart, unsigned varLimit)
virtual void fourierMotzkinEliminate(unsigned pos, bool darkShadow=false, bool *isResultIntegerExact=nullptr)
Eliminates the variable at the specified position using Fourier-Motzkin variable elimination,...
bool removeDuplicateConstraints()
Checks for identical inequalities and eliminates redundant inequalities.
MutableArrayRef< T > getRow(unsigned row)
Get a [Mutable]ArrayRef corresponding to the specified row.
Definition Matrix.cpp:130
A PresburgerRelation represents a union of IntegerRelations that live in the same PresburgerSpace wit...
PresburgerSpace is the space of all possible values of a tuple of integer valued variables/variables.
static PresburgerSpace getRelationSpace(unsigned numDomain=0, unsigned numRange=0, unsigned numSymbols=0, unsigned numLocals=0)
BoundType
The type of bound: equal, lower bound or upper bound.
VarKind
Kind of variable.
SmallVector< DynamicAPInt, 8 > getDynamicAPIntVec(ArrayRef< int64_t > range)
Check if the pos^th variable can be expressed as a floordiv of an affine function of other variables ...
Definition Utils.cpp:522
llvm::raw_ostream & operator<<(llvm::raw_ostream &os, const Fraction &x)
Definition Fraction.h:161
SmallVector< int64_t, 8 > getInt64Vec(ArrayRef< DynamicAPInt > range)
Return the given array as an array of int64_t.
Definition Utils.cpp:528
Include the generated interface declarations.
CountsSnapshot(const PresburgerSpace &space, unsigned numIneqs, unsigned numEqs)
Represents the result of a symbolic lexicographic optimization computation.
Definition Simplex.h:529
Eliminates variable at the specified position using Fourier-Motzkin variable elimination.