MLIR 22.0.0git
IntegerRelation.cpp
Go to the documentation of this file.
1//===- IntegerRelation.cpp - MLIR IntegerRelation Class ---------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// A class to represent an relation over integer tuples. A relation is
10// represented as a constraint system over a space of tuples of integer valued
11// variables supporting symbolic variables and existential quantification.
12//
13//===----------------------------------------------------------------------===//
14
23#include "llvm/ADT/DenseMap.h"
24#include "llvm/ADT/STLExtras.h"
25#include "llvm/ADT/Sequence.h"
26#include "llvm/ADT/SmallBitVector.h"
27#include "llvm/Support/Debug.h"
28#include "llvm/Support/DebugLog.h"
29#include "llvm/Support/raw_ostream.h"
30#include <algorithm>
31#include <cassert>
32#include <functional>
33#include <memory>
34#include <optional>
35#include <utility>
36#include <vector>
37
38#define DEBUG_TYPE "presburger"
39
40using namespace mlir;
41using namespace presburger;
42
43using llvm::SmallDenseMap;
44
45std::unique_ptr<IntegerRelation> IntegerRelation::clone() const {
46 return std::make_unique<IntegerRelation>(*this);
47}
48
49std::unique_ptr<IntegerPolyhedron> IntegerPolyhedron::clone() const {
50 return std::make_unique<IntegerPolyhedron>(*this);
51}
52
54 assert(space.getNumVars() == oSpace.getNumVars() && "invalid space!");
55 space = oSpace;
56}
57
59 assert(oSpace.getNumLocalVars() == 0 && "no locals should be present!");
60 assert(oSpace.getNumVars() <= getNumVars() && "invalid space!");
61 unsigned newNumLocals = getNumVars() - oSpace.getNumVars();
62 space = oSpace;
63 space.insertVar(VarKind::Local, 0, newNumLocals);
64}
65
66void IntegerRelation::setId(VarKind kind, unsigned i, Identifier id) {
67 assert(space.isUsingIds() &&
68 "space must be using identifiers to set an identifier");
69 assert(kind != VarKind::Local && "local variables cannot have identifiers");
70 assert(i < space.getNumVarKind(kind) && "invalid variable index");
71 space.setId(kind, i, id);
72}
73
75 if (!space.isUsingIds())
76 space.resetIds();
77 return space.getIds(kind);
78}
79
81 assert(space.isEqual(other.getSpace()) && "Spaces must be equal.");
82
83 inequalities.reserveRows(inequalities.getNumRows() +
84 other.getNumInequalities());
85 equalities.reserveRows(equalities.getNumRows() + other.getNumEqualities());
86
87 for (unsigned r = 0, e = other.getNumInequalities(); r < e; r++) {
89 }
90 for (unsigned r = 0, e = other.getNumEqualities(); r < e; r++) {
91 addEquality(other.getEquality(r));
92 }
93}
94
96 IntegerRelation result = *this;
97 result.mergeLocalVars(other);
98 result.append(other);
99 return result;
100}
101
103 assert(space.isCompatible(other.getSpace()) && "Spaces must be compatible.");
104 return PresburgerRelation(*this).isEqual(PresburgerRelation(other));
105}
106
108 if (!space.isEqual(other.getSpace()))
109 return false;
110 if (getNumEqualities() != other.getNumEqualities())
111 return false;
112 if (getNumInequalities() != other.getNumInequalities())
113 return false;
114
115 unsigned cols = getNumCols();
116 for (unsigned i = 0, eqs = getNumEqualities(); i < eqs; ++i) {
117 for (unsigned j = 0; j < cols; ++j) {
118 if (atEq(i, j) != other.atEq(i, j))
119 return false;
120 }
121 }
122 for (unsigned i = 0, ineqs = getNumInequalities(); i < ineqs; ++i) {
123 for (unsigned j = 0; j < cols; ++j) {
124 if (atIneq(i, j) != other.atIneq(i, j))
125 return false;
126 }
127 }
128 return true;
129}
130
132 assert(space.isCompatible(other.getSpace()) && "Spaces must be compatible.");
134}
135
138 assert(getNumSymbolVars() == 0 && "Symbols are not supported!");
141
142 if (!maybeLexMin.isBounded())
143 return maybeLexMin;
144
145 // The Simplex returns the lexmin over all the variables including locals. But
146 // locals are not actually part of the space and should not be returned in the
147 // result. Since the locals are placed last in the list of variables, they
148 // will be minimized last in the lexmin. So simply truncating out the locals
149 // from the end of the answer gives the desired lexmin over the dimensions.
150 assert(maybeLexMin->size() == getNumVars() &&
151 "Incorrect number of vars in lexMin!");
152 maybeLexMin->resize(getNumDimAndSymbolVars());
153 return maybeLexMin;
154}
155
158 assert(getNumSymbolVars() == 0 && "Symbols are not supported!");
161
162 if (!maybeLexMin.isBounded())
163 return maybeLexMin.getKind();
164
165 // The Simplex returns the lexmin over all the variables including locals. But
166 // locals are not actually part of the space and should not be returned in the
167 // result. Since the locals are placed last in the list of variables, they
168 // will be minimized last in the lexmin. So simply truncating out the locals
169 // from the end of the answer gives the desired lexmin over the dimensions.
170 assert(maybeLexMin->size() == getNumVars() &&
171 "Incorrect number of vars in lexMin!");
172 maybeLexMin->resize(getNumDimAndSymbolVars());
173 return maybeLexMin;
174}
175
177 return llvm::all_of(range, [](const DynamicAPInt &x) { return x == 0; });
178}
179
181 unsigned begin, unsigned count) {
182 // We loop until i > 0 and index into i - 1 to avoid sign issues.
183 //
184 // We iterate backwards so that whether we remove constraint i - 1 or not, the
185 // next constraint to be tested is always i - 2.
186 for (unsigned i = poly.getNumEqualities(); i > 0; i--)
187 if (!rangeIsZero(poly.getEquality(i - 1).slice(begin, count)))
188 poly.removeEquality(i - 1);
189 for (unsigned i = poly.getNumInequalities(); i > 0; i--)
190 if (!rangeIsZero(poly.getInequality(i - 1).slice(begin, count)))
191 poly.removeInequality(i - 1);
192}
193
197
199 unsigned curNum = getNumVarKind(kind);
200 assert(num <= curNum && "Can't truncate to more vars!");
201 removeVarRange(kind, num, curNum);
202}
203
205 const CountsSnapshot &counts) {
206 truncateVarKind(kind, counts.getSpace().getNumVarKind(kind));
207}
208
217
219 // If there are no locals, we're done.
220 if (getNumLocalVars() == 0)
221 return PresburgerRelation(*this);
222
223 // Move all the non-div locals to the end, as the current API to
224 // SymbolicLexOpt requires these to form a contiguous range.
225 //
226 // Take a copy so we can perform mutations.
227 IntegerRelation copy = *this;
228 std::vector<MaybeLocalRepr> reprs(getNumLocalVars());
229 copy.getLocalReprs(&reprs);
230
231 // Iterate through all the locals. The last `numNonDivLocals` are the locals
232 // that have been scanned already and do not have division representations.
233 unsigned numNonDivLocals = 0;
234 unsigned offset = copy.getVarKindOffset(VarKind::Local);
235 for (unsigned i = 0, e = copy.getNumLocalVars(); i < e - numNonDivLocals;) {
236 if (!reprs[i]) {
237 // Whenever we come across a local that does not have a division
238 // representation, we swap it to the `numNonDivLocals`-th last position
239 // and increment `numNonDivLocal`s. `reprs` also needs to be swapped.
240 copy.swapVar(offset + i, offset + e - numNonDivLocals - 1);
241 std::swap(reprs[i], reprs[e - numNonDivLocals - 1]);
242 ++numNonDivLocals;
243 continue;
244 }
245 ++i;
246 }
247
248 // If there are no non-div locals, we're done.
249 if (numNonDivLocals == 0)
250 return PresburgerRelation(*this);
251
252 // We computeSymbolicIntegerLexMin by considering the non-div locals as
253 // "non-symbols" and considering everything else as "symbols". This will
254 // compute a function mapping assignments to "symbols" to the
255 // lexicographically minimal valid assignment of "non-symbols", when a
256 // satisfying assignment exists. It separately returns the set of assignments
257 // to the "symbols" such that a satisfying assignment to the "non-symbols"
258 // exists but the lexmin is unbounded. We basically want to find the set of
259 // values of the "symbols" such that an assignment to the "non-symbols"
260 // exists, which is the union of the domain of the returned lexmin function
261 // and the returned set of assignments to the "symbols" that makes the lexmin
262 // unbounded.
263 SymbolicLexOpt lexminResult =
264 SymbolicLexSimplex(copy, /*symbolOffset*/ 0,
266 /*numDims=*/copy.getNumVars() - numNonDivLocals)))
269 lexminResult.lexopt.getDomain().unionSet(lexminResult.unboundedDomain);
270
271 // The result set might lie in the wrong space -- all its ids are dims.
272 // Set it to the desired space and return.
274 space.removeVarRange(VarKind::Local, 0, getNumLocalVars());
275 result.setSpace(space);
276 return result;
277}
278
280 // Symbol and Domain vars will be used as symbols for symbolic lexmin.
281 // In other words, for every value of the symbols and domain, return the
282 // lexmin value of the (range, locals).
283 llvm::SmallBitVector isSymbol(getNumVars(), false);
284 isSymbol.set(getVarKindOffset(VarKind::Symbol),
286 isSymbol.set(getVarKindOffset(VarKind::Domain),
288 // Compute the symbolic lexmin of the dims and locals, with the symbols being
289 // the actual symbols of this set.
290 // The resultant space of lexmin is the space of the relation itself.
292 SymbolicLexSimplex(*this,
294 /*numDims=*/getNumDomainVars(),
295 /*numSymbols=*/getNumSymbolVars())),
296 isSymbol)
298
299 // We want to return only the lexmin over the dims, so strip the locals from
300 // the computed lexmin.
301 result.lexopt.removeOutputs(result.lexopt.getNumOutputs() - getNumLocalVars(),
302 result.lexopt.getNumOutputs());
303 return result;
304}
305
306/// findSymbolicIntegerLexMax is implemented using findSymbolicIntegerLexMin as
307/// follows:
308/// 1. A new relation is created which is `this` relation with the sign of
309/// each dimension variable in range flipped;
310/// 2. findSymbolicIntegerLexMin is called on the range negated relation to
311/// compute the negated lexmax of `this` relation;
312/// 3. The sign of the negated lexmax is flipped and returned.
314 IntegerRelation flippedRel = *this;
315 // Flip range sign by flipping the sign of range variables in all constraints.
316 for (unsigned j = getNumDomainVars(),
318 j < b; j++) {
319 for (unsigned i = 0, a = getNumEqualities(); i < a; i++)
320 flippedRel.atEq(i, j) = -1 * atEq(i, j);
321 for (unsigned i = 0, a = getNumInequalities(); i < a; i++)
322 flippedRel.atIneq(i, j) = -1 * atIneq(i, j);
323 }
324 // Compute negated lexmax by computing lexmin.
325 SymbolicLexOpt flippedSymbolicIntegerLexMax =
326 flippedRel.findSymbolicIntegerLexMin(),
327 symbolicIntegerLexMax(
328 flippedSymbolicIntegerLexMax.lexopt.getSpace());
329 // Get lexmax by flipping range sign in the PWMA constraints.
330 for (auto &flippedPiece :
331 flippedSymbolicIntegerLexMax.lexopt.getAllPieces()) {
332 IntMatrix mat = flippedPiece.output.getOutputMatrix();
333 for (unsigned i = 0, e = mat.getNumRows(); i < e; i++)
334 mat.negateRow(i);
335 MultiAffineFunction maf(flippedPiece.output.getSpace(), mat);
336 PWMAFunction::Piece piece = {flippedPiece.domain, maf};
337 symbolicIntegerLexMax.lexopt.addPiece(piece);
338 }
339 symbolicIntegerLexMax.unboundedDomain =
340 flippedSymbolicIntegerLexMax.unboundedDomain;
341 return symbolicIntegerLexMax;
342}
343
346 return PresburgerRelation(*this).subtract(set);
347}
348
349unsigned IntegerRelation::insertVar(VarKind kind, unsigned pos, unsigned num) {
350 assert(pos <= getNumVarKind(kind));
351
352 unsigned insertPos = space.insertVar(kind, pos, num);
353 inequalities.insertColumns(insertPos, num);
354 equalities.insertColumns(insertPos, num);
355 return insertPos;
356}
357
358unsigned IntegerRelation::appendVar(VarKind kind, unsigned num) {
359 unsigned pos = getNumVarKind(kind);
360 return insertVar(kind, pos, num);
361}
362
364 assert(eq.size() == getNumCols());
365 unsigned row = equalities.appendExtraRow();
366 for (unsigned i = 0, e = eq.size(); i < e; ++i)
367 equalities(row, i) = eq[i];
368}
369
371 assert(inEq.size() == getNumCols());
372 unsigned row = inequalities.appendExtraRow();
373 for (unsigned i = 0, e = inEq.size(); i < e; ++i)
374 inequalities(row, i) = inEq[i];
375}
376
377void IntegerRelation::removeVar(VarKind kind, unsigned pos) {
378 removeVarRange(kind, pos, pos + 1);
379}
380
381void IntegerRelation::removeVar(unsigned pos) { removeVarRange(pos, pos + 1); }
382
383void IntegerRelation::removeVarRange(VarKind kind, unsigned varStart,
384 unsigned varLimit) {
385 assert(varLimit <= getNumVarKind(kind));
386
387 if (varStart >= varLimit)
388 return;
389
390 // Remove eliminated variables from the constraints.
391 unsigned offset = getVarKindOffset(kind);
392 equalities.removeColumns(offset + varStart, varLimit - varStart);
393 inequalities.removeColumns(offset + varStart, varLimit - varStart);
394
395 // Remove eliminated variables from the space.
396 space.removeVarRange(kind, varStart, varLimit);
397}
398
399void IntegerRelation::removeVarRange(unsigned varStart, unsigned varLimit) {
400 assert(varLimit <= getNumVars());
401
402 if (varStart >= varLimit)
403 return;
404
405 // Helper function to remove vars of the specified kind in the given range
406 // [start, limit), The range is absolute (i.e. it is not relative to the kind
407 // of variable). Also updates `limit` to reflect the deleted variables.
408 auto removeVarKindInRange = [this](VarKind kind, unsigned &start,
409 unsigned &limit) {
410 if (start >= limit)
411 return;
412
413 unsigned offset = getVarKindOffset(kind);
414 unsigned num = getNumVarKind(kind);
415
416 // Get `start`, `limit` relative to the specified kind.
417 unsigned relativeStart =
418 start <= offset ? 0 : std::min(num, start - offset);
419 unsigned relativeLimit =
420 limit <= offset ? 0 : std::min(num, limit - offset);
421
422 // Remove vars of the specified kind in the relative range.
423 removeVarRange(kind, relativeStart, relativeLimit);
424
425 // Update `limit` to reflect deleted variables.
426 // `start` does not need to be updated because any variables that are
427 // deleted are after position `start`.
428 limit -= relativeLimit - relativeStart;
429 };
430
431 removeVarKindInRange(VarKind::Domain, varStart, varLimit);
432 removeVarKindInRange(VarKind::Range, varStart, varLimit);
433 removeVarKindInRange(VarKind::Symbol, varStart, varLimit);
434 removeVarKindInRange(VarKind::Local, varStart, varLimit);
435}
436
438 equalities.removeRow(pos);
439}
440
442 inequalities.removeRow(pos);
443}
444
445void IntegerRelation::removeEqualityRange(unsigned start, unsigned end) {
446 if (start >= end)
447 return;
448 equalities.removeRows(start, end - start);
449}
450
451void IntegerRelation::removeInequalityRange(unsigned start, unsigned end) {
452 if (start >= end)
453 return;
454 inequalities.removeRows(start, end - start);
455}
456
457void IntegerRelation::swapVar(unsigned posA, unsigned posB) {
458 assert(posA < getNumVars() && "invalid position A");
459 assert(posB < getNumVars() && "invalid position B");
460
461 if (posA == posB)
462 return;
463
464 VarKind kindA = space.getVarKindAt(posA);
465 VarKind kindB = space.getVarKindAt(posB);
466 unsigned relativePosA = posA - getVarKindOffset(kindA);
467 unsigned relativePosB = posB - getVarKindOffset(kindB);
468 space.swapVar(kindA, kindB, relativePosA, relativePosB);
469
470 inequalities.swapColumns(posA, posB);
471 equalities.swapColumns(posA, posB);
472}
473
475 equalities.resizeVertically(0);
476 inequalities.resizeVertically(0);
477}
478
479/// Gather all lower and upper bounds of the variable at `pos`, and
480/// optionally any equalities on it. In addition, the bounds are to be
481/// independent of variables in position range [`offset`, `offset` + `num`).
483 unsigned pos, SmallVectorImpl<unsigned> *lbIndices,
485 unsigned offset, unsigned num) const {
486 assert(pos < getNumVars() && "invalid position");
487 assert(offset + num < getNumCols() && "invalid range");
488
489 // Checks for a constraint that has a non-zero coeff for the variables in
490 // the position range [offset, offset + num) while ignoring `pos`.
491 auto containsConstraintDependentOnRange = [&](unsigned r, bool isEq) {
492 unsigned c, f;
493 auto cst = isEq ? getEquality(r) : getInequality(r);
494 for (c = offset, f = offset + num; c < f; ++c) {
495 if (c == pos)
496 continue;
497 if (cst[c] != 0)
498 break;
499 }
500 return c < f;
501 };
502
503 // Gather all lower bounds and upper bounds of the variable. Since the
504 // canonical form c_1*x_1 + c_2*x_2 + ... + c_0 >= 0, a constraint is a lower
505 // bound for x_i if c_i >= 1, and an upper bound if c_i <= -1.
506 for (unsigned r = 0, e = getNumInequalities(); r < e; r++) {
507 // The bounds are to be independent of [offset, offset + num) columns.
508 if (containsConstraintDependentOnRange(r, /*isEq=*/false))
509 continue;
510 if (atIneq(r, pos) >= 1) {
511 // Lower bound.
512 lbIndices->emplace_back(r);
513 } else if (atIneq(r, pos) <= -1) {
514 // Upper bound.
515 ubIndices->emplace_back(r);
516 }
517 }
518
519 // An equality is both a lower and upper bound. Record any equalities
520 // involving the pos^th variable.
521 if (!eqIndices)
522 return;
523
524 for (unsigned r = 0, e = getNumEqualities(); r < e; r++) {
525 if (atEq(r, pos) == 0)
526 continue;
527 if (containsConstraintDependentOnRange(r, /*isEq=*/true))
528 continue;
529 eqIndices->emplace_back(r);
530 }
531}
532
534 if (!inequalities.hasConsistentState())
535 return false;
536 if (!equalities.hasConsistentState())
537 return false;
538 return true;
539}
540
542 ArrayRef<DynamicAPInt> values) {
543 if (values.empty())
544 return;
545 assert(pos + values.size() <= getNumVars() &&
546 "invalid position or too many values");
547 // Setting x_j = p in sum_i a_i x_i + c is equivalent to adding p*a_j to the
548 // constant term and removing the var x_j. We do this for all the vars
549 // pos, pos + 1, ... pos + values.size() - 1.
550 unsigned constantColPos = getNumCols() - 1;
551 for (unsigned i = 0, numVals = values.size(); i < numVals; ++i)
552 inequalities.addToColumn(i + pos, constantColPos, values[i]);
553 for (unsigned i = 0, numVals = values.size(); i < numVals; ++i)
554 equalities.addToColumn(i + pos, constantColPos, values[i]);
555 removeVarRange(pos, pos + values.size());
556}
557
559 *this = other;
560}
561
562std::optional<unsigned>
563IntegerRelation::findConstraintWithNonZeroAt(unsigned colIdx, bool isEq) const {
564 assert(colIdx < getNumCols() && "position out of bounds");
565 auto at = [&](unsigned rowIdx) -> DynamicAPInt {
566 return isEq ? atEq(rowIdx, colIdx) : atIneq(rowIdx, colIdx);
567 };
568 unsigned e = isEq ? getNumEqualities() : getNumInequalities();
569 for (unsigned rowIdx = 0; rowIdx < e; ++rowIdx) {
570 if (at(rowIdx) != 0)
571 return rowIdx;
572 }
573 return std::nullopt;
574}
575
577 for (unsigned i = 0, e = getNumEqualities(); i < e; ++i)
578 equalities.normalizeRow(i);
579 for (unsigned i = 0, e = getNumInequalities(); i < e; ++i)
580 inequalities.normalizeRow(i);
581}
582
584 assert(hasConsistentState());
585 auto check = [&](bool isEq) -> bool {
586 unsigned numCols = getNumCols();
587 unsigned numRows = isEq ? getNumEqualities() : getNumInequalities();
588 for (unsigned i = 0, e = numRows; i < e; ++i) {
589 unsigned j;
590 for (j = 0; j < numCols - 1; ++j) {
591 DynamicAPInt v = isEq ? atEq(i, j) : atIneq(i, j);
592 // Skip rows with non-zero variable coefficients.
593 if (v != 0)
594 break;
595 }
596 if (j < numCols - 1) {
597 continue;
598 }
599 // Check validity of constant term at 'numCols - 1' w.r.t 'isEq'.
600 // Example invalid constraints include: '1 == 0' or '-1 >= 0'
601 DynamicAPInt v = isEq ? atEq(i, numCols - 1) : atIneq(i, numCols - 1);
602 if ((isEq && v != 0) || (!isEq && v < 0)) {
603 return true;
604 }
605 }
606 return false;
607 };
608 if (check(/*isEq=*/true))
609 return true;
610 return check(/*isEq=*/false);
611}
612
613/// Eliminate variable from constraint at `rowIdx` based on coefficient at
614/// pivotRow, pivotCol. Columns in range [elimColStart, pivotCol) will not be
615/// updated as they have already been eliminated.
617 unsigned rowIdx, unsigned pivotRow,
618 unsigned pivotCol, unsigned elimColStart,
619 bool isEq) {
620 // Skip if equality 'rowIdx' if same as 'pivotRow'.
621 if (isEq && rowIdx == pivotRow)
622 return;
623 auto at = [&](unsigned i, unsigned j) -> DynamicAPInt {
624 return isEq ? constraints->atEq(i, j) : constraints->atIneq(i, j);
625 };
626 DynamicAPInt leadCoeff = at(rowIdx, pivotCol);
627 // Skip if leading coefficient at 'rowIdx' is already zero.
628 if (leadCoeff == 0)
629 return;
630 DynamicAPInt pivotCoeff = constraints->atEq(pivotRow, pivotCol);
631 int sign = (leadCoeff * pivotCoeff > 0) ? -1 : 1;
632 DynamicAPInt lcm = llvm::lcm(pivotCoeff, leadCoeff);
633 DynamicAPInt pivotMultiplier = sign * (lcm / abs(pivotCoeff));
634 DynamicAPInt rowMultiplier = lcm / abs(leadCoeff);
635
636 unsigned numCols = constraints->getNumCols();
637 for (unsigned j = 0; j < numCols; ++j) {
638 // Skip updating column 'j' if it was just eliminated.
639 if (j >= elimColStart && j < pivotCol)
640 continue;
641 DynamicAPInt v = pivotMultiplier * constraints->atEq(pivotRow, j) +
642 rowMultiplier * at(rowIdx, j);
643 isEq ? constraints->atEq(rowIdx, j) = v
644 : constraints->atIneq(rowIdx, j) = v;
645 }
646}
647
648/// Returns the position of the variable that has the minimum <number of lower
649/// bounds> times <number of upper bounds> from the specified range of
650/// variables [start, end). It is often best to eliminate in the increasing
651/// order of these counts when doing Fourier-Motzkin elimination since FM adds
652/// that many new constraints.
653static unsigned getBestVarToEliminate(const IntegerRelation &cst,
654 unsigned start, unsigned end) {
655 assert(start < cst.getNumVars() && end < cst.getNumVars() + 1);
656
657 auto getProductOfNumLowerUpperBounds = [&](unsigned pos) {
658 unsigned numLb = 0;
659 unsigned numUb = 0;
660 for (unsigned r = 0, e = cst.getNumInequalities(); r < e; r++) {
661 if (cst.atIneq(r, pos) > 0) {
662 ++numLb;
663 } else if (cst.atIneq(r, pos) < 0) {
664 ++numUb;
665 }
666 }
667 return numLb * numUb;
668 };
669
670 unsigned minLoc = start;
671 unsigned min = getProductOfNumLowerUpperBounds(start);
672 for (unsigned c = start + 1; c < end; c++) {
673 unsigned numLbUbProduct = getProductOfNumLowerUpperBounds(c);
674 if (numLbUbProduct < min) {
675 min = numLbUbProduct;
676 minLoc = c;
677 }
678 }
679 return minLoc;
680}
681
682// Checks for emptiness of the set by eliminating variables successively and
683// using the GCD test (on all equality constraints) and checking for trivially
684// invalid constraints. Returns 'true' if the constraint system is found to be
685// empty; false otherwise.
688 return true;
689
690 IntegerRelation tmpCst(*this);
691
692 // First, eliminate as many local variables as possible using equalities.
694 if (tmpCst.isEmptyByGCDTest() || tmpCst.hasInvalidConstraint())
695 return true;
696
697 // Eliminate as many variables as possible using Gaussian elimination.
698 unsigned currentPos = 0;
699 while (currentPos < tmpCst.getNumVars()) {
700 tmpCst.gaussianEliminateVars(currentPos, tmpCst.getNumVars());
701 ++currentPos;
702 // We check emptiness through trivial checks after eliminating each ID to
703 // detect emptiness early. Since the checks isEmptyByGCDTest() and
704 // hasInvalidConstraint() are linear time and single sweep on the constraint
705 // buffer, this appears reasonable - but can optimize in the future.
706 if (tmpCst.hasInvalidConstraint() || tmpCst.isEmptyByGCDTest())
707 return true;
708 }
709
710 // Eliminate the remaining using FM.
711 for (unsigned i = 0, e = tmpCst.getNumVars(); i < e; i++) {
713 getBestVarToEliminate(tmpCst, 0, tmpCst.getNumVars()));
714 // Check for a constraint explosion. This rarely happens in practice, but
715 // this check exists as a safeguard against improperly constructed
716 // constraint systems or artificially created arbitrarily complex systems
717 // that aren't the intended use case for IntegerRelation. This is
718 // needed since FM has a worst case exponential complexity in theory.
719 if (tmpCst.getNumConstraints() >= kExplosionFactor * getNumVars()) {
720 LDBG() << "FM constraint explosion detected";
721 return false;
722 }
723
724 // FM wouldn't have modified the equalities in any way. So no need to again
725 // run GCD test. Check for trivial invalid constraints.
726 if (tmpCst.hasInvalidConstraint())
727 return true;
728 }
729 return false;
730}
731
735
736// Runs the GCD test on all equality constraints. Returns 'true' if this test
737// fails on any equality. Returns 'false' otherwise.
738// This test can be used to disprove the existence of a solution. If it returns
739// true, no integer solution to the equality constraints can exist.
740//
741// GCD test definition:
742//
743// The equality constraint:
744//
745// c_1*x_1 + c_2*x_2 + ... + c_n*x_n = c_0
746//
747// has an integer solution iff:
748//
749// GCD of c_1, c_2, ..., c_n divides c_0.
751 assert(hasConsistentState());
752 unsigned numCols = getNumCols();
753 for (unsigned i = 0, e = getNumEqualities(); i < e; ++i) {
754 DynamicAPInt gcd = abs(atEq(i, 0));
755 for (unsigned j = 1; j < numCols - 1; ++j) {
756 gcd = llvm::gcd(gcd, abs(atEq(i, j)));
757 }
758 DynamicAPInt v = abs(atEq(i, numCols - 1));
759 if (gcd > 0 && (v % gcd != 0)) {
760 return true;
761 }
762 }
763 return false;
764}
765
766// Returns a matrix where each row is a vector along which the polytope is
767// bounded. The span of the returned vectors is guaranteed to contain all
768// such vectors. The returned vectors are NOT guaranteed to be linearly
769// independent. This function should not be called on empty sets.
770//
771// It is sufficient to check the perpendiculars of the constraints, as the set
772// of perpendiculars which are bounded must span all bounded directions.
774 // Note that it is necessary to add the equalities too (which the constructor
775 // does) even though we don't need to check if they are bounded; whether an
776 // inequality is bounded or not depends on what other constraints, including
777 // equalities, are present.
778 Simplex simplex(*this);
779
780 assert(!simplex.isEmpty() && "It is not meaningful to ask whether a "
781 "direction is bounded in an empty set.");
782
783 SmallVector<unsigned, 8> boundedIneqs;
784 // The constructor adds the inequalities to the simplex first, so this
785 // processes all the inequalities.
786 for (unsigned i = 0, e = getNumInequalities(); i < e; ++i) {
787 if (simplex.isBoundedAlongConstraint(i))
788 boundedIneqs.emplace_back(i);
789 }
790
791 // The direction vector is given by the coefficients and does not include the
792 // constant term, so the matrix has one fewer column.
793 unsigned dirsNumCols = getNumCols() - 1;
794 IntMatrix dirs(boundedIneqs.size() + getNumEqualities(), dirsNumCols);
795
796 // Copy the bounded inequalities.
797 unsigned row = 0;
798 for (unsigned i : boundedIneqs) {
799 for (unsigned col = 0; col < dirsNumCols; ++col)
800 dirs(row, col) = atIneq(i, col);
801 ++row;
802 }
803
804 // Copy the equalities. All the equalities' perpendiculars are bounded.
805 for (unsigned i = 0, e = getNumEqualities(); i < e; ++i) {
806 for (unsigned col = 0; col < dirsNumCols; ++col)
807 dirs(row, col) = atEq(i, col);
808 ++row;
809 }
810
811 return dirs;
812}
813
815
816/// Let this set be S. If S is bounded then we directly call into the GBR
817/// sampling algorithm. Otherwise, there are some unbounded directions, i.e.,
818/// vectors v such that S extends to infinity along v or -v. In this case we
819/// use an algorithm described in the integer set library (isl) manual and used
820/// by the isl_set_sample function in that library. The algorithm is:
821///
822/// 1) Apply a unimodular transform T to S to obtain S*T, such that all
823/// dimensions in which S*T is bounded lie in the linear span of a prefix of the
824/// dimensions.
825///
826/// 2) Construct a set B by removing all constraints that involve
827/// the unbounded dimensions and then deleting the unbounded dimensions. Note
828/// that B is a Bounded set.
829///
830/// 3) Try to obtain a sample from B using the GBR sampling
831/// algorithm. If no sample is found, return that S is empty.
832///
833/// 4) Otherwise, substitute the obtained sample into S*T to obtain a set
834/// C. C is a full-dimensional Cone and always contains a sample.
835///
836/// 5) Obtain an integer sample from C.
837///
838/// 6) Return T*v, where v is the concatenation of the samples from B and C.
839///
840/// The following is a sketch of a proof that
841/// a) If the algorithm returns empty, then S is empty.
842/// b) If the algorithm returns a sample, it is a valid sample in S.
843///
844/// The algorithm returns empty only if B is empty, in which case S*T is
845/// certainly empty since B was obtained by removing constraints and then
846/// deleting unconstrained dimensions from S*T. Since T is unimodular, a vector
847/// v is in S*T iff T*v is in S. So in this case, since
848/// S*T is empty, S is empty too.
849///
850/// Otherwise, the algorithm substitutes the sample from B into S*T. All the
851/// constraints of S*T that did not involve unbounded dimensions are satisfied
852/// by this substitution. All dimensions in the linear span of the dimensions
853/// outside the prefix are unbounded in S*T (step 1). Substituting values for
854/// the bounded dimensions cannot make these dimensions bounded, and these are
855/// the only remaining dimensions in C, so C is unbounded along every vector (in
856/// the positive or negative direction, or both). C is hence a full-dimensional
857/// cone and therefore always contains an integer point.
858///
859/// Concatenating the samples from B and C gives a sample v in S*T, so the
860/// returned sample T*v is a sample in S.
861std::optional<SmallVector<DynamicAPInt, 8>>
863 // First, try the GCD test heuristic.
864 if (isEmptyByGCDTest())
865 return {};
866
867 Simplex simplex(*this);
868 if (simplex.isEmpty())
869 return {};
870
871 // For a bounded set, we directly call into the GBR sampling algorithm.
872 if (!simplex.isUnbounded())
873 return simplex.findIntegerSample();
874
875 // The set is unbounded. We cannot directly use the GBR algorithm.
876 //
877 // m is a matrix containing, in each row, a vector in which S is
878 // bounded, such that the linear span of all these dimensions contains all
879 // bounded dimensions in S.
881 // In column echelon form, each row of m occupies only the first rank(m)
882 // columns and has zeros on the other columns. The transform T that brings S
883 // to column echelon form is unimodular as well, so this is a suitable
884 // transform to use in step 1 of the algorithm.
885 std::pair<unsigned, LinearTransform> result =
887 const LinearTransform &transform = result.second;
888 // 1) Apply T to S to obtain S*T.
889 IntegerRelation transformedSet = transform.applyTo(*this);
890
891 // 2) Remove the unbounded dimensions and constraints involving them to
892 // obtain a bounded set.
893 IntegerRelation boundedSet(transformedSet);
894 unsigned numBoundedDims = result.first;
895 unsigned numUnboundedDims = getNumVars() - numBoundedDims;
896 removeConstraintsInvolvingVarRange(boundedSet, numBoundedDims,
897 numUnboundedDims);
898 boundedSet.removeVarRange(numBoundedDims, boundedSet.getNumVars());
899
900 // 3) Try to obtain a sample from the bounded set.
901 std::optional<SmallVector<DynamicAPInt, 8>> boundedSample =
902 Simplex(boundedSet).findIntegerSample();
903 if (!boundedSample)
904 return {};
905 assert(boundedSet.containsPoint(*boundedSample) &&
906 "Simplex returned an invalid sample!");
907
908 // 4) Substitute the values of the bounded dimensions into S*T to obtain a
909 // full-dimensional cone, which necessarily contains an integer sample.
910 transformedSet.setAndEliminate(0, *boundedSample);
911 IntegerRelation &cone = transformedSet;
912
913 // 5) Obtain an integer sample from the cone.
914 //
915 // We shrink the cone such that for any rational point in the shrunken cone,
916 // rounding up each of the point's coordinates produces a point that still
917 // lies in the original cone.
918 //
919 // Rounding up a point x adds a number e_i in [0, 1) to each coordinate x_i.
920 // For each inequality sum_i a_i x_i + c >= 0 in the original cone, the
921 // shrunken cone will have the inequality tightened by some amount s, such
922 // that if x satisfies the shrunken cone's tightened inequality, then x + e
923 // satisfies the original inequality, i.e.,
924 //
925 // sum_i a_i x_i + c + s >= 0 implies sum_i a_i (x_i + e_i) + c >= 0
926 //
927 // for any e_i values in [0, 1). In fact, we will handle the slightly more
928 // general case where e_i can be in [0, 1]. For example, consider the
929 // inequality 2x_1 - 3x_2 - 7x_3 - 6 >= 0, and let x = (3, 0, 0). How low
930 // could the LHS go if we added a number in [0, 1] to each coordinate? The LHS
931 // is minimized when we add 1 to the x_i with negative coefficient a_i and
932 // keep the other x_i the same. In the example, we would get x = (3, 1, 1),
933 // changing the value of the LHS by -3 + -7 = -10.
934 //
935 // In general, the value of the LHS can change by at most the sum of the
936 // negative a_i, so we accomodate this by shifting the inequality by this
937 // amount for the shrunken cone.
938 for (unsigned i = 0, e = cone.getNumInequalities(); i < e; ++i) {
939 for (unsigned j = 0; j < cone.getNumVars(); ++j) {
940 DynamicAPInt coeff = cone.atIneq(i, j);
941 if (coeff < 0)
942 cone.atIneq(i, cone.getNumVars()) += coeff;
943 }
944 }
945
946 // Obtain an integer sample in the cone by rounding up a rational point from
947 // the shrunken cone. Shrinking the cone amounts to shifting its apex
948 // "inwards" without changing its "shape"; the shrunken cone is still a
949 // full-dimensional cone and is hence non-empty.
950 Simplex shrunkenConeSimplex(cone);
951 assert(!shrunkenConeSimplex.isEmpty() && "Shrunken cone cannot be empty!");
952
953 // The sample will always exist since the shrunken cone is non-empty.
954 SmallVector<Fraction, 8> shrunkenConeSample =
955 *shrunkenConeSimplex.getRationalSample();
956
958 llvm::map_range(shrunkenConeSample, ceil));
959
960 // 6) Return transform * concat(boundedSample, coneSample).
961 SmallVector<DynamicAPInt, 8> &sample = *boundedSample;
962 sample.append(coneSample.begin(), coneSample.end());
963 return transform.postMultiplyWithColumn(sample);
964}
965
966/// Helper to evaluate an affine expression at a point.
967/// The expression is a list of coefficients for the dimensions followed by the
968/// constant term.
969static DynamicAPInt valueAt(ArrayRef<DynamicAPInt> expr,
971 assert(expr.size() == 1 + point.size() &&
972 "Dimensionalities of point and expression don't match!");
973 DynamicAPInt value = expr.back();
974 for (unsigned i = 0; i < point.size(); ++i)
975 value += expr[i] * point[i];
976 return value;
977}
978
979/// A point satisfies an equality iff the value of the equality at the
980/// expression is zero, and it satisfies an inequality iff the value of the
981/// inequality at that point is non-negative.
983 for (unsigned i = 0, e = getNumEqualities(); i < e; ++i) {
984 if (valueAt(getEquality(i), point) != 0)
985 return false;
986 }
987 for (unsigned i = 0, e = getNumInequalities(); i < e; ++i) {
988 if (valueAt(getInequality(i), point) < 0)
989 return false;
990 }
991 return true;
992}
993
994/// Just substitute the values given and check if an integer sample exists for
995/// the local vars.
996///
997/// TODO: this could be made more efficient by handling divisions separately.
998/// Instead of finding an integer sample over all the locals, we can first
999/// compute the values of the locals that have division representations and
1000/// only use the integer emptiness check for the locals that don't have this.
1001/// Handling this correctly requires ordering the divs, though.
1002std::optional<SmallVector<DynamicAPInt, 8>>
1004 assert(point.size() == getNumVars() - getNumLocalVars() &&
1005 "Point should contain all vars except locals!");
1007 "This function depends on locals being stored last!");
1008 IntegerRelation copy = *this;
1009 copy.setAndEliminate(0, point);
1010 return copy.findIntegerSample();
1011}
1012
1014IntegerRelation::getLocalReprs(std::vector<MaybeLocalRepr> *repr) const {
1015 SmallVector<bool, 8> foundRepr(getNumVars(), false);
1016 for (unsigned i = 0, e = getNumDimAndSymbolVars(); i < e; ++i)
1017 foundRepr[i] = true;
1018
1019 unsigned localOffset = getVarKindOffset(VarKind::Local);
1021 bool changed;
1022 do {
1023 // Each time changed is true, at end of this iteration, one or more local
1024 // vars have been detected as floor divs.
1025 changed = false;
1026 for (unsigned i = 0, e = getNumLocalVars(); i < e; ++i) {
1027 if (!foundRepr[i + localOffset]) {
1028 MaybeLocalRepr res =
1029 computeSingleVarRepr(*this, foundRepr, localOffset + i,
1030 divs.getDividend(i), divs.getDenom(i));
1031 if (!res) {
1032 // No representation was found, so clear the representation and
1033 // continue.
1034 divs.clearRepr(i);
1035 continue;
1036 }
1037 foundRepr[localOffset + i] = true;
1038 if (repr)
1039 (*repr)[i] = res;
1040 changed = true;
1041 }
1042 }
1043 } while (changed);
1044
1045 return divs;
1046}
1047
1048/// Tightens inequalities given that we are dealing with integer spaces. This is
1049/// analogous to the GCD test but applied to inequalities. The constant term can
1050/// be reduced to the preceding multiple of the GCD of the coefficients, i.e.,
1051/// 64*i - 100 >= 0 => 64*i - 128 >= 0 (since 'i' is an integer). This is a
1052/// fast method - linear in the number of coefficients.
1053// Example on how this affects practical cases: consider the scenario:
1054// 64*i >= 100, j = 64*i; without a tightening, elimination of i would yield
1055// j >= 100 instead of the tighter (exact) j >= 128.
1057 unsigned numCols = getNumCols();
1058 for (unsigned i = 0, e = getNumInequalities(); i < e; ++i) {
1059 // Normalize the constraint and tighten the constant term by the GCD.
1060 DynamicAPInt gcd = inequalities.normalizeRow(i, getNumCols() - 1);
1061 if (gcd > 1)
1062 atIneq(i, numCols - 1) = floorDiv(atIneq(i, numCols - 1), gcd);
1063 }
1064}
1065
1066// Eliminates all variable variables in column range [posStart, posLimit).
1067// Returns the number of variables eliminated.
1069 unsigned posLimit) {
1070 // Return if variable positions to eliminate are out of range.
1071 assert(posLimit <= getNumVars());
1072 assert(hasConsistentState());
1073
1074 if (posStart >= posLimit)
1075 return 0;
1076
1078
1079 unsigned pivotCol = 0;
1080 for (pivotCol = posStart; pivotCol < posLimit; ++pivotCol) {
1081 // Find a row which has a non-zero coefficient in column 'j'.
1082 std::optional<unsigned> pivotRow =
1083 findConstraintWithNonZeroAt(pivotCol, /*isEq=*/true);
1084 // No pivot row in equalities with non-zero at 'pivotCol'.
1085 if (!pivotRow) {
1086 // If inequalities are also non-zero in 'pivotCol', it can be eliminated.
1087 if ((pivotRow = findConstraintWithNonZeroAt(pivotCol, /*isEq=*/false)))
1088 break;
1089 continue;
1090 }
1091
1092 // Eliminate variable at 'pivotCol' from each equality row.
1093 for (unsigned i = 0, e = getNumEqualities(); i < e; ++i) {
1094 eliminateFromConstraint(this, i, *pivotRow, pivotCol, posStart,
1095 /*isEq=*/true);
1096 equalities.normalizeRow(i);
1097 }
1098
1099 // Eliminate variable at 'pivotCol' from each inequality row.
1100 for (unsigned i = 0, e = getNumInequalities(); i < e; ++i) {
1101 eliminateFromConstraint(this, i, *pivotRow, pivotCol, posStart,
1102 /*isEq=*/false);
1103 inequalities.normalizeRow(i);
1104 }
1105 removeEquality(*pivotRow);
1107 }
1108 // Update position limit based on number eliminated.
1109 posLimit = pivotCol;
1110 // Remove eliminated columns from all constraints.
1111 removeVarRange(posStart, posLimit);
1112 return posLimit - posStart;
1113}
1114
1117 unsigned firstVar = 0, vars = getNumVars();
1118 unsigned nowDone, eqs;
1119 std::optional<unsigned> pivotRow;
1120 for (nowDone = 0, eqs = getNumEqualities(); nowDone < eqs; ++nowDone) {
1121 // Finds the first non-empty column.
1122 for (; firstVar < vars; ++firstVar) {
1123 if ((pivotRow = findConstraintWithNonZeroAt(firstVar, /*isEq=*/true)))
1124 break;
1125 }
1126 // The matrix has been normalized to row echelon form.
1127 if (firstVar >= vars)
1128 break;
1129
1130 // The first pivot row found is below where it should currently be placed.
1131 if (*pivotRow > nowDone) {
1132 equalities.swapRows(*pivotRow, nowDone);
1133 *pivotRow = nowDone;
1134 }
1135
1136 // Normalize all lower equations and all inequalities.
1137 for (unsigned i = nowDone + 1; i < eqs; ++i) {
1138 eliminateFromConstraint(this, i, *pivotRow, firstVar, 0, true);
1139 equalities.normalizeRow(i);
1140 }
1141 for (unsigned i = 0, ineqs = getNumInequalities(); i < ineqs; ++i) {
1142 eliminateFromConstraint(this, i, *pivotRow, firstVar, 0, false);
1143 inequalities.normalizeRow(i);
1144 }
1146 }
1147
1148 // No redundant rows.
1149 if (nowDone == eqs)
1150 return false;
1151
1152 // Check to see if the redundant rows constant is zero, a non-zero value means
1153 // the set is empty.
1154 for (unsigned i = nowDone; i < eqs; ++i) {
1155 if (atEq(i, vars) == 0)
1156 continue;
1157
1158 *this = getEmpty(getSpace());
1159 return true;
1160 }
1161 // Eliminate rows that are confined to be all zeros.
1162 removeEqualityRange(nowDone, eqs);
1163 return true;
1164}
1165
1166// A more complex check to eliminate redundant inequalities. Uses FourierMotzkin
1167// to check if a constraint is redundant.
1170 // To check if an inequality is redundant, we replace the inequality by its
1171 // complement (for eg., i - 1 >= 0 by i <= 0), and check if the resulting
1172 // system is empty. If it is, the inequality is redundant.
1173 IntegerRelation tmpCst(*this);
1174 for (unsigned r = 0, e = getNumInequalities(); r < e; r++) {
1175 // Change the inequality to its complement.
1176 tmpCst.inequalities.negateRow(r);
1177 --tmpCst.atIneq(r, tmpCst.getNumCols() - 1);
1178 if (tmpCst.isEmpty()) {
1179 redun[r] = true;
1180 // Zero fill the redundant inequality.
1181 inequalities.fillRow(r, /*value=*/0);
1182 tmpCst.inequalities.fillRow(r, /*value=*/0);
1183 } else {
1184 // Reverse the change (to avoid recreating tmpCst each time).
1185 ++tmpCst.atIneq(r, tmpCst.getNumCols() - 1);
1186 tmpCst.inequalities.negateRow(r);
1187 }
1188 }
1189
1190 unsigned pos = 0;
1191 for (unsigned r = 0, e = getNumInequalities(); r < e; ++r) {
1192 if (!redun[r])
1193 inequalities.copyRow(r, pos++);
1194 }
1195 inequalities.resizeVertically(pos);
1196}
1197
1198// A more complex check to eliminate redundant inequalities and equalities. Uses
1199// Simplex to check if a constraint is redundant.
1201 // First, we run gcdTightenInequalities. This allows us to catch some
1202 // constraints which are not redundant when considering rational solutions
1203 // but are redundant in terms of integer solutions.
1205 Simplex simplex(*this);
1206 simplex.detectRedundant();
1207
1208 unsigned pos = 0;
1209 unsigned numIneqs = getNumInequalities();
1210 // Scan to get rid of all inequalities marked redundant, in-place. In Simplex,
1211 // the first constraints added are the inequalities.
1212 for (unsigned r = 0; r < numIneqs; r++) {
1213 if (!simplex.isMarkedRedundant(r))
1214 inequalities.copyRow(r, pos++);
1215 }
1216 inequalities.resizeVertically(pos);
1217
1218 // Scan to get rid of all equalities marked redundant, in-place. In Simplex,
1219 // after the inequalities, a pair of constraints for each equality is added.
1220 // An equality is redundant if both the inequalities in its pair are
1221 // redundant.
1222 pos = 0;
1223 for (unsigned r = 0, e = getNumEqualities(); r < e; r++) {
1224 if (!(simplex.isMarkedRedundant(numIneqs + 2 * r) &&
1225 simplex.isMarkedRedundant(numIneqs + 2 * r + 1)))
1226 equalities.copyRow(r, pos++);
1227 }
1228 equalities.resizeVertically(pos);
1229}
1230
1231std::optional<DynamicAPInt> IntegerRelation::computeVolume() const {
1232 assert(getNumSymbolVars() == 0 && "Symbols are not yet supported!");
1233
1234 Simplex simplex(*this);
1235 // If the polytope is rationally empty, there are certainly no integer
1236 // points.
1237 if (simplex.isEmpty())
1238 return DynamicAPInt(0);
1239
1240 // Just find the maximum and minimum integer value of each non-local var
1241 // separately, thus finding the number of integer values each such var can
1242 // take. Multiplying these together gives a valid overapproximation of the
1243 // number of integer points in the relation. The result this gives is
1244 // equivalent to projecting (rationally) the relation onto its non-local vars
1245 // and returning the number of integer points in a minimal axis-parallel
1246 // hyperrectangular overapproximation of that.
1247 //
1248 // We also handle the special case where one dimension is unbounded and
1249 // another dimension can take no integer values. In this case, the volume is
1250 // zero.
1251 //
1252 // If there is no such empty dimension, if any dimension is unbounded we
1253 // just return the result as unbounded.
1254 DynamicAPInt count(1);
1256 bool hasUnboundedVar = false;
1257 for (unsigned i = 0, e = getNumDimAndSymbolVars(); i < e; ++i) {
1258 dim[i] = 1;
1259 auto [min, max] = simplex.computeIntegerBounds(dim);
1260 dim[i] = 0;
1261
1262 assert((!min.isEmpty() && !max.isEmpty()) &&
1263 "Polytope should be rationally non-empty!");
1264
1265 // One of the dimensions is unbounded. Note this fact. We will return
1266 // unbounded if none of the other dimensions makes the volume zero.
1267 if (min.isUnbounded() || max.isUnbounded()) {
1268 hasUnboundedVar = true;
1269 continue;
1270 }
1271
1272 // In this case there are no valid integer points and the volume is
1273 // definitely zero.
1274 if (min.getBoundedOptimum() > max.getBoundedOptimum())
1275 return DynamicAPInt(0);
1276
1277 count *= (*max - *min + 1);
1278 }
1279
1280 if (count == 0)
1281 return DynamicAPInt(0);
1282 if (hasUnboundedVar)
1283 return {};
1284 return count;
1285}
1286
1287void IntegerRelation::eliminateRedundantLocalVar(unsigned posA, unsigned posB) {
1288 assert(posA < getNumLocalVars() && "Invalid local var position");
1289 assert(posB < getNumLocalVars() && "Invalid local var position");
1290
1291 unsigned localOffset = getVarKindOffset(VarKind::Local);
1292 posA += localOffset;
1293 posB += localOffset;
1294 inequalities.addToColumn(posB, posA, 1);
1295 equalities.addToColumn(posB, posA, 1);
1296 removeVar(posB);
1297}
1298
1299/// mergeAndAlignSymbols's implementation can be broken down into two steps:
1300/// 1. Merge and align identifiers into `other` from `this. If an identifier
1301/// from `this` exists in `other` then we align it. Otherwise, we assume it is a
1302/// new identifier and insert it into `other` in the same position as `this`.
1303/// 2. Add identifiers that are in `other` but not `this to `this`.
1305 assert(space.isUsingIds() && other.space.isUsingIds() &&
1306 "both relations need to have identifers to merge and align");
1307
1308 unsigned i = 0;
1309 for (const Identifier identifier : space.getIds(VarKind::Symbol)) {
1310 // Search in `other` starting at position `i` since the left of `i` is
1311 // aligned.
1312 const Identifier *findBegin =
1313 other.space.getIds(VarKind::Symbol).begin() + i;
1314 const Identifier *findEnd = other.space.getIds(VarKind::Symbol).end();
1315 const Identifier *itr = std::find(findBegin, findEnd, identifier);
1316 if (itr != findEnd) {
1317 other.swapVar(other.getVarKindOffset(VarKind::Symbol) + i,
1319 std::distance(findBegin, itr));
1320 } else {
1321 other.insertVar(VarKind::Symbol, i);
1322 other.space.setId(VarKind::Symbol, i, identifier);
1323 }
1324 ++i;
1325 }
1326
1327 for (unsigned e = other.getNumVarKind(VarKind::Symbol); i < e; ++i) {
1329 space.setId(VarKind::Symbol, i, other.space.getId(VarKind::Symbol, i));
1330 }
1331}
1332
1333/// Adds additional local ids to the sets such that they both have the union
1334/// of the local ids in each set, without changing the set of points that
1335/// lie in `this` and `other`.
1336///
1337/// To detect local ids that always take the same value, each local id is
1338/// represented as a floordiv with constant denominator in terms of other ids.
1339/// After extracting these divisions, local ids in `other` with the same
1340/// division representation as some other local id in any set are considered
1341/// duplicate and are merged.
1342///
1343/// It is possible that division representation for some local id cannot be
1344/// obtained, and thus these local ids are not considered for detecting
1345/// duplicates.
1347 IntegerRelation &relA = *this;
1348 IntegerRelation &relB = other;
1349
1350 unsigned oldALocals = relA.getNumLocalVars();
1351
1352 // Merge function that merges the local variables in both sets by treating
1353 // them as the same variable.
1354 auto merge = [&relA, &relB, oldALocals](unsigned i, unsigned j) -> bool {
1355 // We only merge from local at pos j to local at pos i, where j > i.
1356 if (i >= j)
1357 return false;
1358
1359 // If i < oldALocals, we are trying to merge duplicate divs. Since we do not
1360 // want to merge duplicates in A, we ignore this call.
1361 if (j < oldALocals)
1362 return false;
1363
1364 // Merge local at pos j into local at position i.
1367 return true;
1368 };
1369
1370 presburger::mergeLocalVars(*this, other, merge);
1371
1372 // Since we do not remove duplicate divisions in relA, this is guranteed to be
1373 // non-negative.
1374 return relA.getNumLocalVars() - oldALocals;
1375}
1376
1380
1382 DivisionRepr divs = getLocalReprs();
1383 auto merge = [this](unsigned i, unsigned j) -> bool {
1385 return true;
1386 };
1387 divs.removeDuplicateDivs(merge);
1388}
1389
1391 bool changed = true;
1392 // Repeat until we reach a fixed point.
1393 while (changed) {
1394 if (isObviouslyEmpty())
1395 return;
1396 changed = false;
1400 }
1401 // Current set is not empty.
1402}
1403
1404/// Removes local variables using equalities. Each equality is checked if it
1405/// can be reduced to the form: `e = affine-expr`, where `e` is a local
1406/// variable and `affine-expr` is an affine expression not containing `e`.
1407/// If an equality satisfies this form, the local variable is replaced in
1408/// each constraint and then removed. The equality used to replace this local
1409/// variable is also removed.
1411 // Normalize the equality constraints to reduce coefficients of local
1412 // variables to 1 wherever possible.
1413 for (unsigned i = 0, e = getNumEqualities(); i < e; ++i)
1414 equalities.normalizeRow(i);
1415
1416 while (true) {
1417 unsigned i, e, j, f;
1418 for (i = 0, e = getNumEqualities(); i < e; ++i) {
1419 // Find a local variable to eliminate using ith equality.
1420 for (j = getNumDimAndSymbolVars(), f = getNumVars(); j < f; ++j)
1421 if (abs(atEq(i, j)) == 1)
1422 break;
1423
1424 // Local variable can be eliminated using ith equality.
1425 if (j < f)
1426 break;
1427 }
1428
1429 // No equality can be used to eliminate a local variable.
1430 if (i == e)
1431 break;
1432
1433 // Use the ith equality to simplify other equalities. If any changes
1434 // are made to an equality constraint, it is normalized by GCD.
1435 for (unsigned k = 0, t = getNumEqualities(); k < t; ++k) {
1436 if (atEq(k, j) != 0) {
1437 eliminateFromConstraint(this, k, i, j, j, /*isEq=*/true);
1438 equalities.normalizeRow(k);
1439 }
1440 }
1441
1442 // Use the ith equality to simplify inequalities.
1443 for (unsigned k = 0, t = getNumInequalities(); k < t; ++k)
1444 eliminateFromConstraint(this, k, i, j, j, /*isEq=*/false);
1445
1446 // Remove the ith equality and the found local variable.
1447 removeVar(j);
1448 removeEquality(i);
1449 }
1450}
1451
1452void IntegerRelation::convertVarKind(VarKind srcKind, unsigned varStart,
1453 unsigned varLimit, VarKind dstKind,
1454 unsigned pos) {
1455 assert(varLimit <= getNumVarKind(srcKind) && "invalid id range");
1456
1457 if (varStart >= varLimit)
1458 return;
1459
1460 unsigned srcOffset = getVarKindOffset(srcKind);
1461 unsigned dstOffset = getVarKindOffset(dstKind);
1462 unsigned convertCount = varLimit - varStart;
1463 int forwardMoveOffset = dstOffset > srcOffset ? -convertCount : 0;
1464
1465 equalities.moveColumns(srcOffset + varStart, convertCount,
1466 dstOffset + pos + forwardMoveOffset);
1467 inequalities.moveColumns(srcOffset + varStart, convertCount,
1468 dstOffset + pos + forwardMoveOffset);
1469
1470 space.convertVarKind(srcKind, varStart, varLimit - varStart, dstKind, pos);
1471}
1472
1473void IntegerRelation::addBound(BoundType type, unsigned pos,
1474 const DynamicAPInt &value) {
1475 assert(pos < getNumCols());
1476 if (type == BoundType::EQ) {
1477 unsigned row = equalities.appendExtraRow();
1478 equalities(row, pos) = 1;
1479 equalities(row, getNumCols() - 1) = -value;
1480 } else {
1481 unsigned row = inequalities.appendExtraRow();
1482 inequalities(row, pos) = type == BoundType::LB ? 1 : -1;
1483 inequalities(row, getNumCols() - 1) =
1484 type == BoundType::LB ? -value : value;
1485 }
1486}
1487
1489 const DynamicAPInt &value) {
1490 assert(type != BoundType::EQ && "EQ not implemented");
1491 assert(expr.size() == getNumCols());
1492 unsigned row = inequalities.appendExtraRow();
1493 for (unsigned i = 0, e = expr.size(); i < e; ++i)
1494 inequalities(row, i) = type == BoundType::LB ? expr[i] : -expr[i];
1495 inequalities(inequalities.getNumRows() - 1, getNumCols() - 1) +=
1496 type == BoundType::LB ? -value : value;
1497}
1498
1499/// Adds a new local variable as the floordiv of an affine function of other
1500/// variables, the coefficients of which are provided in 'dividend' and with
1501/// respect to a positive constant 'divisor'. Two constraints are added to the
1502/// system to capture equivalence with the floordiv.
1503/// q = expr floordiv c <=> c*q <= expr <= c*q + c - 1.
1504/// Returns the column position of the new local variable.
1506 const DynamicAPInt &divisor) {
1507 assert(dividend.size() == getNumCols() && "incorrect dividend size");
1508 assert(divisor > 0 && "positive divisor expected");
1509
1510 unsigned newVar = appendVar(VarKind::Local);
1511
1512 SmallVector<DynamicAPInt, 8> dividendCopy(dividend);
1513 dividendCopy.insert(dividendCopy.end() - 1, DynamicAPInt(0));
1515 getDivLowerBound(dividendCopy, divisor, dividendCopy.size() - 2));
1517 getDivUpperBound(dividendCopy, divisor, dividendCopy.size() - 2));
1518 return newVar;
1519}
1520
1522 const DynamicAPInt &modulus) {
1523 assert(exprs.size() == getNumCols() && "incorrect exprs size");
1524 assert(modulus > 0 && "positive modulus expected");
1525
1526 /// Add a local variable for q = expr floordiv modulus
1527 addLocalFloorDiv(exprs, modulus);
1528
1529 /// Add a local var to represent the result
1530 auto resultIndex = appendVar(VarKind::Local);
1531
1532 SmallVector<DynamicAPInt, 8> exprsCopy(exprs);
1533 /// Insert the two new locals before the constant
1534 /// Add locals that correspond to `q` and `result` to compute
1535 /// 0 = (expr - modulus * q) - result
1536 exprsCopy.insert(exprsCopy.end() - 1,
1537 {DynamicAPInt(-modulus), DynamicAPInt(-1)});
1538 addEquality(exprsCopy);
1539 return resultIndex;
1540}
1541
1542int IntegerRelation::findEqualityToConstant(unsigned pos, bool symbolic) const {
1543 assert(pos < getNumVars() && "invalid position");
1544 for (unsigned r = 0, e = getNumEqualities(); r < e; r++) {
1545 DynamicAPInt v = atEq(r, pos);
1546 if (v * v != 1)
1547 continue;
1548 unsigned c;
1549 unsigned f = symbolic ? getNumDimVars() : getNumVars();
1550 // This checks for zeros in all positions other than 'pos' in [0, f)
1551 for (c = 0; c < f; c++) {
1552 if (c == pos)
1553 continue;
1554 if (atEq(r, c) != 0) {
1555 // Dependent on another variable.
1556 break;
1557 }
1558 }
1559 if (c == f)
1560 // Equality is free of other variables.
1561 return r;
1562 }
1563 return -1;
1564}
1565
1566LogicalResult IntegerRelation::constantFoldVar(unsigned pos) {
1567 assert(pos < getNumVars() && "invalid position");
1568 int rowIdx;
1569 if ((rowIdx = findEqualityToConstant(pos)) == -1)
1570 return failure();
1571
1572 // atEq(rowIdx, pos) is either -1 or 1.
1573 assert(atEq(rowIdx, pos) * atEq(rowIdx, pos) == 1);
1574 DynamicAPInt constVal = -atEq(rowIdx, getNumCols() - 1) / atEq(rowIdx, pos);
1575 setAndEliminate(pos, constVal);
1576 return success();
1577}
1578
1579void IntegerRelation::constantFoldVarRange(unsigned pos, unsigned num) {
1580 for (unsigned s = pos, t = pos, e = pos + num; s < e; s++) {
1581 if (constantFoldVar(t).failed())
1582 t++;
1583 }
1584}
1585
1586/// Returns a non-negative constant bound on the extent (upper bound - lower
1587/// bound) of the specified variable if it is found to be a constant; returns
1588/// std::nullopt if it's not a constant. This methods treats symbolic variables
1589/// specially, i.e., it looks for constant differences between affine
1590/// expressions involving only the symbolic variables. See comments at function
1591/// definition for example. 'lb', if provided, is set to the lower bound
1592/// associated with the constant difference. Note that 'lb' is purely symbolic
1593/// and thus will contain the coefficients of the symbolic variables and the
1594/// constant coefficient.
1595// Egs: 0 <= i <= 15, return 16.
1596// s0 + 2 <= i <= s0 + 17, returns 16. (s0 has to be a symbol)
1597// s0 + s1 + 16 <= d0 <= s0 + s1 + 31, returns 16.
1598// s0 - 7 <= 8*j <= s0 returns 1 with lb = s0, lbDivisor = 8 (since lb =
1599// ceil(s0 - 7 / 8) = floor(s0 / 8)).
1601 unsigned pos, SmallVectorImpl<DynamicAPInt> *lb,
1602 DynamicAPInt *boundFloorDivisor, SmallVectorImpl<DynamicAPInt> *ub,
1603 unsigned *minLbPos, unsigned *minUbPos) const {
1604 assert(pos < getNumDimVars() && "Invalid variable position");
1605
1606 // Find an equality for 'pos'^th variable that equates it to some function
1607 // of the symbolic variables (+ constant).
1608 int eqPos = findEqualityToConstant(pos, /*symbolic=*/true);
1609 if (eqPos != -1) {
1610 auto eq = getEquality(eqPos);
1611 // If the equality involves a local var, we do not handle it.
1612 // FlatLinearConstraints can instead be used to detect the local variable as
1613 // an affine function (potentially div/mod) of other variables and use
1614 // affine expressions/maps to represent output.
1615 if (!std::all_of(eq.begin() + getNumDimAndSymbolVars(), eq.end() - 1,
1616 [](const DynamicAPInt &coeff) { return coeff == 0; }))
1617 return std::nullopt;
1618
1619 // This variable can only take a single value.
1620 if (lb) {
1621 // Set lb to that symbolic value.
1622 lb->resize(getNumSymbolVars() + 1);
1623 if (ub)
1624 ub->resize(getNumSymbolVars() + 1);
1625 for (unsigned c = 0, f = getNumSymbolVars() + 1; c < f; c++) {
1626 DynamicAPInt v = atEq(eqPos, pos);
1627 // atEq(eqRow, pos) is either -1 or 1.
1628 assert(v * v == 1);
1629 (*lb)[c] = v < 0 ? atEq(eqPos, getNumDimVars() + c) / -v
1630 : -atEq(eqPos, getNumDimVars() + c) / v;
1631 // Since this is an equality, ub = lb.
1632 if (ub)
1633 (*ub)[c] = (*lb)[c];
1634 }
1635 assert(boundFloorDivisor &&
1636 "both lb and divisor or none should be provided");
1637 *boundFloorDivisor = 1;
1638 }
1639 if (minLbPos)
1640 *minLbPos = eqPos;
1641 if (minUbPos)
1642 *minUbPos = eqPos;
1643 return DynamicAPInt(1);
1644 }
1645
1646 // Check if the variable appears at all in any of the inequalities.
1647 unsigned r, e;
1648 for (r = 0, e = getNumInequalities(); r < e; r++) {
1649 if (atIneq(r, pos) != 0)
1650 break;
1651 }
1652 if (r == e)
1653 // If it doesn't, there isn't a bound on it.
1654 return std::nullopt;
1655
1656 // Positions of constraints that are lower/upper bounds on the variable.
1657 SmallVector<unsigned, 4> lbIndices, ubIndices;
1658
1659 // Gather all symbolic lower bounds and upper bounds of the variable, i.e.,
1660 // the bounds can only involve symbolic (and local) variables. Since the
1661 // canonical form c_1*x_1 + c_2*x_2 + ... + c_0 >= 0, a constraint is a lower
1662 // bound for x_i if c_i >= 1, and an upper bound if c_i <= -1.
1663 getLowerAndUpperBoundIndices(pos, &lbIndices, &ubIndices,
1664 /*eqIndices=*/nullptr, /*offset=*/0,
1665 /*num=*/getNumDimVars());
1666
1667 std::optional<DynamicAPInt> minDiff;
1668 unsigned minLbPosition = 0, minUbPosition = 0;
1669 for (auto ubPos : ubIndices) {
1670 for (auto lbPos : lbIndices) {
1671 // Look for a lower bound and an upper bound that only differ by a
1672 // constant, i.e., pairs of the form 0 <= c_pos - f(c_i's) <= diffConst.
1673 // For example, if ii is the pos^th variable, we are looking for
1674 // constraints like ii >= i, ii <= ii + 50, 50 being the difference. The
1675 // minimum among all such constant differences is kept since that's the
1676 // constant bounding the extent of the pos^th variable.
1677 unsigned j, e;
1678 for (j = 0, e = getNumCols() - 1; j < e; j++)
1679 if (atIneq(ubPos, j) != -atIneq(lbPos, j)) {
1680 break;
1681 }
1682 if (j < getNumCols() - 1)
1683 continue;
1684 DynamicAPInt diff = ceilDiv(atIneq(ubPos, getNumCols() - 1) +
1685 atIneq(lbPos, getNumCols() - 1) + 1,
1686 atIneq(lbPos, pos));
1687 // This bound is non-negative by definition.
1688 diff = std::max<DynamicAPInt>(diff, DynamicAPInt(0));
1689 if (minDiff == std::nullopt || diff < minDiff) {
1690 minDiff = diff;
1691 minLbPosition = lbPos;
1692 minUbPosition = ubPos;
1693 }
1694 }
1695 }
1696 if (lb && minDiff) {
1697 // Set lb to the symbolic lower bound.
1698 lb->resize(getNumSymbolVars() + 1);
1699 if (ub)
1700 ub->resize(getNumSymbolVars() + 1);
1701 // The lower bound is the ceildiv of the lb constraint over the coefficient
1702 // of the variable at 'pos'. We express the ceildiv equivalently as a floor
1703 // for uniformity. For eg., if the lower bound constraint was: 32*d0 - N +
1704 // 31 >= 0, the lower bound for d0 is ceil(N - 31, 32), i.e., floor(N, 32).
1705 *boundFloorDivisor = atIneq(minLbPosition, pos);
1706 assert(*boundFloorDivisor == -atIneq(minUbPosition, pos));
1707 for (unsigned c = 0, e = getNumSymbolVars() + 1; c < e; c++) {
1708 (*lb)[c] = -atIneq(minLbPosition, getNumDimVars() + c);
1709 }
1710 if (ub) {
1711 for (unsigned c = 0, e = getNumSymbolVars() + 1; c < e; c++)
1712 (*ub)[c] = atIneq(minUbPosition, getNumDimVars() + c);
1713 }
1714 // The lower bound leads to a ceildiv while the upper bound is a floordiv
1715 // whenever the coefficient at pos != 1. ceildiv (val / d) = floordiv (val +
1716 // d - 1 / d); hence, the addition of 'atIneq(minLbPosition, pos) - 1' to
1717 // the constant term for the lower bound.
1718 (*lb)[getNumSymbolVars()] += atIneq(minLbPosition, pos) - 1;
1719 }
1720 if (minLbPos)
1721 *minLbPos = minLbPosition;
1722 if (minUbPos)
1723 *minUbPos = minUbPosition;
1724 return minDiff;
1725}
1726
1727template <bool isLower>
1728std::optional<DynamicAPInt>
1730 assert(pos < getNumVars() && "invalid position");
1731 // Project to 'pos'.
1732 projectOut(0, pos);
1733 projectOut(1, getNumVars() - 1);
1734 // Check if there's an equality equating the '0'^th variable to a constant.
1735 int eqRowIdx = findEqualityToConstant(/*pos=*/0, /*symbolic=*/false);
1736 if (eqRowIdx != -1)
1737 // atEq(rowIdx, 0) is either -1 or 1.
1738 return -atEq(eqRowIdx, getNumCols() - 1) / atEq(eqRowIdx, 0);
1739
1740 // Check if the variable appears at all in any of the inequalities.
1741 unsigned r, e;
1742 for (r = 0, e = getNumInequalities(); r < e; r++) {
1743 if (atIneq(r, 0) != 0)
1744 break;
1745 }
1746 if (r == e)
1747 // If it doesn't, there isn't a bound on it.
1748 return std::nullopt;
1749
1750 std::optional<DynamicAPInt> minOrMaxConst;
1751
1752 // Take the max across all const lower bounds (or min across all constant
1753 // upper bounds).
1754 for (unsigned r = 0, e = getNumInequalities(); r < e; r++) {
1755 if (isLower) {
1756 if (atIneq(r, 0) <= 0)
1757 // Not a lower bound.
1758 continue;
1759 } else if (atIneq(r, 0) >= 0) {
1760 // Not an upper bound.
1761 continue;
1762 }
1763 unsigned c, f;
1764 for (c = 0, f = getNumCols() - 1; c < f; c++)
1765 if (c != 0 && atIneq(r, c) != 0)
1766 break;
1767 if (c < getNumCols() - 1)
1768 // Not a constant bound.
1769 continue;
1770
1771 DynamicAPInt boundConst =
1772 isLower ? ceilDiv(-atIneq(r, getNumCols() - 1), atIneq(r, 0))
1773 : floorDiv(atIneq(r, getNumCols() - 1), -atIneq(r, 0));
1774 if (isLower) {
1775 if (minOrMaxConst == std::nullopt || boundConst > minOrMaxConst)
1776 minOrMaxConst = boundConst;
1777 } else {
1778 if (minOrMaxConst == std::nullopt || boundConst < minOrMaxConst)
1779 minOrMaxConst = boundConst;
1780 }
1781 }
1782 return minOrMaxConst;
1783}
1784
1785std::optional<DynamicAPInt>
1787 if (type == BoundType::LB)
1788 return IntegerRelation(*this)
1789 .computeConstantLowerOrUpperBound</*isLower=*/true>(pos);
1790 if (type == BoundType::UB)
1791 return IntegerRelation(*this)
1792 .computeConstantLowerOrUpperBound</*isLower=*/false>(pos);
1793
1794 assert(type == BoundType::EQ && "expected EQ");
1795 std::optional<DynamicAPInt> lb =
1796 IntegerRelation(*this).computeConstantLowerOrUpperBound</*isLower=*/true>(
1797 pos);
1798 std::optional<DynamicAPInt> ub =
1799 IntegerRelation(*this)
1800 .computeConstantLowerOrUpperBound</*isLower=*/false>(pos);
1801 return (lb && ub && *lb == *ub) ? std::optional<DynamicAPInt>(*ub)
1802 : std::nullopt;
1803}
1804
1805// A simple (naive and conservative) check for hyper-rectangularity.
1806bool IntegerRelation::isHyperRectangular(unsigned pos, unsigned num) const {
1807 assert(pos < getNumCols() - 1);
1808 // Check for two non-zero coefficients in the range [pos, pos + sum).
1809 for (unsigned r = 0, e = getNumInequalities(); r < e; r++) {
1810 unsigned sum = 0;
1811 for (unsigned c = pos; c < pos + num; c++) {
1812 if (atIneq(r, c) != 0)
1813 sum++;
1814 }
1815 if (sum > 1)
1816 return false;
1817 }
1818 for (unsigned r = 0, e = getNumEqualities(); r < e; r++) {
1819 unsigned sum = 0;
1820 for (unsigned c = pos; c < pos + num; c++) {
1821 if (atEq(r, c) != 0)
1822 sum++;
1823 }
1824 if (sum > 1)
1825 return false;
1826 }
1827 return true;
1828}
1829
1830/// Removes duplicate constraints, trivially true constraints, and constraints
1831/// that can be detected as redundant as a result of differing only in their
1832/// constant term part. A constraint of the form <non-negative constant> >= 0 is
1833/// considered trivially true.
1834// Uses a DenseSet to hash and detect duplicates followed by a linear scan to
1835// remove duplicates in place.
1839
1840 // A map used to detect redundancy stemming from constraints that only differ
1841 // in their constant term. The value stored is <row position, const term>
1842 // for a given row.
1843 SmallDenseMap<ArrayRef<DynamicAPInt>, std::pair<unsigned, DynamicAPInt>>
1844 rowsWithoutConstTerm;
1845
1846 // Check if constraint is of the form <non-negative-constant> >= 0.
1847 auto isTriviallyValid = [&](unsigned r) -> bool {
1848 for (unsigned c = 0, e = getNumCols() - 1; c < e; c++) {
1849 if (atIneq(r, c) != 0)
1850 return false;
1851 }
1852 return atIneq(r, getNumCols() - 1) >= 0;
1853 };
1854
1855 // Detect and mark redundant constraints.
1856 SmallVector<bool, 256> redunIneq(getNumInequalities(), false);
1857 for (unsigned r = 0, e = getNumInequalities(); r < e; r++) {
1858 DynamicAPInt *rowStart = &inequalities(r, 0);
1859 if (isTriviallyValid(r)) {
1860 redunIneq[r] = true;
1861 continue;
1862 }
1863
1864 // Among constraints that only differ in the constant term part, mark
1865 // everything other than the one with the smallest constant term redundant.
1866 // (eg: among i - 16j - 5 >= 0, i - 16j - 1 >=0, i - 16j - 7 >= 0, the
1867 // former two are redundant).
1868 DynamicAPInt constTerm = atIneq(r, getNumCols() - 1);
1869 auto rowWithoutConstTerm =
1870 ArrayRef<DynamicAPInt>(rowStart, getNumCols() - 1);
1871 const auto &ret =
1872 rowsWithoutConstTerm.insert({rowWithoutConstTerm, {r, constTerm}});
1873 if (!ret.second) {
1874 // Check if the other constraint has a higher constant term.
1875 auto &val = ret.first->second;
1876 if (val.second > constTerm) {
1877 // The stored row is redundant. Mark it so, and update with this one.
1878 redunIneq[val.first] = true;
1879 val = {r, constTerm};
1880 } else {
1881 // The one stored makes this one redundant.
1882 redunIneq[r] = true;
1883 }
1884 }
1885 }
1886
1887 // Scan to get rid of all rows marked redundant, in-place.
1888 unsigned pos = 0;
1889 for (unsigned r = 0, e = getNumInequalities(); r < e; r++)
1890 if (!redunIneq[r])
1891 inequalities.copyRow(r, pos++);
1892
1893 inequalities.resizeVertically(pos);
1894
1895 // TODO: consider doing this for equalities as well, but probably not worth
1896 // the savings.
1897}
1898
1899#undef DEBUG_TYPE
1900#define DEBUG_TYPE "fm"
1901
1902/// Eliminates variable at the specified position using Fourier-Motzkin
1903/// variable elimination. This technique is exact for rational spaces but
1904/// conservative (in "rare" cases) for integer spaces. The operation corresponds
1905/// to a projection operation yielding the (convex) set of integer points
1906/// contained in the rational shadow of the set. An emptiness test that relies
1907/// on this method will guarantee emptiness, i.e., it disproves the existence of
1908/// a solution if it says it's empty.
1909/// If a non-null isResultIntegerExact is passed, it is set to true if the
1910/// result is also integer exact. If it's set to false, the obtained solution
1911/// *may* not be exact, i.e., it may contain integer points that do not have an
1912/// integer pre-image in the original set.
1913///
1914/// Eg:
1915/// j >= 0, j <= i + 1
1916/// i >= 0, i <= N + 1
1917/// Eliminating i yields,
1918/// j >= 0, 0 <= N + 1, j - 1 <= N + 1
1919///
1920/// If darkShadow = true, this method computes the dark shadow on elimination;
1921/// the dark shadow is a convex integer subset of the exact integer shadow. A
1922/// non-empty dark shadow proves the existence of an integer solution. The
1923/// elimination in such a case could however be an under-approximation, and thus
1924/// should not be used for scanning sets or used by itself for dependence
1925/// checking.
1926///
1927/// Eg: 2-d set, * represents grid points, 'o' represents a point in the set.
1928/// ^
1929/// |
1930/// | * * * * o o
1931/// i | * * o o o o
1932/// | o * * * * *
1933/// --------------->
1934/// j ->
1935///
1936/// Eliminating i from this system (projecting on the j dimension):
1937/// rational shadow / integer light shadow: 1 <= j <= 6
1938/// dark shadow: 3 <= j <= 6
1939/// exact integer shadow: j = 1 \union 3 <= j <= 6
1940/// holes/splinters: j = 2
1941///
1942/// darkShadow = false, isResultIntegerExact = nullptr are default values.
1943// TODO: a slight modification to yield dark shadow version of FM (tightened),
1944// which can prove the existence of a solution if there is one.
1945void IntegerRelation::fourierMotzkinEliminate(unsigned pos, bool darkShadow,
1946 bool *isResultIntegerExact) {
1947 LDBG() << "FM input (eliminate pos " << pos << "):";
1948 LLVM_DEBUG(dump());
1949 assert(pos < getNumVars() && "invalid position");
1950 assert(hasConsistentState());
1951
1952 // Check if this variable can be eliminated through a substitution.
1953 for (unsigned r = 0, e = getNumEqualities(); r < e; r++) {
1954 if (atEq(r, pos) != 0) {
1955 // Use Gaussian elimination here (since we have an equality).
1956 LogicalResult ret = gaussianEliminateVar(pos);
1957 (void)ret;
1958 assert(ret.succeeded() && "Gaussian elimination guaranteed to succeed");
1959 LDBG() << "FM output (through Gaussian elimination):";
1960 LLVM_DEBUG(dump());
1961 return;
1962 }
1963 }
1964
1965 // A fast linear time tightening.
1967
1968 // Check if the variable appears at all in any of the inequalities.
1969 if (isColZero(pos)) {
1970 // If it doesn't appear, just remove the column and return.
1971 // TODO: refactor removeColumns to use it from here.
1972 removeVar(pos);
1973 LDBG() << "FM output:";
1974 LLVM_DEBUG(dump());
1975 return;
1976 }
1977
1978 // Positions of constraints that are lower bounds on the variable.
1979 SmallVector<unsigned, 4> lbIndices;
1980 // Positions of constraints that are lower bounds on the variable.
1981 SmallVector<unsigned, 4> ubIndices;
1982 // Positions of constraints that do not involve the variable.
1983 std::vector<unsigned> nbIndices;
1984 nbIndices.reserve(getNumInequalities());
1985
1986 // Gather all lower bounds and upper bounds of the variable. Since the
1987 // canonical form c_1*x_1 + c_2*x_2 + ... + c_0 >= 0, a constraint is a lower
1988 // bound for x_i if c_i >= 1, and an upper bound if c_i <= -1.
1989 for (unsigned r = 0, e = getNumInequalities(); r < e; r++) {
1990 if (atIneq(r, pos) == 0) {
1991 // Var does not appear in bound.
1992 nbIndices.emplace_back(r);
1993 } else if (atIneq(r, pos) >= 1) {
1994 // Lower bound.
1995 lbIndices.emplace_back(r);
1996 } else {
1997 // Upper bound.
1998 ubIndices.emplace_back(r);
1999 }
2000 }
2001
2002 PresburgerSpace newSpace = getSpace();
2003 VarKind idKindRemove = newSpace.getVarKindAt(pos);
2004 unsigned relativePos = pos - newSpace.getVarKindOffset(idKindRemove);
2005 newSpace.removeVarRange(idKindRemove, relativePos, relativePos + 1);
2006
2007 /// Create the new system which has one variable less.
2008 IntegerRelation newRel(lbIndices.size() * ubIndices.size() + nbIndices.size(),
2009 getNumEqualities(), getNumCols() - 1, newSpace);
2010
2011 // This will be used to check if the elimination was integer exact.
2012 bool allLCMsAreOne = true;
2013
2014 // Let x be the variable we are eliminating.
2015 // For each lower bound, lb <= c_l*x, and each upper bound c_u*x <= ub, (note
2016 // that c_l, c_u >= 1) we have:
2017 // lb*lcm(c_l, c_u)/c_l <= lcm(c_l, c_u)*x <= ub*lcm(c_l, c_u)/c_u
2018 // We thus generate a constraint:
2019 // lcm(c_l, c_u)/c_l*lb <= lcm(c_l, c_u)/c_u*ub.
2020 // Note if c_l = c_u = 1, all integer points captured by the resulting
2021 // constraint correspond to integer points in the original system (i.e., they
2022 // have integer pre-images). Hence, if the lcm's are all 1, the elimination is
2023 // integer exact.
2024 for (auto ubPos : ubIndices) {
2025 for (auto lbPos : lbIndices) {
2027 ineq.reserve(newRel.getNumCols());
2028 DynamicAPInt lbCoeff = atIneq(lbPos, pos);
2029 // Note that in the comments above, ubCoeff is the negation of the
2030 // coefficient in the canonical form as the view taken here is that of the
2031 // term being moved to the other size of '>='.
2032 DynamicAPInt ubCoeff = -atIneq(ubPos, pos);
2033 // TODO: refactor this loop to avoid all branches inside.
2034 for (unsigned l = 0, e = getNumCols(); l < e; l++) {
2035 if (l == pos)
2036 continue;
2037 assert(lbCoeff >= 1 && ubCoeff >= 1 && "bounds wrongly identified");
2038 DynamicAPInt lcm = llvm::lcm(lbCoeff, ubCoeff);
2039 ineq.emplace_back(atIneq(ubPos, l) * (lcm / ubCoeff) +
2040 atIneq(lbPos, l) * (lcm / lbCoeff));
2041 assert(lcm > 0 && "lcm should be positive!");
2042 if (lcm != 1)
2043 allLCMsAreOne = false;
2044 }
2045 if (darkShadow) {
2046 // The dark shadow is a convex subset of the exact integer shadow. If
2047 // there is a point here, it proves the existence of a solution.
2048 ineq[ineq.size() - 1] += lbCoeff * ubCoeff - lbCoeff - ubCoeff + 1;
2049 }
2050 // TODO: we need to have a way to add inequalities in-place in
2051 // IntegerRelation instead of creating and copying over.
2052 newRel.addInequality(ineq);
2053 }
2054 }
2055
2056 LDBG() << "FM isResultIntegerExact: " << allLCMsAreOne;
2057 if (allLCMsAreOne && isResultIntegerExact)
2058 *isResultIntegerExact = true;
2059
2060 // Copy over the constraints not involving this variable.
2061 for (auto nbPos : nbIndices) {
2063 ineq.reserve(getNumCols() - 1);
2064 for (unsigned l = 0, e = getNumCols(); l < e; l++) {
2065 if (l == pos)
2066 continue;
2067 ineq.emplace_back(atIneq(nbPos, l));
2068 }
2069 newRel.addInequality(ineq);
2070 }
2071
2072 assert(newRel.getNumConstraints() ==
2073 lbIndices.size() * ubIndices.size() + nbIndices.size());
2074
2075 // Copy over the equalities.
2076 for (unsigned r = 0, e = getNumEqualities(); r < e; r++) {
2078 eq.reserve(newRel.getNumCols());
2079 for (unsigned l = 0, e = getNumCols(); l < e; l++) {
2080 if (l == pos)
2081 continue;
2082 eq.emplace_back(atEq(r, l));
2083 }
2084 newRel.addEquality(eq);
2085 }
2086
2087 // GCD tightening and normalization allows detection of more trivially
2088 // redundant constraints.
2089 newRel.gcdTightenInequalities();
2091 newRel.removeTrivialRedundancy();
2092 clearAndCopyFrom(newRel);
2093 LDBG() << "FM output:";
2094 LLVM_DEBUG(dump());
2095}
2096
2097#undef DEBUG_TYPE
2098#define DEBUG_TYPE "presburger"
2099
2100void IntegerRelation::projectOut(unsigned pos, unsigned num) {
2101 if (num == 0)
2102 return;
2103
2104 // 'pos' can be at most getNumCols() - 2 if num > 0.
2105 assert((getNumCols() < 2 || pos <= getNumCols() - 2) && "invalid position");
2106 assert(pos + num < getNumCols() && "invalid range");
2107
2108 // Eliminate as many variables as possible using Gaussian elimination.
2109 unsigned currentPos = pos;
2110 unsigned numToEliminate = num;
2111 unsigned numGaussianEliminated = 0;
2112
2113 while (currentPos < getNumVars()) {
2114 unsigned curNumEliminated =
2115 gaussianEliminateVars(currentPos, currentPos + numToEliminate);
2116 ++currentPos;
2117 numToEliminate -= curNumEliminated + 1;
2118 numGaussianEliminated += curNumEliminated;
2119 }
2120
2121 // Eliminate the remaining using Fourier-Motzkin.
2122 for (unsigned i = 0; i < num - numGaussianEliminated; i++) {
2123 unsigned numToEliminate = num - numGaussianEliminated - i;
2125 getBestVarToEliminate(*this, pos, pos + numToEliminate));
2126 }
2127
2128 // Fast/trivial simplifications.
2130 // Normalize constraints after tightening since the latter impacts this, but
2131 // not the other way round.
2133}
2134
2135namespace {
2136
2137enum BoundCmpResult { Greater, Less, Equal, Unknown };
2138
2139/// Compares two affine bounds whose coefficients are provided in 'first' and
2140/// 'second'. The last coefficient is the constant term.
2141static BoundCmpResult compareBounds(ArrayRef<DynamicAPInt> a,
2143 assert(a.size() == b.size());
2144
2145 // For the bounds to be comparable, their corresponding variable
2146 // coefficients should be equal; the constant terms are then compared to
2147 // determine less/greater/equal.
2148
2149 if (!std::equal(a.begin(), a.end() - 1, b.begin()))
2150 return Unknown;
2151
2152 if (a.back() == b.back())
2153 return Equal;
2154
2155 return a.back() < b.back() ? Less : Greater;
2156}
2157} // namespace
2158
2159// Returns constraints that are common to both A & B.
2161 const IntegerRelation &b, IntegerRelation &c) {
2162 c = IntegerRelation(a.getSpace());
2163 // a naive O(n^2) check should be enough here given the input sizes.
2164 for (unsigned r = 0, e = a.getNumInequalities(); r < e; ++r) {
2165 for (unsigned s = 0, f = b.getNumInequalities(); s < f; ++s) {
2166 if (a.getInequality(r) == b.getInequality(s)) {
2168 break;
2169 }
2170 }
2171 }
2172 for (unsigned r = 0, e = a.getNumEqualities(); r < e; ++r) {
2173 for (unsigned s = 0, f = b.getNumEqualities(); s < f; ++s) {
2174 if (a.getEquality(r) == b.getEquality(s)) {
2175 c.addEquality(a.getEquality(r));
2176 break;
2177 }
2178 }
2179 }
2180}
2181
2182// Computes the bounding box with respect to 'other' by finding the min of the
2183// lower bounds and the max of the upper bounds along each of the dimensions.
2184LogicalResult
2186 assert(space.isEqual(otherCst.getSpace()) && "Spaces should match.");
2187 assert(getNumLocalVars() == 0 && "local ids not supported yet here");
2188
2189 // Get the constraints common to both systems; these will be added as is to
2190 // the union.
2192 getCommonConstraints(*this, otherCst, commonCst);
2193
2194 std::vector<SmallVector<DynamicAPInt, 8>> boundingLbs;
2195 std::vector<SmallVector<DynamicAPInt, 8>> boundingUbs;
2196 boundingLbs.reserve(2 * getNumDimVars());
2197 boundingUbs.reserve(2 * getNumDimVars());
2198
2199 // To hold lower and upper bounds for each dimension.
2200 SmallVector<DynamicAPInt, 4> lb, otherLb, ub, otherUb;
2201 // To compute min of lower bounds and max of upper bounds for each dimension.
2204 // To compute final new lower and upper bounds for the union.
2206
2207 DynamicAPInt lbFloorDivisor, otherLbFloorDivisor;
2208 for (unsigned d = 0, e = getNumDimVars(); d < e; ++d) {
2209 auto extent = getConstantBoundOnDimSize(d, &lb, &lbFloorDivisor, &ub);
2210 if (!extent.has_value())
2211 // TODO: symbolic extents when necessary.
2212 // TODO: handle union if a dimension is unbounded.
2213 return failure();
2214
2215 auto otherExtent = otherCst.getConstantBoundOnDimSize(
2216 d, &otherLb, &otherLbFloorDivisor, &otherUb);
2217 if (!otherExtent.has_value() || lbFloorDivisor != otherLbFloorDivisor)
2218 // TODO: symbolic extents when necessary.
2219 return failure();
2220
2221 assert(lbFloorDivisor > 0 && "divisor always expected to be positive");
2222
2223 auto res = compareBounds(lb, otherLb);
2224 // Identify min.
2225 if (res == BoundCmpResult::Less || res == BoundCmpResult::Equal) {
2226 minLb = lb;
2227 // Since the divisor is for a floordiv, we need to convert to ceildiv,
2228 // i.e., i >= expr floordiv div <=> i >= (expr - div + 1) ceildiv div <=>
2229 // div * i >= expr - div + 1.
2230 minLb.back() -= lbFloorDivisor - 1;
2231 } else if (res == BoundCmpResult::Greater) {
2232 minLb = otherLb;
2233 minLb.back() -= otherLbFloorDivisor - 1;
2234 } else {
2235 // Uncomparable - check for constant lower/upper bounds.
2236 auto constLb = getConstantBound(BoundType::LB, d);
2237 auto constOtherLb = otherCst.getConstantBound(BoundType::LB, d);
2238 if (!constLb.has_value() || !constOtherLb.has_value())
2239 return failure();
2240 llvm::fill(minLb, 0);
2241 minLb.back() = std::min(*constLb, *constOtherLb);
2242 }
2243
2244 // Do the same for ub's but max of upper bounds. Identify max.
2245 auto uRes = compareBounds(ub, otherUb);
2246 if (uRes == BoundCmpResult::Greater || uRes == BoundCmpResult::Equal) {
2247 maxUb = ub;
2248 } else if (uRes == BoundCmpResult::Less) {
2249 maxUb = otherUb;
2250 } else {
2251 // Uncomparable - check for constant lower/upper bounds.
2252 auto constUb = getConstantBound(BoundType::UB, d);
2253 auto constOtherUb = otherCst.getConstantBound(BoundType::UB, d);
2254 if (!constUb.has_value() || !constOtherUb.has_value())
2255 return failure();
2256 llvm::fill(maxUb, 0);
2257 maxUb.back() = std::max(*constUb, *constOtherUb);
2258 }
2259
2260 llvm::fill(newLb, 0);
2261 llvm::fill(newUb, 0);
2262
2263 // The divisor for lb, ub, otherLb, otherUb at this point is lbDivisor,
2264 // and so it's the divisor for newLb and newUb as well.
2265 newLb[d] = lbFloorDivisor;
2266 newUb[d] = -lbFloorDivisor;
2267 // Copy over the symbolic part + constant term.
2268 llvm::copy(minLb, newLb.begin() + getNumDimVars());
2269 std::transform(newLb.begin() + getNumDimVars(), newLb.end(),
2270 newLb.begin() + getNumDimVars(),
2271 std::negate<DynamicAPInt>());
2272 llvm::copy(maxUb, newUb.begin() + getNumDimVars());
2273
2274 boundingLbs.emplace_back(newLb);
2275 boundingUbs.emplace_back(newUb);
2276 }
2277
2278 // Clear all constraints and add the lower/upper bounds for the bounding box.
2280 for (unsigned d = 0, e = getNumDimVars(); d < e; ++d) {
2281 addInequality(boundingLbs[d]);
2282 addInequality(boundingUbs[d]);
2283 }
2284
2285 // Add the constraints that were common to both systems.
2286 append(commonCst);
2288
2289 // TODO: copy over pure symbolic constraints from this and 'other' over to the
2290 // union (since the above are just the union along dimensions); we shouldn't
2291 // be discarding any other constraints on the symbols.
2292
2293 return success();
2294}
2295
2296bool IntegerRelation::isColZero(unsigned pos) const {
2297 return !findConstraintWithNonZeroAt(pos, /*isEq=*/false) &&
2298 !findConstraintWithNonZeroAt(pos, /*isEq=*/true);
2299}
2300
2301/// Find positions of inequalities and equalities that do not have a coefficient
2302/// for [pos, pos + num) variables.
2303static void getIndependentConstraints(const IntegerRelation &cst, unsigned pos,
2304 unsigned num,
2305 SmallVectorImpl<unsigned> &nbIneqIndices,
2306 SmallVectorImpl<unsigned> &nbEqIndices) {
2307 assert(pos < cst.getNumVars() && "invalid start position");
2308 assert(pos + num <= cst.getNumVars() && "invalid limit");
2309
2310 for (unsigned r = 0, e = cst.getNumInequalities(); r < e; r++) {
2311 // The bounds are to be independent of [offset, offset + num) columns.
2312 unsigned c;
2313 for (c = pos; c < pos + num; ++c) {
2314 if (cst.atIneq(r, c) != 0)
2315 break;
2316 }
2317 if (c == pos + num)
2318 nbIneqIndices.emplace_back(r);
2319 }
2320
2321 for (unsigned r = 0, e = cst.getNumEqualities(); r < e; r++) {
2322 // The bounds are to be independent of [offset, offset + num) columns.
2323 unsigned c;
2324 for (c = pos; c < pos + num; ++c) {
2325 if (cst.atEq(r, c) != 0)
2326 break;
2327 }
2328 if (c == pos + num)
2329 nbEqIndices.emplace_back(r);
2330 }
2331}
2332
2333void IntegerRelation::removeIndependentConstraints(unsigned pos, unsigned num) {
2334 assert(pos + num <= getNumVars() && "invalid range");
2335
2336 // Remove constraints that are independent of these variables.
2337 SmallVector<unsigned, 4> nbIneqIndices, nbEqIndices;
2338 getIndependentConstraints(*this, /*pos=*/0, num, nbIneqIndices, nbEqIndices);
2339
2340 // Iterate in reverse so that indices don't have to be updated.
2341 // TODO: This method can be made more efficient (because removal of each
2342 // inequality leads to much shifting/copying in the underlying buffer).
2343 for (auto nbIndex : llvm::reverse(nbIneqIndices))
2344 removeInequality(nbIndex);
2345 for (auto nbIndex : llvm::reverse(nbEqIndices))
2346 removeEquality(nbIndex);
2347}
2348
2350 IntegerRelation copyRel = *this;
2351
2352 // Convert Range variables to Local variables.
2355
2356 // Convert Domain variables to SetDim(Range) variables.
2359
2360 return IntegerPolyhedron(std::move(copyRel));
2361}
2362
2364 bool changed = false;
2365 SmallDenseMap<ArrayRef<DynamicAPInt>, unsigned> hashTable;
2366 unsigned ineqs = getNumInequalities(), cols = getNumCols();
2367
2368 if (ineqs <= 1)
2369 return changed;
2370
2371 // Check if the non-constant part of the constraint is the same.
2372 ArrayRef<DynamicAPInt> row = getInequality(0).drop_back();
2373 hashTable.insert({row, 0});
2374 for (unsigned k = 1; k < ineqs; ++k) {
2375 row = getInequality(k).drop_back();
2376 if (hashTable.try_emplace(row, k).second)
2377 continue;
2378
2379 // For identical cases, keep only the smaller part of the constant term.
2380 unsigned l = hashTable[row];
2381 changed = true;
2382 if (atIneq(k, cols - 1) <= atIneq(l, cols - 1))
2383 inequalities.swapRows(k, l);
2385 --k;
2386 --ineqs;
2387 }
2388
2389 // Check the neg form of each inequality, need an extra vector to store it.
2390 SmallVector<DynamicAPInt> negIneq(cols - 1);
2391 for (unsigned k = 0; k < ineqs; ++k) {
2392 row = getInequality(k).drop_back();
2393 negIneq.assign(row.begin(), row.end());
2394 for (DynamicAPInt &ele : negIneq)
2395 ele = -ele;
2396 if (!hashTable.contains(negIneq))
2397 continue;
2398
2399 // For cases where the neg is the same as other inequalities, check that the
2400 // sum of their constant terms is positive.
2401 unsigned l = hashTable[row];
2402 auto sum = atIneq(l, cols - 1) + atIneq(k, cols - 1);
2403 if (sum > 0 || l == k)
2404 continue;
2405
2406 // A sum of constant terms equal to zero combines two inequalities into one
2407 // equation, less than zero means the set is empty.
2408 changed = true;
2409 if (k < l)
2410 std::swap(l, k);
2411 if (sum == 0) {
2415 } else {
2416 *this = getEmpty(getSpace());
2417 }
2418 break;
2419 }
2420
2421 return changed;
2422}
2423
2425 IntegerRelation copyRel = *this;
2426
2427 // Convert Domain variables to Local variables.
2430
2431 // We do not need to do anything to Range variables since they are already in
2432 // SetDim position.
2433
2434 return IntegerPolyhedron(std::move(copyRel));
2435}
2436
2438 assert(getDomainSet().getSpace().isCompatible(poly.getSpace()) &&
2439 "Domain set is not compatible with poly");
2440
2441 // Treating the poly as a relation, convert it from `0 -> R` to `R -> 0`.
2442 IntegerRelation rel = poly;
2443 rel.inverse();
2444
2445 // Append dummy range variables to make the spaces compatible.
2447
2448 // Intersect in place.
2449 mergeLocalVars(rel);
2450 append(rel);
2451}
2452
2454 assert(getRangeSet().getSpace().isCompatible(poly.getSpace()) &&
2455 "Range set is not compatible with poly");
2456
2457 IntegerRelation rel = poly;
2458
2459 // Append dummy domain variables to make the spaces compatible.
2461
2462 mergeLocalVars(rel);
2463 append(rel);
2464}
2465
2472
2474 assert(getRangeSet().getSpace().isCompatible(rel.getDomainSet().getSpace()) &&
2475 "Range of `this` should be compatible with Domain of `rel`");
2476
2477 IntegerRelation copyRel = rel;
2478
2479 // Let relation `this` be R1: A -> B, and `rel` be R2: B -> C.
2480 // We convert R1 to A -> (B X C), and R2 to B X C then intersect the range of
2481 // R1 with R2. After this, we get R1: A -> C, by projecting out B.
2482 // TODO: Using nested spaces here would help, since we could directly
2483 // intersect the range with another relation.
2484 unsigned numBVars = getNumRangeVars();
2485
2486 // Convert R1 from A -> B to A -> (B X C).
2488
2489 // Convert R2 to B X C.
2490 copyRel.convertVarKind(VarKind::Domain, 0, numBVars, VarKind::Range, 0);
2491
2492 // Intersect R2 to range of R1.
2494
2495 // Project out B in R1.
2497}
2498
2500 inverse();
2501 compose(rel);
2502 inverse();
2503}
2504
2506
2508 /// R1: (i, j) -> k : f(i, j, k) = 0
2509 /// R2: (i, j) -> l : g(i, j, l) = 0
2510 /// R1.rangeProduct(R2): (i, j) -> (k, l) : f(i, j, k) = 0 and g(i, j, l) = 0
2511 assert(getNumDomainVars() == rel.getNumDomainVars() &&
2512 "Range product is only defined for relations with equal domains");
2513
2514 // explicit copy of `this`
2515 IntegerRelation result = *this;
2516 unsigned relRangeVarStart = rel.getVarKindOffset(VarKind::Range);
2517 unsigned numThisRangeVars = getNumRangeVars();
2518 unsigned numNewSymbolVars = result.getNumSymbolVars() - getNumSymbolVars();
2519
2520 result.appendVar(VarKind::Range, rel.getNumRangeVars());
2521
2522 // Copy each equality from `rel` and update the copy to account for range
2523 // variables from `this`. The `rel` equality is a list of coefficients of the
2524 // variables from `rel`, and so the range variables need to be shifted right
2525 // by the number of `this` range variables and symbols.
2526 for (unsigned i = 0; i < rel.getNumEqualities(); ++i) {
2529 copy.insert(copy.begin() + relRangeVarStart,
2530 numThisRangeVars + numNewSymbolVars, DynamicAPInt(0));
2531 result.addEquality(copy);
2532 }
2533
2534 for (unsigned i = 0; i < rel.getNumInequalities(); ++i) {
2537 copy.insert(copy.begin() + relRangeVarStart,
2538 numThisRangeVars + numNewSymbolVars, DynamicAPInt(0));
2539 result.addInequality(copy);
2540 }
2541
2542 return result;
2543}
2544
2546 space.print(os);
2547 os << getNumConstraints() << " constraints\n";
2548}
2549
2551 for (int i = getNumEqualities() - 1; i >= 0; --i)
2552 if (rangeIsZero(getEquality(i)))
2553 removeEquality(i);
2554}
2555
2557 if (getNumVars() == 0)
2558 return true;
2559 if (isEmpty())
2560 return false;
2561
2562 // If there is a non-trivial equality, the space cannot be full-dimensional.
2564 if (getNumEqualities() > 0)
2565 return false;
2566
2567 // The polytope is full-dimensional iff it is not flat along any of the
2568 // inequality directions.
2569 Simplex simplex(*this);
2570 return llvm::none_of(llvm::seq<int>(getNumInequalities()), [&](int i) {
2571 return simplex.isFlatAlong(getInequality(i));
2572 });
2573}
2574
2576 assert(getNumDomainVars() == other.getNumRangeVars() &&
2577 "Domain of this and range of other do not match");
2578 // assert(std::equal(values.begin(), values.begin() +
2579 // other.getNumDomainVars(),
2580 // otherValues.begin() + other.getNumDomainVars()) &&
2581 // "Domain of this and range of other do not match");
2582
2583 IntegerRelation result = other;
2584
2585 const unsigned thisDomain = getNumDomainVars();
2586 const unsigned thisRange = getNumRangeVars();
2587 const unsigned otherDomain = other.getNumDomainVars();
2588 const unsigned otherRange = other.getNumRangeVars();
2589
2590 // Add dimension variables temporarily to merge symbol and local vars.
2591 // Convert `this` from
2592 // [thisDomain] -> [thisRange]
2593 // to
2594 // [otherDomain thisDomain] -> [otherRange thisRange].
2595 // and `result` from
2596 // [otherDomain] -> [otherRange]
2597 // to
2598 // [otherDomain thisDomain] -> [otherRange thisRange]
2599 insertVar(VarKind::Domain, 0, otherDomain);
2600 insertVar(VarKind::Range, 0, otherRange);
2601 result.insertVar(VarKind::Domain, otherDomain, thisDomain);
2602 result.insertVar(VarKind::Range, otherRange, thisRange);
2603
2604 // Merge symbol and local variables.
2607
2608 // Convert `result` from [otherDomain thisDomain] -> [otherRange thisRange] to
2609 // [otherDomain] -> [thisRange]
2610 result.removeVarRange(VarKind::Domain, otherDomain, otherDomain + thisDomain);
2611 result.convertToLocal(VarKind::Range, 0, otherRange);
2612 // Convert `this` from [otherDomain thisDomain] -> [otherRange thisRange] to
2613 // [otherDomain] -> [thisRange]
2614 convertToLocal(VarKind::Domain, otherDomain, otherDomain + thisDomain);
2615 removeVarRange(VarKind::Range, 0, otherRange);
2616
2617 // Add and match domain of `result` to domain of `this`.
2618 for (unsigned i = 0, e = result.getNumDomainVars(); i < e; ++i)
2619 if (result.getSpace().getId(VarKind::Domain, i).hasValue())
2620 space.setId(VarKind::Domain, i,
2621 result.getSpace().getId(VarKind::Domain, i));
2622 // Add and match range of `this` to range of `result`.
2623 for (unsigned i = 0, e = getNumRangeVars(); i < e; ++i)
2624 if (space.getId(VarKind::Range, i).hasValue())
2625 result.space.setId(VarKind::Range, i, space.getId(VarKind::Range, i));
2626
2627 // Append `this` to `result` and simplify constraints.
2628 result.append(*this);
2629 result.removeRedundantLocalVars();
2630
2631 *this = result;
2632}
2633
2635 assert(hasConsistentState());
2636 printSpace(os);
2637 PrintTableMetrics ptm = {0, 0, "-"};
2638 for (unsigned i = 0, e = getNumEqualities(); i < e; ++i)
2639 for (unsigned j = 0, f = getNumCols(); j < f; ++j)
2641 for (unsigned i = 0, e = getNumInequalities(); i < e; ++i)
2642 for (unsigned j = 0, f = getNumCols(); j < f; ++j)
2644 // Print using PrintMetrics.
2645 constexpr unsigned kMinSpacing = 1;
2646 for (unsigned i = 0, e = getNumEqualities(); i < e; ++i) {
2647 for (unsigned j = 0, f = getNumCols(); j < f; ++j) {
2648 printWithPrintMetrics<DynamicAPInt>(os, atEq(i, j), kMinSpacing, ptm);
2649 }
2650 os << " = 0\n";
2651 }
2652 for (unsigned i = 0, e = getNumInequalities(); i < e; ++i) {
2653 for (unsigned j = 0, f = getNumCols(); j < f; ++j) {
2654 printWithPrintMetrics<DynamicAPInt>(os, atIneq(i, j), kMinSpacing, ptm);
2655 }
2656 os << " >= 0\n";
2657 }
2658 os << '\n';
2659}
2660
2661void IntegerRelation::dump() const { print(llvm::errs()); }
2662
2663unsigned IntegerPolyhedron::insertVar(VarKind kind, unsigned pos,
2664 unsigned num) {
2665 assert((kind != VarKind::Domain || num == 0) &&
2666 "Domain has to be zero in a set");
2667 return IntegerRelation::insertVar(kind, pos, num);
2668}
2673
return success()
static void copy(Location loc, Value dst, Value src, Value size, OpBuilder &builder)
Copies the given number of bytes from src to dst pointers.
static bool rangeIsZero(ArrayRef< DynamicAPInt > range)
static void getIndependentConstraints(const IntegerRelation &cst, unsigned pos, unsigned num, SmallVectorImpl< unsigned > &nbIneqIndices, SmallVectorImpl< unsigned > &nbEqIndices)
Find positions of inequalities and equalities that do not have a coefficient for [pos,...
static void removeConstraintsInvolvingVarRange(IntegerRelation &poly, unsigned begin, unsigned count)
static unsigned getBestVarToEliminate(const IntegerRelation &cst, unsigned start, unsigned end)
Returns the position of the variable that has the minimum <number of lowerbounds> times <number of up...
static void getCommonConstraints(const IntegerRelation &a, const IntegerRelation &b, IntegerRelation &c)
static void eliminateFromConstraint(IntegerRelation *constraints, unsigned rowIdx, unsigned pivotRow, unsigned pivotCol, unsigned elimColStart, bool isEq)
Eliminate variable from constraint at rowIdx based on coefficient at pivotRow, pivotCol.
static DynamicAPInt valueAt(ArrayRef< DynamicAPInt > expr, ArrayRef< DynamicAPInt > point)
Helper to evaluate an affine expression at a point.
b
Return true if permutation is a valid permutation of the outer_dims_perm (case OuterOrInnerPerm::Oute...
static Value max(ImplicitLocOpBuilder &builder, Value value, Value bound)
static Value min(ImplicitLocOpBuilder &builder, Value value, Value bound)
Class storing division representation of local variables of a constraint system.
Definition Utils.h:117
void removeDuplicateDivs(llvm::function_ref< bool(unsigned i, unsigned j)> merge)
Removes duplicate divisions.
Definition Utils.cpp:439
void clearRepr(unsigned i)
Definition Utils.h:136
DynamicAPInt & getDenom(unsigned i)
Definition Utils.h:153
MutableArrayRef< DynamicAPInt > getDividend(unsigned i)
Definition Utils.h:139
An Identifier stores a pointer to an object, such as a Value or an Operation.
An IntegerPolyhedron represents the set of points from a PresburgerSpace that satisfy a list of affin...
IntegerPolyhedron intersect(const IntegerPolyhedron &other) const
Return the intersection of the two relations.
unsigned insertVar(VarKind kind, unsigned pos, unsigned num=1) override
Insert num variables of the specified kind at position pos.
PresburgerSet subtract(const PresburgerSet &other) const
Return the set difference of this set and the given set, i.e., return this \ set.
IntegerPolyhedron(unsigned numReservedInequalities, unsigned numReservedEqualities, unsigned numReservedCols, const PresburgerSpace &space)
Constructs a set reserving memory for the specified number of constraints and variables.
std::unique_ptr< IntegerPolyhedron > clone() const
An IntegerRelation represents the set of points from a PresburgerSpace that satisfy a list of affine ...
std::optional< DynamicAPInt > getConstantBoundOnDimSize(unsigned pos, SmallVectorImpl< DynamicAPInt > *lb=nullptr, DynamicAPInt *boundFloorDivisor=nullptr, SmallVectorImpl< DynamicAPInt > *ub=nullptr, unsigned *minLbPos=nullptr, unsigned *minUbPos=nullptr) const
Returns the smallest known constant bound for the extent of the specified variable (pos^th),...
void setId(VarKind kind, unsigned i, Identifier id)
Set the identifier for the ith variable of the specified kind of the IntegerRelation's PresburgerSpac...
virtual void swapVar(unsigned posA, unsigned posB)
Swap the posA^th variable with the posB^th variable.
void removeIndependentConstraints(unsigned pos, unsigned num)
Removes constraints that are independent of (i.e., do not have a coefficient) variables in the range ...
void compose(const IntegerRelation &rel)
Let the relation this be R1, and the relation rel be R2.
void applyRange(const IntegerRelation &rel)
Given a relation rel, apply the relation to the range of this relation.
unsigned getVarKindEnd(VarKind kind) const
Return the index at Which the specified kind of vars ends.
ArrayRef< Identifier > getIds(VarKind kind)
Get the identifiers for the variables of specified varKind.
void removeTrivialRedundancy()
Removes duplicate constraints, trivially true constraints, and constraints that can be detected as re...
unsigned addLocalModulo(ArrayRef< DynamicAPInt > exprs, const DynamicAPInt &modulus)
Adds a new local variable as the modulus of an affine function of other variables,...
static IntegerRelation getEmpty(const PresburgerSpace &space)
Return an empty system containing an invalid equation 0 = 1.
static constexpr unsigned kExplosionFactor
A parameter that controls detection of an unrealistic number of constraints.
ArrayRef< DynamicAPInt > getEquality(unsigned idx) const
std::optional< unsigned > findConstraintWithNonZeroAt(unsigned colIdx, bool isEq) const
Finds a constraint with a non-zero coefficient at colIdx in equality (isEq=true) or inequality (isEq=...
void removeInequalityRange(unsigned start, unsigned end)
void normalizeConstraintsByGCD()
Normalized each constraints by the GCD of its coefficients.
void truncate(const CountsSnapshot &counts)
virtual void eliminateRedundantLocalVar(unsigned posA, unsigned posB)
Eliminate the posB^th local variable, replacing every instance of it with the posA^th local variable.
std::optional< DynamicAPInt > computeConstantLowerOrUpperBound(unsigned pos)
Returns the constant lower bound if isLower is true, and the upper bound if isLower is false.
void removeEqualityRange(unsigned start, unsigned end)
Remove the (in)equalities at positions [start, end).
LogicalResult constantFoldVar(unsigned pos)
Tries to fold the specified variable to a constant using a trivial equality detection; if successful,...
bool isObviouslyEqual(const IntegerRelation &other) const
Perform a quick equality check on this and other.
IntegerPolyhedron getRangeSet() const
Return a set corresponding to all points in the range of the relation.
std::optional< SmallVector< DynamicAPInt, 8 > > containsPointNoLocal(ArrayRef< DynamicAPInt > point) const
Given the values of non-local vars, return a satisfying assignment to the local if one exists,...
unsigned getNumVarKind(VarKind kind) const
Get the number of vars of the specified kind.
bool isEmptyByGCDTest() const
Runs the GCD test on all equality constraints.
void simplify()
Simplify the constraint system by removing canonicalizing constraints and removing redundant constrai...
void convertVarKind(VarKind srcKind, unsigned varStart, unsigned varLimit, VarKind dstKind, unsigned pos)
Converts variables of kind srcKind in the range [varStart, varLimit) to variables of kind dstKind.
void addBound(BoundType type, unsigned pos, const DynamicAPInt &value)
Adds a constant bound for the specified variable.
unsigned appendVar(VarKind kind, unsigned num=1)
Append num variables of the specified kind after the last variable of that kind.
void intersectRange(const IntegerPolyhedron &poly)
Intersect the given poly with the range in-place.
ArrayRef< DynamicAPInt > getInequality(unsigned idx) const
IntegerRelation rangeProduct(const IntegerRelation &rel)
Let the relation this be R1, and the relation rel be R2.
void print(raw_ostream &os) const
bool isIntegerEmpty() const
Returns true if the set of constraints is found to have no solution, false if a solution exists.
DynamicAPInt atIneq(unsigned i, unsigned j) const
Returns the value at the specified inequality row and column.
virtual unsigned insertVar(VarKind kind, unsigned pos, unsigned num=1)
Insert num variables of the specified kind at position pos.
bool containsPoint(ArrayRef< DynamicAPInt > point) const
Returns true if the given point satisfies the constraints, or false otherwise.
std::optional< SmallVector< DynamicAPInt, 8 > > findIntegerSample() const
Find an integer sample point satisfying the constraints using a branch and bound algorithm with gener...
bool hasInvalidConstraint() const
Checks all rows of equality/inequality constraints for trivial contradictions (for example: 1 == 0,...
LogicalResult unionBoundingBox(const IntegerRelation &other)
Updates the constraints to be the smallest bounding (enclosing) box that contains the points of this ...
IntegerRelation(unsigned numReservedInequalities, unsigned numReservedEqualities, unsigned numReservedCols, const PresburgerSpace &space)
Constructs a relation reserving memory for the specified number of constraints and variables.
bool isHyperRectangular(unsigned pos, unsigned num) const
Returns true if the set can be trivially detected as being hyper-rectangular on the specified contigu...
void convertToLocal(VarKind kind, unsigned varStart, unsigned varLimit)
IntMatrix getBoundedDirections() const
Returns a matrix where each row is a vector along which the polytope is bounded.
LogicalResult gaussianEliminateVar(unsigned position)
Eliminates a single variable at position from equality and inequality constraints.
void clearConstraints()
Removes all equalities and inequalities.
DynamicAPInt atEq(unsigned i, unsigned j) const
Returns the value at the specified equality row and column.
IntegerRelation intersect(IntegerRelation other) const
Return the intersection of the two relations.
std::optional< DynamicAPInt > computeVolume() const
Compute an overapproximation of the number of integer points in the relation.
MaybeOptimum< SmallVector< DynamicAPInt, 8 > > findIntegerLexMin() const
Same as above, but returns lexicographically minimal integer point.
const PresburgerSpace & getSpace() const
Returns a reference to the underlying space.
SymbolicLexOpt findSymbolicIntegerLexMin() const
Compute the symbolic integer lexmin of the relation.
void setSpace(const PresburgerSpace &oSpace)
Set the space to oSpace, which should have the same number of ids as the current space.
int findEqualityToConstant(unsigned pos, bool symbolic=false) const
Finds an equality that equates the specified variable to a constant.
void inverse()
Invert the relation i.e., swap its domain and range.
void append(const IntegerRelation &other)
Appends constraints from other into this.
void applyDomain(const IntegerRelation &rel)
Given a relation rel, apply the relation to the domain of this relation.
void intersectDomain(const IntegerPolyhedron &poly)
Intersect the given poly with the domain in-place.
unsigned addLocalFloorDiv(ArrayRef< DynamicAPInt > dividend, const DynamicAPInt &divisor)
Adds a new local variable as the floordiv of an affine function of other variables,...
PresburgerRelation subtract(const PresburgerRelation &set) const
Return the set difference of this set and the given set, i.e., return this \ set.
bool isEqual(const IntegerRelation &other) const
Return whether this and other are equal.
virtual void printSpace(raw_ostream &os) const
Prints the number of constraints, dimensions, symbols and locals in the IntegerRelation.
void addEquality(ArrayRef< DynamicAPInt > eq)
Adds an equality from the coefficients specified in eq.
void removeRedundantConstraints()
Removes redundant constraints using Simplex.
PresburgerRelation computeReprWithOnlyDivLocals() const
Compute an equivalent representation of the same set, such that all local vars in all disjuncts have ...
void removeRedundantInequalities()
A more expensive check than removeTrivialRedundancy to detect redundant inequalities.
bool isObviouslyEmpty() const
Performs GCD checks and invalid constraint checks.
IntMatrix equalities
Coefficients of affine equalities (in == 0 form).
SymbolicLexOpt findSymbolicIntegerLexMax() const
Same as findSymbolicIntegerLexMin but produces lexmax instead of lexmin.
bool gaussianEliminate()
Perform a Gaussian elimination operation to reduce all equations to standard form.
void truncateVarKind(VarKind kind, unsigned num)
Truncate the vars of the specified kind to the specified number by dropping some vars at the end.
void constantFoldVarRange(unsigned pos, unsigned num)
This method calls constantFoldVar for the specified range of variables, num variables starting at pos...
bool isEmpty() const
Checks for emptiness by performing variable elimination on all variables, running the GCD test on eac...
unsigned getNumCols() const
Returns the number of columns in the constraint system.
void getLowerAndUpperBoundIndices(unsigned pos, SmallVectorImpl< unsigned > *lbIndices, SmallVectorImpl< unsigned > *ubIndices, SmallVectorImpl< unsigned > *eqIndices=nullptr, unsigned offset=0, unsigned num=0) const
Gather positions of all lower and upper bounds of the variable at pos, and optionally any equalities ...
void gcdTightenInequalities()
Tightens inequalities given that we are dealing with integer spaces.
void removeVar(VarKind kind, unsigned pos)
Removes variables of the specified kind with the specified pos (or within the specified range) from t...
void setSpaceExceptLocals(const PresburgerSpace &oSpace)
Set the space to oSpace, which should not have any local ids.
unsigned gaussianEliminateVars(unsigned posStart, unsigned posLimit)
Eliminates variables from equality and inequality constraints in column range [posStart,...
void mergeAndCompose(const IntegerRelation &other)
Given a relation other: (A -> B), this operation merges the symbol and local variables and then takes...
IntegerPolyhedron getDomainSet() const
Return a set corresponding to all points in the domain of the relation.
DivisionRepr getLocalReprs(std::vector< MaybeLocalRepr > *repr=nullptr) const
Returns a DivisonRepr representing the division representation of local variables in the constraint s...
bool hasOnlyDivLocals() const
Check whether all local ids have a division representation.
std::optional< DynamicAPInt > getConstantBound(BoundType type, unsigned pos) const
Returns the constant bound for the pos^th variable if there is one; std::nullopt otherwise.
virtual void clearAndCopyFrom(const IntegerRelation &other)
Replaces the contents of this IntegerRelation with other.
void projectOut(unsigned pos, unsigned num)
Projects out (aka eliminates) num variables starting at position pos.
void addInequality(ArrayRef< DynamicAPInt > inEq)
Adds an inequality (>= 0) from the coefficients specified in inEq.
void mergeAndAlignSymbols(IntegerRelation &other)
Merge and align symbol variables of this and other with respect to identifiers.
void removeRedundantLocalVars()
Removes local variables using equalities.
unsigned mergeLocalVars(IntegerRelation &other)
Adds additional local vars to the sets such that they both have the union of the local vars in each s...
MaybeOptimum< SmallVector< Fraction, 8 > > findRationalLexMin() const
Get the lexicographically minimum rational point satisfying the constraints.
IntMatrix inequalities
Coefficients of affine inequalities (in >= 0 form).
virtual bool hasConsistentState() const
Returns false if the fields corresponding to various variable counts, or equality/inequality buffer s...
bool isSubsetOf(const IntegerRelation &other) const
Return whether this is a subset of the given IntegerRelation.
std::unique_ptr< IntegerRelation > clone() const
void setAndEliminate(unsigned pos, ArrayRef< DynamicAPInt > values)
Sets the values.size() variables starting at pos to the specified values and removes them.
bool isColZero(unsigned pos) const
Returns true if the pos^th column is all zero for both inequalities and equalities.
unsigned getVarKindOffset(VarKind kind) const
Return the index at which the specified kind of vars starts.
virtual void removeVarRange(VarKind kind, unsigned varStart, unsigned varLimit)
virtual void fourierMotzkinEliminate(unsigned pos, bool darkShadow=false, bool *isResultIntegerExact=nullptr)
Eliminates the variable at the specified position using Fourier-Motzkin variable elimination,...
bool removeDuplicateConstraints()
Checks for identical inequalities and eliminates redundant inequalities.
A class for lexicographic optimization without any symbols.
Definition Simplex.h:478
MaybeOptimum< SmallVector< Fraction, 8 > > findRationalLexMin()
Return the lexicographically minimum rational solution to the constraints.
Definition Simplex.cpp:234
MaybeOptimum< SmallVector< DynamicAPInt, 8 > > findIntegerLexMin()
Return the lexicographically minimum integer solution to the constraints.
Definition Simplex.cpp:305
static std::pair< unsigned, LinearTransform > makeTransformToColumnEchelon(const IntMatrix &m)
unsigned getNumRows() const
Definition Matrix.h:86
void fillRow(unsigned row, const T &value)
Definition Matrix.cpp:252
void negateRow(unsigned row)
Negate the specified row.
Definition Matrix.cpp:334
OptimumKind getKind() const
Definition Utils.h:50
This class represents a multi-affine function with the domain as Z^d, where d is the number of domain...
ArrayRef< Piece > getAllPieces() const
Return all the pieces of this piece-wise function.
const PresburgerSpace & getSpace() const
PresburgerSet getDomain() const
Return the domain of this piece-wise MultiAffineFunction.
A PresburgerRelation represents a union of IntegerRelations that live in the same PresburgerSpace wit...
PresburgerRelation subtract(const PresburgerRelation &set) const
Return the set difference of this set and the given set, i.e., return this \ set.
bool isSubsetOf(const PresburgerRelation &set) const
Return true if this set is a subset of the given set, and false otherwise.
bool isEqual(const PresburgerRelation &set) const
Return true if this set is equal to the given set, and false otherwise.
PresburgerSet unionSet(const PresburgerRelation &set) const
These operations are the same as the ones in PresburgeRelation, they just forward the arguement and r...
PresburgerSpace is the space of all possible values of a tuple of integer valued variables/variables.
void setId(VarKind kind, unsigned pos, Identifier id)
Set the identifier of pos^th variable of the specified kind.
unsigned getNumVarKind(VarKind kind) const
Get the number of vars of the specified kind.
bool isUsingIds() const
Returns if identifiers are being used.
void removeVarRange(VarKind kind, unsigned varStart, unsigned varLimit)
Removes variables of the specified kind in the column range [varStart, varLimit).
ArrayRef< Identifier > getIds(VarKind kind) const
unsigned getVarKindOffset(VarKind kind) const
Return the index at which the specified kind of var starts.
Identifier getId(VarKind kind, unsigned pos) const
Get the identifier of pos^th variable of the specified kind.
VarKind getVarKindAt(unsigned pos) const
Return the VarKind of the var at the specified position.
static PresburgerSpace getSetSpace(unsigned numDims=0, unsigned numSymbols=0, unsigned numLocals=0)
static PresburgerSpace getRelationSpace(unsigned numDomain=0, unsigned numRange=0, unsigned numSymbols=0, unsigned numLocals=0)
bool isEmpty() const
Returns true if the tableau is empty (has conflicting constraints), false otherwise.
Definition Simplex.cpp:1069
The Simplex class uses the Normal pivot rule and supports integer emptiness checks as well as detecti...
Definition Simplex.h:691
std::pair< MaybeOptimum< DynamicAPInt >, MaybeOptimum< DynamicAPInt > > computeIntegerBounds(ArrayRef< DynamicAPInt > coeffs)
Returns a (min, max) pair denoting the minimum and maximum integer values of the given expression.
Definition Simplex.cpp:2107
bool isMarkedRedundant(unsigned constraintIndex) const
Returns whether the specified constraint has been marked as redundant.
Definition Simplex.cpp:1408
bool isFlatAlong(ArrayRef< DynamicAPInt > coeffs)
Check if the simplex takes only one rational value along the direction of coeffs.
Definition Simplex.cpp:2115
bool isBoundedAlongConstraint(unsigned constraintIndex)
Returns whether the perpendicular of the specified constraint is a is a direction along which the pol...
Definition Simplex.cpp:1398
bool isUnbounded()
Returns true if the polytope is unbounded, i.e., extends to infinity in some direction.
Definition Simplex.cpp:1470
void detectRedundant(unsigned offset, unsigned count)
Finds a subset of constraints that is redundant, i.e., such that the set of solutions does not change...
Definition Simplex.cpp:1428
std::optional< SmallVector< Fraction, 8 > > getRationalSample() const
Returns the current sample point, which may contain non-integer (rational) coordinates.
Definition Simplex.cpp:1570
std::optional< SmallVector< DynamicAPInt, 8 > > findIntegerSample()
Returns an integer sample point if one exists, or std::nullopt otherwise.
Definition Simplex.cpp:1996
A class to perform symbolic lexicographic optimization, i.e., to find, for every assignment to the sy...
Definition Simplex.h:572
SymbolicLexOpt computeSymbolicIntegerLexMin()
The lexmin will be stored as a function lexopt from symbols to non-symbols in the result.
Definition Simplex.cpp:536
BoundType
The type of bound: equal, lower bound or upper bound.
VarKind
Kind of variable.
MaybeLocalRepr computeSingleVarRepr(const IntegerRelation &cst, ArrayRef< bool > foundRepr, unsigned pos, MutableArrayRef< DynamicAPInt > dividend, DynamicAPInt &divisor)
Returns the MaybeLocalRepr struct which contains the indices of the constraints that can be expressed...
Definition Utils.cpp:227
void mergeLocalVars(IntegerRelation &relA, IntegerRelation &relB, llvm::function_ref< bool(unsigned i, unsigned j)> merge)
Given two relations, A and B, add additional local vars to the sets such that both have the union of ...
Definition Utils.cpp:288
DynamicAPInt ceil(const Fraction &f)
Definition Fraction.h:79
Fraction abs(const Fraction &f)
Definition Fraction.h:107
SmallVector< DynamicAPInt, 8 > getDivUpperBound(ArrayRef< DynamicAPInt > dividend, const DynamicAPInt &divisor, unsigned localVarIdx)
If q is defined to be equal to expr floordiv d, this equivalent to saying that q is an integer and q ...
Definition Utils.cpp:315
void printWithPrintMetrics(raw_ostream &os, T val, unsigned minSpacing, const PrintTableMetrics &m)
Print val in the table with metrics specified in 'm'.
Definition Utils.h:328
void updatePrintMetrics(T val, PrintTableMetrics &m)
Iterate over each val in the table and update 'm' where .maxPreIndent and .maxPostIndent are initiali...
Definition Utils.h:314
SmallVector< DynamicAPInt, 8 > getDivLowerBound(ArrayRef< DynamicAPInt > dividend, const DynamicAPInt &divisor, unsigned localVarIdx)
Definition Utils.cpp:327
Include the generated interface declarations.
const FrozenRewritePatternSet GreedyRewriteConfig bool * changed
The struct CountsSnapshot stores the count of each VarKind, and also of each constraint type.
MaybeLocalRepr contains the indices of the constraints that can be expressed as a floordiv of an affi...
Definition Utils.h:97
Example usage: Print .12, 3.4, 56.7 preAlign = ".", minSpacing = 1, .12 .12 3.4 3....
Definition Utils.h:303
Represents the result of a symbolic lexicographic optimization computation.
Definition Simplex.h:529
PWMAFunction lexopt
This maps assignments of symbols to the corresponding lexopt.
Definition Simplex.h:537
PresburgerSet unboundedDomain
Contains all assignments to the symbols that made the lexopt unbounded.
Definition Simplex.h:541
Eliminates variable at the specified position using Fourier-Motzkin variable elimination.