15 #include "llvm/ADT/STLExtras.h"
16 #include "llvm/ADT/SmallBitVector.h"
17 #include "llvm/ADT/SmallVector.h"
18 #include "llvm/Support/LogicalResult.h"
19 #include "llvm/Support/raw_ostream.h"
27 using namespace presburger;
30 : space(disjunct.getSpaceWithoutLocals()) {
38 disjunct.setSpaceExceptLocals(
space);
44 cs.insertVar(kind, pos, num);
52 "srcKind/dstKind cannot be local");
53 assert(srcKind != dstKind &&
"cannot convert variables to the same kind");
55 "invalid range for source variables");
57 "invalid position for destination variables");
62 disjunct.convertVarKind(srcKind, srcPos, srcPos + num, dstKind, dstPos);
74 assert(index <
disjuncts.size() &&
"index out of bounds!");
173 "Range of `this` must be compatible with range of `set`");
183 "Domain of `this` must be compatible with range of `set`");
214 assert(
getSpace().getRangeSpace().isCompatible(
216 "Range of `this` should be compatible with domain of `rel`");
233 assert(
getSpace().getDomainSpace().isCompatible(
235 "Domain of `this` should be compatible with domain of `rel`");
254 s = cs.findSymbolicIntegerLexMin();
257 s = cs.findSymbolicIntegerLexMax();
290 "idx out of bounds!");
298 return llvm::to_vector<8>(eqCoeffs);
309 result.
unionInPlace(disjunct.computeReprWithOnlyDivLocals());
368 unsigned simplexSnapshot;
378 std::optional<unsigned> lastIneqProcessed;
381 Frame(
unsigned simplexSnapshot,
384 std::optional<unsigned> lastIneqProcessed = std::nullopt)
385 : simplexSnapshot(simplexSnapshot), bCounts(bCounts), sI(sI),
386 ineqsToProcess(ineqsToProcess), lastIneqProcessed(lastIneqProcessed) {
398 level = frames.size();
402 if (level > frames.size()) {
440 "Subtraction is not supported when a representation of the local "
441 "variables of the subtrahend cannot be found!");
444 unsigned lb = repr[i].repr.inequalityPair.lowerBoundIdx;
445 unsigned ub = repr[i].repr.inequalityPair.upperBoundIdx;
451 "Upper and lower bounds must be different inequalities!");
452 canIgnoreIneq[lb] =
true;
453 canIgnoreIneq[ub] =
true;
456 "ReprKind isn't inequality so should be equality");
483 unsigned numLocalsAdded =
487 unsigned snapshotBeforeIntersect = simplex.
getSnapshot();
501 frames.emplace_back(Frame{initialSnapshot, initBCounts, sI});
507 unsigned totalNewSimplexInequalities =
523 for (
unsigned j = 0;
j < totalNewSimplexInequalities;
j++)
525 simplex.
rollback(snapshotBeforeIntersect);
528 ineqsToProcess.reserve(totalNewSimplexInequalities);
529 for (
unsigned i = 0; i < totalNewSimplexInequalities; ++i)
530 if (!canIgnoreIneq[i])
531 ineqsToProcess.emplace_back(i);
533 if (ineqsToProcess.empty()) {
535 level = frames.size();
541 frames.emplace_back(Frame{simplexSnapshot, bCounts, sI, ineqsToProcess});
549 if (level == frames.size()) {
550 Frame &frame = frames.back();
551 if (frame.lastIneqProcessed) {
559 simplex.
rollback(frame.simplexSnapshot);
567 if (frame.ineqsToProcess.empty()) {
570 level = frames.size();
578 unsigned idx = frame.ineqsToProcess.back();
584 frame.ineqsToProcess.pop_back();
585 frame.lastIneqProcessed = idx;
655 if (disjunct.getNumConstraints() == 0)
682 disjunct.findIntegerSample()) {
683 sample = std::move(*opt);
694 DynamicAPInt result(0);
696 std::optional<DynamicAPInt> volume = disjunct.computeVolume();
749 void addCoalescedDisjunct(
unsigned i,
unsigned j,
763 LogicalResult coalescePairCutCase(
unsigned i,
unsigned j);
778 void eraseDisjunct(
unsigned i);
785 LogicalResult coalescePair(
unsigned i,
unsigned j);
796 for (
unsigned i = 0; i < disjuncts.size();) {
797 disjuncts[i].removeRedundantConstraints();
800 disjuncts[i] = disjuncts[disjuncts.size() - 1];
801 disjuncts.pop_back();
805 simplices.emplace_back(simp);
815 for (
unsigned i = 0; i < disjuncts.size();) {
820 for (
unsigned j = 0, e = disjuncts.size();
j < e; ++
j) {
822 redundantIneqsA.clear();
823 redundantIneqsB.clear();
824 cuttingIneqsA.clear();
825 cuttingIneqsB.clear();
828 if (coalescePair(i,
j).succeeded()) {
860 void SetCoalescer::addCoalescedDisjunct(
unsigned i,
unsigned j,
862 assert(i !=
j &&
"The indices must refer to different disjuncts");
863 unsigned n = disjuncts.size();
868 disjuncts[i] = disjuncts[n - 2];
869 disjuncts.pop_back();
870 disjuncts[n - 2] = disjunct;
871 disjuncts[n - 2].removeRedundantConstraints();
873 simplices[i] = simplices[n - 2];
874 simplices.pop_back();
875 simplices[n - 2] =
Simplex(disjuncts[n - 2]);
883 disjuncts[i] = disjuncts[n - 1];
884 disjuncts[
j] = disjuncts[n - 2];
885 disjuncts.pop_back();
886 disjuncts[n - 2] = disjunct;
887 disjuncts[n - 2].removeRedundantConstraints();
889 simplices[i] = simplices[n - 1];
890 simplices[
j] = simplices[n - 2];
891 simplices.pop_back();
892 simplices[n - 2] =
Simplex(disjuncts[n - 2]);
912 LogicalResult SetCoalescer::coalescePairCutCase(
unsigned i,
unsigned j) {
918 return !isFacetContained(curr, simp);
924 newSet.addInequality(curr);
927 newSet.addInequality(curr);
929 addCoalescedDisjunct(i,
j, newSet);
936 if (type == Simplex::IneqType::Redundant)
937 redundantIneqsB.emplace_back(ineq);
938 else if (type == Simplex::IneqType::Cut)
939 cuttingIneqsB.emplace_back(ineq);
947 if (typeInequality(eq, simp).failed())
951 return typeInequality(inv, simp);
954 void SetCoalescer::eraseDisjunct(
unsigned i) {
955 assert(simplices.size() == disjuncts.size() &&
956 "simplices and disjuncts must be equally as long");
957 disjuncts[i] = disjuncts.back();
958 disjuncts.pop_back();
959 simplices[i] = simplices.back();
960 simplices.pop_back();
963 LogicalResult SetCoalescer::coalescePair(
unsigned i,
unsigned j) {
985 if (typeEquality(a.
getEquality(k), simpB).failed())
988 std::swap(redundantIneqsA, redundantIneqsB);
989 std::swap(cuttingIneqsA, cuttingIneqsB);
996 if (typeEquality(b.
getEquality(k), simpA).failed())
1001 if (cuttingIneqsA.empty()) {
1007 if (coalescePairCutCase(i,
j).succeeded())
1011 std::swap(redundantIneqsA, redundantIneqsB);
1012 std::swap(cuttingIneqsA, cuttingIneqsB);
1016 if (cuttingIneqsA.empty()) {
1022 return coalescePairCutCase(
j, i);
static SymbolicLexOpt findSymbolicIntegerLexOpt(const PresburgerRelation &rel, bool isMin)
static SmallVector< DynamicAPInt, 8 > getIneqCoeffsFromIdx(const IntegerRelation &rel, unsigned idx)
Return the coefficients of the ineq in rel specified by idx.
static PresburgerRelation getSetDifference(IntegerRelation b, const PresburgerRelation &s)
Return the set difference b \ s.
Class storing division representation of local variables of a constraint system.
DynamicAPInt & getDenom(unsigned i)
MutableArrayRef< DynamicAPInt > getDividend(unsigned i)
An IntegerPolyhedron represents the set of points from a PresburgerSpace that satisfy a list of affin...
static IntegerPolyhedron getUniverse(const PresburgerSpace &space)
Return a system with no constraints, i.e., one which is satisfied by all points.
An IntegerRelation represents the set of points from a PresburgerSpace that satisfy a list of affine ...
void compose(const IntegerRelation &rel)
Let the relation this be R1, and the relation rel be R2.
PresburgerSpace getSpaceWithoutLocals() const
Returns a copy of the space without locals.
void truncate(const CountsSnapshot &counts)
CountsSnapshot getCounts() const
std::optional< SmallVector< DynamicAPInt, 8 > > containsPointNoLocal(ArrayRef< DynamicAPInt > point) const
Given the values of non-local vars, return a satisfying assignment to the local if one exists,...
ArrayRef< DynamicAPInt > getInequality(unsigned idx) const
bool isEmptyByGCDTest() const
Runs the GCD test on all equality constraints.
void simplify()
Simplify the constraint system by removing canonicalizing constraints and removing redundant constrai...
void removeDuplicateDivs()
void print(raw_ostream &os) const
bool isIntegerEmpty() const
Returns true if the set of constraints is found to have no solution, false if a solution exists.
IntegerRelation intersect(IntegerRelation other) const
Return the intersection of the two relations.
static IntegerRelation getUniverse(const PresburgerSpace &space)
Return a system with no constraints, i.e., one which is satisfied by all points.
unsigned getNumLocalVars() const
bool isObviouslyEmpty() const
Performs GCD checks and invalid constraint checks.
bool isEmpty() const
Checks for emptiness by performing variable elimination on all variables, running the GCD test on eac...
DivisionRepr getLocalReprs(std::vector< MaybeLocalRepr > *repr=nullptr) const
Returns a DivisonRepr representing the division representation of local variables in the constraint s...
bool hasOnlyDivLocals() const
Check whether all local ids have a division representation.
void addInequality(ArrayRef< DynamicAPInt > inEq)
Adds an inequality (>= 0) from the coefficients specified in inEq.
unsigned mergeLocalVars(IntegerRelation &other)
Adds additional local vars to the sets such that they both have the union of the local vars in each s...
ArrayRef< DynamicAPInt > getEquality(unsigned idx) const
unsigned getNumInequalities() const
const PresburgerSpace & getSpace() const
Returns a reference to the underlying space.
unsigned getNumEqualities() const
unsigned getVarKindOffset(VarKind kind) const
Return the index at which the specified kind of vars starts.
This class represents a piece-wise MultiAffineFunction.
PWMAFunction unionLexMax(const PWMAFunction &func)
PWMAFunction unionLexMin(const PWMAFunction &func)
Return a function defined on the union of the domains of this and func, such that when only one of th...
A PresburgerRelation represents a union of IntegerRelations that live in the same PresburgerSpace wit...
unsigned getNumSymbolVars() const
void setSpace(const PresburgerSpace &oSpace)
Set the space to oSpace.
unsigned getNumRangeVars() const
PresburgerRelation intersect(const PresburgerRelation &set) const
Return the intersection of this set and the given set.
bool hasOnlyDivLocals() const
Check whether all local ids in all disjuncts have a div representation.
bool containsPoint(ArrayRef< DynamicAPInt > point) const
Return true if the set contains the given point, and false otherwise.
PresburgerRelation subtract(const PresburgerRelation &set) const
Return the set difference of this set and the given set, i.e., return this \ set.
friend class SetCoalescer
PresburgerRelation(const IntegerRelation &disjunct)
PresburgerSet getRangeSet() const
Return a set corresponding to the range of the relation.
bool isConvexNoLocals() const
Return true if the set is consist of a single disjunct, without any local variables,...
PresburgerRelation computeReprWithOnlyDivLocals() const
Compute an equivalent representation of the same relation, such that all local ids in all disjuncts h...
bool isSubsetOf(const PresburgerRelation &set) const
Return true if this set is a subset of the given set, and false otherwise.
unsigned getNumDomainVars() const
bool isIntegerEmpty() const
Return true if all the sets in the union are known to be integer empty false otherwise.
PresburgerRelation intersectRange(const PresburgerSet &set) const
Return the range intersection of the given set with this relation.
void unionInPlace(const IntegerRelation &disjunct)
Mutate this set, turning it into the union of this set and the given disjunct.
std::optional< DynamicAPInt > computeVolume() const
Compute an overapproximation of the number of integer points in the disjunct.
void convertVarKind(VarKind srcKind, unsigned srcPos, unsigned num, VarKind dstKind, unsigned dstPos)
Converts variables of the specified kind in the column range [srcPos, srcPos + num) to variables of t...
PresburgerRelation intersectDomain(const PresburgerSet &set) const
Return the domain intersection of the given set with this relation.
bool isEqual(const PresburgerRelation &set) const
Return true if this set is equal to the given set, and false otherwise.
static PresburgerRelation getEmpty(const PresburgerSpace &space)
Return an empty set of the specified type that contains no points.
void applyDomain(const PresburgerRelation &rel)
Apply the domain of given relation rel to this relation.
unsigned getNumDisjuncts() const
Return the number of disjuncts in the union.
void applyRange(const PresburgerRelation &rel)
Same as compose, provided for uniformity with applyDomain.
bool findIntegerSample(SmallVectorImpl< DynamicAPInt > &sample)
Find an integer sample from the given set.
bool isObviouslyEmpty() const
Return true if there is no disjunct, false otherwise.
bool isObviouslyUniverse() const
Return true if the set is known to have one unconstrained disjunct, false otherwise.
PresburgerRelation coalesce() const
Simplifies the representation of a PresburgerRelation.
static PresburgerRelation getUniverse(const PresburgerSpace &space)
Return a universe set of the specified type that contains all points.
const IntegerRelation & getDisjunct(unsigned index) const
Return the disjunct at the specified index.
ArrayRef< IntegerRelation > getAllDisjuncts() const
Return a reference to the list of disjuncts.
SmallVector< IntegerRelation, 2 > disjuncts
The list of disjuncts that this set is the union of.
PresburgerRelation simplify() const
Simplify each disjunct, canonicalizing each disjunct and removing redundencies.
void compose(const PresburgerRelation &rel)
Compose this relation with the given relation rel in-place.
const PresburgerSpace & getSpace() const
void print(raw_ostream &os) const
Print the set's internal state.
void inverse()
Invert the relation, i.e.
PresburgerSet getDomainSet() const
Return a set corresponding to the domain of the relation.
SymbolicLexOpt findSymbolicIntegerLexMax() const
Compute the symbolic integer lexmax of the relation, i.e.
void insertVarInPlace(VarKind kind, unsigned pos, unsigned num=1)
PresburgerRelation unionSet(const PresburgerRelation &set) const
Return the union of this set and the given set.
bool isObviouslyEqual(const PresburgerRelation &set) const
Perform a quick equality check on this and other.
SymbolicLexOpt findSymbolicIntegerLexMin() const
Compute the symbolic integer lexmin of the relation, i.e.
bool isFullDim() const
Return whether the given PresburgerRelation is full-dimensional.
PresburgerRelation complement() const
Return the complement of this set.
PresburgerSet intersect(const PresburgerRelation &set) const
PresburgerSet(const IntegerPolyhedron &disjunct)
Create a set from a relation.
PresburgerSet unionSet(const PresburgerRelation &set) const
These operations are the same as the ones in PresburgeRelation, they just forward the arguement and r...
PresburgerSet subtract(const PresburgerRelation &set) const
static PresburgerSet getEmpty(const PresburgerSpace &space)
Return an empty set of the specified type that contains no points.
static PresburgerSet getUniverse(const PresburgerSpace &space)
Return a universe set of the specified type that contains all points.
PresburgerSet coalesce() const
PresburgerSet complement() const
PresburgerSpace is the space of all possible values of a tuple of integer valued variables/variables.
PresburgerSpace getRangeSpace() const
unsigned getNumVarKind(VarKind kind) const
Get the number of vars of the specified kind.
PresburgerSpace getDomainSpace() const
Get the domain/range space of this space.
void convertVarKind(VarKind srcKind, unsigned srcPos, unsigned num, VarKind dstKind, unsigned dstPos)
Converts variables of the specified kind in the column range [srcPos, srcPos + num) to variables of t...
unsigned getNumLocalVars() const
bool isCompatible(const PresburgerSpace &other) const
Returns true if both the spaces are compatible i.e.
static PresburgerSpace getRelationSpace(unsigned numDomain=0, unsigned numRange=0, unsigned numSymbols=0, unsigned numLocals=0)
unsigned insertVar(VarKind kind, unsigned pos, unsigned num=1)
Insert num variables of the specified kind at position pos.
bool isEmpty() const
Returns true if the tableau is empty (has conflicting constraints), false otherwise.
void appendVariable(unsigned count=1)
Add new variables to the end of the list of variables.
void intersectIntegerRelation(const IntegerRelation &rel)
Add all the constraints from the given IntegerRelation.
unsigned getSnapshot() const
Get a snapshot of the current state.
void addEquality(ArrayRef< DynamicAPInt > coeffs)
Add an equality to the tableau.
void rollback(unsigned snapshot)
Rollback to a snapshot. This invalidates all later snapshots.
unsigned getNumConstraints() const
Returns the number of constraints in the tableau.
Takes a snapshot of the simplex state on construction and rolls back to the snapshot on destruction.
The Simplex class uses the Normal pivot rule and supports integer emptiness checks as well as detecti...
bool isMarkedRedundant(unsigned constraintIndex) const
Returns whether the specified constraint has been marked as redundant.
IneqType findIneqType(ArrayRef< DynamicAPInt > coeffs)
Returns the type of the inequality with coefficients coeffs.
bool isRedundantInequality(ArrayRef< DynamicAPInt > coeffs)
Check if the specified inequality already holds in the polytope.
void addInequality(ArrayRef< DynamicAPInt > coeffs) final
Add an inequality to the tableau.
void detectRedundant(unsigned offset, unsigned count)
Finds a subset of constraints that is redundant, i.e., such that the set of solutions does not change...
The SetCoalescer class contains all functionality concerning the coalesce heuristic.
SetCoalescer(const PresburgerRelation &s)
Construct a SetCoalescer from a PresburgerSet.
PresburgerRelation coalesce()
Simplifies the representation of a PresburgerSet.
SmallVector< DynamicAPInt, 8 > getNegatedCoeffs(ArrayRef< DynamicAPInt > coeffs)
Return coeffs with all the elements negated.
SmallVector< DynamicAPInt, 8 > getDivUpperBound(ArrayRef< DynamicAPInt > dividend, const DynamicAPInt &divisor, unsigned localVarIdx)
If q is defined to be equal to expr floordiv d, this equivalent to saying that q is an integer and q ...
SmallVector< DynamicAPInt, 8 > getDivLowerBound(ArrayRef< DynamicAPInt > dividend, const DynamicAPInt &divisor, unsigned localVarIdx)
SmallVector< DynamicAPInt, 8 > getComplementIneq(ArrayRef< DynamicAPInt > ineq)
Return the complement of the given inequality.
Include the generated interface declarations.
The struct CountsSnapshot stores the count of each VarKind, and also of each constraint type.
const PresburgerSpace & getSpace() const
Represents the result of a symbolic lexicographic optimization computation.
PWMAFunction lexopt
This maps assignments of symbols to the corresponding lexopt.
PresburgerSet unboundedDomain
Contains all assignments to the symbols that made the lexopt unbounded.
Eliminates variable at the specified position using Fourier-Motzkin variable elimination.