MLIR  20.0.0git
IndexingUtils.cpp
Go to the documentation of this file.
1 //===- IndexingUtils.cpp - Helpers related to index computations ----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
11 #include "mlir/IR/AffineExpr.h"
12 #include "mlir/IR/Builders.h"
14 #include "mlir/IR/MLIRContext.h"
15 #include "llvm/ADT/STLExtras.h"
16 #include <numeric>
17 #include <optional>
18 
19 using namespace mlir;
20 
21 template <typename ExprType>
23  ExprType unit) {
24  if (sizes.empty())
25  return {};
26  SmallVector<ExprType> strides(sizes.size(), unit);
27  for (int64_t r = strides.size() - 2; r >= 0; --r)
28  strides[r] = strides[r + 1] * sizes[r + 1];
29  return strides;
30 }
31 
32 template <typename ExprType>
34  ArrayRef<ExprType> v2) {
35  // Early exit if both are empty, let zip_equal fail if only 1 is empty.
36  if (v1.empty() && v2.empty())
37  return {};
38  SmallVector<ExprType> result;
39  for (auto it : llvm::zip_equal(v1, v2))
40  result.push_back(std::get<0>(it) * std::get<1>(it));
41  return result;
42 }
43 
44 template <typename ExprType>
46  ExprType zero) {
47  assert(offsets.size() == basis.size());
48  ExprType linearIndex = zero;
49  for (unsigned idx = 0, e = basis.size(); idx < e; ++idx)
50  linearIndex = linearIndex + offsets[idx] * basis[idx];
51  return linearIndex;
52 }
53 
54 template <typename ExprType, typename DivOpTy>
56  ArrayRef<ExprType> strides,
57  DivOpTy divOp) {
58  int64_t rank = strides.size();
59  SmallVector<ExprType> offsets(rank);
60  for (int64_t r = 0; r < rank; ++r) {
61  offsets[r] = divOp(linearIndex, strides[r]);
62  linearIndex = linearIndex % strides[r];
63  }
64  return offsets;
65 }
66 
67 //===----------------------------------------------------------------------===//
68 // Utils that operate on static integer values.
69 //===----------------------------------------------------------------------===//
70 
72  assert(llvm::all_of(sizes, [](int64_t s) { return s >= 0; }) &&
73  "sizes must be nonnegative");
74  int64_t unit = 1;
76 }
77 
79  ArrayRef<int64_t> v2) {
80  return computeElementwiseMulImpl(v1, v2);
81 }
82 
84  assert(llvm::all_of(basis, [](int64_t s) { return s > 0; }) &&
85  "basis must be nonnegative");
86  if (basis.empty())
87  return 0;
88  return std::accumulate(basis.begin(), basis.end(), 1, std::plus<int64_t>());
89 }
90 
92  assert(llvm::all_of(basis, [](int64_t s) { return s > 0; }) &&
93  "basis must be nonnegative");
94  if (basis.empty())
95  return 1;
96  return std::accumulate(basis.begin(), basis.end(), 1,
97  std::multiplies<int64_t>());
98 }
99 
101  assert(llvm::all_of(basis, [](int64_t s) { return s > 0; }) &&
102  "basis must be nonnegative");
103  int64_t zero = 0;
104  return linearizeImpl(offsets, basis, zero);
105 }
106 
108  ArrayRef<int64_t> strides) {
109  assert(llvm::all_of(strides, [](int64_t s) { return s > 0; }) &&
110  "strides must be nonnegative");
111  return delinearizeImpl(linearIndex, strides,
112  [](int64_t e1, int64_t e2) { return e1 / e2; });
113 }
114 
115 std::optional<SmallVector<int64_t>>
117  if (shape.size() < subShape.size())
118  return std::nullopt;
119  assert(llvm::all_of(shape, [](int64_t s) { return s > 0; }) &&
120  "shape must be nonnegative");
121  assert(llvm::all_of(subShape, [](int64_t s) { return s > 0; }) &&
122  "subShape must be nonnegative");
123 
124  // Starting from the end, compute the integer divisors.
125  std::vector<int64_t> result;
126  result.reserve(shape.size());
127  for (auto [size, subSize] :
128  llvm::zip(llvm::reverse(shape), llvm::reverse(subShape))) {
129  // If integral division does not occur, return and let the caller decide.
130  if (size % subSize != 0)
131  return std::nullopt;
132  result.push_back(size / subSize);
133  }
134  // At this point we computed the ratio (in reverse) for the common size.
135  // Fill with the remaining entries from the shape (still in reverse).
136  int commonSize = subShape.size();
137  std::copy(shape.rbegin() + commonSize, shape.rend(),
138  std::back_inserter(result));
139  // Reverse again to get it back in the proper order and return.
140  return SmallVector<int64_t>{result.rbegin(), result.rend()};
141 }
142 
143 //===----------------------------------------------------------------------===//
144 // Utils that operate on AffineExpr.
145 //===----------------------------------------------------------------------===//
146 
148  if (sizes.empty())
149  return {};
150  AffineExpr unit = getAffineConstantExpr(1, sizes.front().getContext());
152 }
153 
156  return computeElementwiseMulImpl(v1, v2);
157 }
158 
160  if (basis.empty())
161  return getAffineConstantExpr(0, ctx);
162  return std::accumulate(basis.begin(), basis.end(),
163  getAffineConstantExpr(0, ctx),
164  std::plus<AffineExpr>());
165 }
166 
168  if (basis.empty())
169  return getAffineConstantExpr(1, ctx);
170  return std::accumulate(basis.begin(), basis.end(),
171  getAffineConstantExpr(1, ctx),
172  std::multiplies<AffineExpr>());
173 }
174 
176  ArrayRef<AffineExpr> basis) {
177  AffineExpr zero = getAffineConstantExpr(0, ctx);
178  return linearizeImpl(offsets, basis, zero);
179 }
180 
182  ArrayRef<int64_t> basis) {
183 
184  return linearize(ctx, offsets, getAffineConstantExprs(basis, ctx));
185 }
186 
188  ArrayRef<AffineExpr> strides) {
189  return delinearizeImpl(
190  linearIndex, strides,
191  [](AffineExpr e1, AffineExpr e2) { return e1.floorDiv(e2); });
192 }
193 
195  ArrayRef<int64_t> strides) {
196  MLIRContext *ctx = linearIndex.getContext();
197  return delinearize(linearIndex, getAffineConstantExprs(strides, ctx));
198 }
199 
200 //===----------------------------------------------------------------------===//
201 // Permutation utils.
202 //===----------------------------------------------------------------------===//
203 
206  assert(llvm::all_of(permutation, [](int64_t s) { return s >= 0; }) &&
207  "permutation must be non-negative");
208  SmallVector<int64_t> inversion(permutation.size());
209  for (const auto &pos : llvm::enumerate(permutation)) {
210  inversion[pos.value()] = pos.index();
211  }
212  return inversion;
213 }
214 
216  for (auto i : llvm::seq<int64_t>(0, permutation.size()))
217  if (permutation[i] != i)
218  return false;
219  return true;
220 }
221 
223  assert(llvm::all_of(interchange, [](int64_t s) { return s >= 0; }) &&
224  "permutation must be non-negative");
225  llvm::SmallDenseSet<int64_t, 4> seenVals;
226  for (auto val : interchange) {
227  if (seenVals.count(val))
228  return false;
229  seenVals.insert(val);
230  }
231  return seenVals.size() == interchange.size();
232 }
233 
236  ArrayRef<int64_t> desiredPositions) {
237  SmallVector<int64_t> res(permSize, -1);
238  DenseSet<int64_t> seen;
239  for (auto [pos, desiredPos] : llvm::zip_equal(positions, desiredPositions)) {
240  res[desiredPos] = pos;
241  seen.insert(pos);
242  }
243  int64_t nextPos = 0;
244  for (int64_t &entry : res) {
245  if (entry != -1)
246  continue;
247  while (seen.contains(nextPos))
248  ++nextPos;
249  entry = nextPos;
250  ++nextPos;
251  }
252  return res;
253 }
254 
256  ArrayRef<int64_t> dropPositions) {
257  assert(inputPerm.size() >= dropPositions.size() &&
258  "expect inputPerm size large than position to drop");
260  unsigned permSize = inputPerm.size();
261  for (unsigned inputIndex = 0; inputIndex < permSize; ++inputIndex) {
262  int64_t targetIndex = inputPerm[inputIndex];
263  bool shouldDrop = false;
264  unsigned dropSize = dropPositions.size();
265  for (unsigned dropIndex = 0; dropIndex < dropSize; dropIndex++) {
266  if (dropPositions[dropIndex] == inputPerm[inputIndex]) {
267  shouldDrop = true;
268  break;
269  }
270  if (dropPositions[dropIndex] < inputPerm[inputIndex]) {
271  targetIndex--;
272  }
273  }
274  if (!shouldDrop) {
275  res.push_back(targetIndex);
276  }
277  }
278  return res;
279 }
280 
282  unsigned dropFront,
283  unsigned dropBack) {
284  assert(arrayAttr.size() > dropFront + dropBack && "Out of bounds");
285  auto range = arrayAttr.getAsRange<IntegerAttr>();
287  res.reserve(arrayAttr.size() - dropFront - dropBack);
288  for (auto it = range.begin() + dropFront, eit = range.end() - dropBack;
289  it != eit; ++it)
290  res.push_back((*it).getValue().getSExtValue());
291  return res;
292 }
293 
294 // TODO: do we have any common utily for this?
296  assert(val && "Invalid value");
297  if (auto attr = dyn_cast<Attribute>(val)) {
298  return attr.getContext();
299  }
300  return cast<Value>(val).getContext();
301 }
302 
303 std::pair<AffineExpr, SmallVector<OpFoldResult>>
305  ArrayRef<OpFoldResult> strides,
306  ArrayRef<OpFoldResult> indices) {
307  assert(strides.size() == indices.size());
308  auto sourceRank = static_cast<unsigned>(strides.size());
309 
310  // Hold the affine symbols and values for the computation of the offset.
311  SmallVector<OpFoldResult> values(2 * sourceRank + 1);
312  SmallVector<AffineExpr> symbols(2 * sourceRank + 1);
313 
314  bindSymbolsList(getContext(sourceOffset), MutableArrayRef{symbols});
315  AffineExpr expr = symbols.front();
316  values[0] = sourceOffset;
317 
318  for (unsigned i = 0; i < sourceRank; ++i) {
319  // Compute the stride.
320  OpFoldResult origStride = strides[i];
321 
322  // Build up the computation of the offset.
323  unsigned baseIdxForDim = 1 + 2 * i;
324  unsigned subOffsetForDim = baseIdxForDim;
325  unsigned origStrideForDim = baseIdxForDim + 1;
326  expr = expr + symbols[subOffsetForDim] * symbols[origStrideForDim];
327  values[subOffsetForDim] = indices[i];
328  values[origStrideForDim] = origStride;
329  }
330 
331  return {expr, values};
332 }
333 
334 std::pair<AffineExpr, SmallVector<OpFoldResult>>
336  ArrayRef<Value> indices) {
337  return computeLinearIndex(
338  sourceOffset, getAsIndexOpFoldResult(sourceOffset.getContext(), strides),
339  getAsOpFoldResult(ValueRange(indices)));
340 }
341 
342 //===----------------------------------------------------------------------===//
343 // TileOffsetRange
344 //===----------------------------------------------------------------------===//
345 
346 /// Apply left-padding by 1 to the tile shape if required.
348  unsigned paddedSize) {
349  assert(tileShape.size() <= paddedSize &&
350  "expected tileShape to <= paddedSize");
351  if (tileShape.size() == paddedSize)
352  return to_vector(tileShape);
353  SmallVector<int64_t> result(paddedSize - tileShape.size(), 1);
354  llvm::append_range(result, tileShape);
355  return result;
356 }
357 
359  ArrayRef<int64_t> shape, ArrayRef<int64_t> tileShape,
360  ArrayRef<int64_t> loopOrder)
361  : tileShape(padTileShapeToSize(tileShape, shape.size())),
362  inverseLoopOrder(invertPermutationVector(loopOrder)),
363  sliceStrides(shape.size()) {
364  // Divide the shape by the tile shape.
365  std::optional<SmallVector<int64_t>> shapeRatio =
366  mlir::computeShapeRatio(shape, tileShape);
367  assert(shapeRatio && shapeRatio->size() == shape.size() &&
368  "target shape does not evenly divide the original shape");
369  assert(isPermutationVector(loopOrder) && loopOrder.size() == shape.size() &&
370  "expected loop order to be a permutation of rank equal to outer "
371  "shape");
372 
373  maxLinearIndex = mlir::computeMaxLinearIndex(*shapeRatio);
374  mlir::applyPermutationToVector(*shapeRatio, loopOrder);
375  sliceStrides = mlir::computeStrides(*shapeRatio);
376 }
377 
379  int64_t linearIndex) const {
381  delinearize(linearIndex, sliceStrides), inverseLoopOrder);
382  return computeElementwiseMul(tileCoords, tileShape);
383 }
384 
387  AffineExpr linearIndex) const {
388  MLIRContext *ctx = linearIndex.getContext();
390  delinearize(linearIndex, sliceStrides), inverseLoopOrder);
391  return mlir::computeElementwiseMul(tileCoords,
392  getAffineConstantExprs(tileShape, ctx));
393 }
void dropFront(int64_t arr[N], int64_t *res)
Definition: CRunnerUtils.h:118
static void copy(Location loc, Value dst, Value src, Value size, OpBuilder &builder)
Copies the given number of bytes from src to dst pointers.
static MLIRContext * getContext(OpFoldResult val)
static SmallVector< int64_t > padTileShapeToSize(ArrayRef< int64_t > tileShape, unsigned paddedSize)
Apply left-padding by 1 to the tile shape if required.
SmallVector< ExprType > computeElementwiseMulImpl(ArrayRef< ExprType > v1, ArrayRef< ExprType > v2)
SmallVector< ExprType > computeSuffixProductImpl(ArrayRef< ExprType > sizes, ExprType unit)
ExprType linearizeImpl(ArrayRef< ExprType > offsets, ArrayRef< ExprType > basis, ExprType zero)
SmallVector< ExprType > delinearizeImpl(ExprType linearIndex, ArrayRef< ExprType > strides, DivOpTy divOp)
Base type for affine expression.
Definition: AffineExpr.h:68
AffineExpr floorDiv(uint64_t v) const
Definition: AffineExpr.cpp:917
MLIRContext * getContext() const
Definition: AffineExpr.cpp:33
MLIRContext is the top-level object for a collection of MLIR operations.
Definition: MLIRContext.h:60
This class represents a single result from folding an operation.
Definition: OpDefinition.h:268
MLIRContext * getContext() const
Definition: OpDefinition.h:274
This class provides an abstraction over the different types of ranges over Values.
Definition: ValueRange.h:381
SmallVector< int64_t > getStaticTileOffsets(int64_t linearIndex) const
TileOffsetRangeImpl(ArrayRef< int64_t > shape, ArrayRef< int64_t > tileShape, ArrayRef< int64_t > loopOrder)
SmallVector< AffineExpr > getDynamicTileOffsets(AffineExpr linearIndex) const
constexpr void enumerate(std::tuple< Tys... > &tuple, CallbackT &&callback)
Definition: Matchers.h:344
Include the generated interface declarations.
OpFoldResult getAsIndexOpFoldResult(MLIRContext *ctx, int64_t val)
Convert int64_t to integer attributes of index type and return them as OpFoldResult.
SmallVector< int64_t > computeElementwiseMul(ArrayRef< int64_t > v1, ArrayRef< int64_t > v2)
Return a vector containing llvm::zip_equal(v1, v2) multiplied elementwise.
std::pair< AffineExpr, SmallVector< OpFoldResult > > computeLinearIndex(OpFoldResult sourceOffset, ArrayRef< OpFoldResult > strides, ArrayRef< OpFoldResult > indices)
Compute linear index from provided strides and indices, assuming strided layout.
SmallVector< int64_t > computeStrides(ArrayRef< int64_t > sizes)
Definition: IndexingUtils.h:47
SmallVector< T > applyPermutation(ArrayRef< T > input, ArrayRef< int64_t > permutation)
SmallVector< int64_t > delinearize(int64_t linearIndex, ArrayRef< int64_t > strides)
Given the strides together with a linear index in the dimension space, return the vector-space offset...
int64_t computeProduct(ArrayRef< int64_t > basis)
Self-explicit.
bool isIdentityPermutation(ArrayRef< int64_t > permutation)
Returns true if permutation is an identity permutation.
SmallVector< int64_t > computePermutationVector(int64_t permSize, ArrayRef< int64_t > positions, ArrayRef< int64_t > desiredPositions)
Return a permutation vector of size permSize that would result in moving positions into desiredPositi...
SmallVector< int64_t > getI64SubArray(ArrayAttr arrayAttr, unsigned dropFront=0, unsigned dropBack=0)
Helper to return a subset of arrayAttr as a vector of int64_t.
SmallVector< int64_t > computeSuffixProduct(ArrayRef< int64_t > sizes)
Given a set of sizes, return the suffix product.
int64_t computeMaxLinearIndex(ArrayRef< int64_t > basis)
Return the number of elements of basis (i.e.
Definition: IndexingUtils.h:69
AffineExpr getAffineConstantExpr(int64_t constant, MLIRContext *context)
Definition: AffineExpr.cpp:641
OpFoldResult getAsOpFoldResult(Value val)
Given a value, try to extract a constant Attribute.
int64_t linearize(ArrayRef< int64_t > offsets, ArrayRef< int64_t > basis)
Return the linearized index of 'offsets' w.r.t.
SmallVector< AffineExpr > getAffineConstantExprs(ArrayRef< int64_t > constants, MLIRContext *context)
Definition: AffineExpr.cpp:651
std::optional< SmallVector< int64_t > > computeShapeRatio(ArrayRef< int64_t > shape, ArrayRef< int64_t > subShape)
Return the multi-dimensional integral ratio of subShape to the trailing dimensions of shape.
void applyPermutationToVector(SmallVector< T, N > &inVec, ArrayRef< int64_t > permutation)
Apply the permutation defined by permutation to inVec.
int64_t computeSum(ArrayRef< int64_t > basis)
Self-explicit.
SmallVector< int64_t > dropDims(ArrayRef< int64_t > inputPerm, ArrayRef< int64_t > dropPositions)
Returns a permutation vector that drop the input dims in dropPositions from inputPerm.
bool isPermutationVector(ArrayRef< int64_t > interchange)
Method to check if an interchange vector is a permutation.
void bindSymbolsList(MLIRContext *ctx, MutableArrayRef< AffineExprTy > exprs)
Definition: AffineExpr.h:367
SmallVector< int64_t > invertPermutationVector(ArrayRef< int64_t > permutation)
Helper method to apply to inverse a permutation.