MLIR  20.0.0git
QuasiPolynomial.cpp
Go to the documentation of this file.
1 //===- QuasiPolynomial.cpp - Quasipolynomial Class --------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
12 
13 using namespace mlir;
14 using namespace presburger;
15 
17  unsigned numVars, ArrayRef<Fraction> coeffs,
18  ArrayRef<std::vector<SmallVector<Fraction>>> aff)
19  : PresburgerSpace(/*numDomain=*/numVars, /*numRange=*/1, /*numSymbols=*/0,
20  /*numLocals=*/0),
21  coefficients(coeffs), affine(aff) {
22 #ifndef NDEBUG
23  // For each term which involves at least one affine function,
24  for (const std::vector<SmallVector<Fraction>> &term : affine) {
25  if (term.empty())
26  continue;
27  // the number of elements in each affine function is
28  // one more than the number of symbols.
29  for (const SmallVector<Fraction> &aff : term) {
30  assert(aff.size() == getNumInputs() + 1 &&
31  "dimensionality of affine functions does not match number of "
32  "symbols!");
33  }
34  }
35 #endif // NDEBUG
36 }
37 
38 /// Define a quasipolynomial which is a single constant.
39 QuasiPolynomial::QuasiPolynomial(unsigned numVars, const Fraction &constant)
40  : PresburgerSpace(/*numDomain=*/numVars, /*numRange=*/1, /*numSymbols=*/0,
41  /*numLocals=*/0),
42  coefficients({constant}), affine({{}}) {}
43 
45  assert(getNumInputs() == x.getNumInputs() &&
46  "two quasi-polynomials with different numbers of symbols cannot "
47  "be added!");
48  SmallVector<Fraction> sumCoeffs = coefficients;
49  sumCoeffs.append(x.coefficients);
50  std::vector<std::vector<SmallVector<Fraction>>> sumAff = affine;
51  sumAff.insert(sumAff.end(), x.affine.begin(), x.affine.end());
52  return QuasiPolynomial(getNumInputs(), sumCoeffs, sumAff);
53 }
54 
56  assert(getNumInputs() == x.getNumInputs() &&
57  "two quasi-polynomials with different numbers of symbols cannot "
58  "be subtracted!");
59  QuasiPolynomial qp(getNumInputs(), x.coefficients, x.affine);
60  for (Fraction &coeff : qp.coefficients)
61  coeff = -coeff;
62  return *this + qp;
63 }
64 
66  assert(getNumInputs() == x.getNumInputs() &&
67  "two quasi-polynomials with different numbers of "
68  "symbols cannot be multiplied!");
69 
70  SmallVector<Fraction> coeffs;
71  coeffs.reserve(coefficients.size() * x.coefficients.size());
72  for (const Fraction &coeff : coefficients)
73  for (const Fraction &xcoeff : x.coefficients)
74  coeffs.emplace_back(coeff * xcoeff);
75 
76  std::vector<SmallVector<Fraction>> product;
77  std::vector<std::vector<SmallVector<Fraction>>> aff;
78  aff.reserve(affine.size() * x.affine.size());
79  for (const std::vector<SmallVector<Fraction>> &term : affine) {
80  for (const std::vector<SmallVector<Fraction>> &xterm : x.affine) {
81  product.clear();
82  product.insert(product.end(), term.begin(), term.end());
83  product.insert(product.end(), xterm.begin(), xterm.end());
84  aff.emplace_back(product);
85  }
86  }
87 
88  return QuasiPolynomial(getNumInputs(), coeffs, aff);
89 }
90 
92  assert(x != 0 && "division by zero!");
93  QuasiPolynomial qp(*this);
94  for (Fraction &coeff : qp.coefficients)
95  coeff /= x;
96  return qp;
97 }
98 
99 // Removes terms which evaluate to zero from the expression and
100 // integrate affine functions which are constants into the
101 // coefficients.
103  Fraction newCoeff = 0;
104  SmallVector<Fraction> newCoeffs({});
105 
106  std::vector<SmallVector<Fraction>> newAffineTerm({});
107  std::vector<std::vector<SmallVector<Fraction>>> newAffine({});
108 
109  unsigned numParam = getNumInputs();
110 
111  for (unsigned i = 0, e = coefficients.size(); i < e; i++) {
112  // A term is zero if its coefficient is zero, or
113  if (coefficients[i] == Fraction(0, 1))
114  continue;
115  bool product_is_zero =
116  // if any of the affine functions in the product
117  llvm::any_of(affine[i], [](const SmallVector<Fraction> &affine_ij) {
118  // has all its coefficients as zero.
119  return llvm::all_of(affine_ij,
120  [](const Fraction &f) { return f == 0; });
121  });
122  if (product_is_zero)
123  continue;
124 
125  // Now, we know the term is nonzero.
126 
127  // We now eliminate the affine functions which are constant
128  // by merging them into the coefficients.
129  newAffineTerm = {};
130  newCoeff = coefficients[i];
131  for (ArrayRef<Fraction> term : affine[i]) {
132  bool allCoeffsZero = llvm::all_of(
133  term.slice(0, numParam), [](const Fraction &c) { return c == 0; });
134  if (allCoeffsZero)
135  newCoeff *= term[numParam];
136  else
137  newAffineTerm.emplace_back(term);
138  }
139 
140  newCoeffs.emplace_back(newCoeff);
141  newAffine.emplace_back(newAffineTerm);
142  }
143  return QuasiPolynomial(getNumInputs(), newCoeffs, newAffine);
144 }
145 
147  SmallVector<Fraction> newCoeffs({});
148  std::vector<std::vector<SmallVector<Fraction>>> newAffine({});
149 
150  for (unsigned i = 0, e = affine.size(); i < e; i++) {
151  bool alreadyPresent = false;
152  for (unsigned j = 0, f = newAffine.size(); j < f; j++) {
153  if (affine[i] == newAffine[j]) {
154  newCoeffs[j] += coefficients[i];
155  alreadyPresent = true;
156  }
157  }
158  if (alreadyPresent)
159  continue;
160  newCoeffs.emplace_back(coefficients[i]);
161  newAffine.emplace_back(affine[i]);
162  }
163 
164  return QuasiPolynomial(getNumInputs(), newCoeffs, newAffine);
165 }
166 
168  Fraction constTerm = 0;
169  for (unsigned i = 0, e = coefficients.size(); i < e; ++i)
170  if (affine[i].empty())
171  constTerm += coefficients[i];
172  return constTerm;
173 }
static int64_t product(ArrayRef< int64_t > vals)
PresburgerSpace is the space of all possible values of a tuple of integer valued variables/variables.
QuasiPolynomial operator/(const Fraction &x) const
QuasiPolynomial(unsigned numVars, ArrayRef< Fraction > coeffs={}, ArrayRef< std::vector< SmallVector< Fraction >>> aff={})
QuasiPolynomial operator-(const QuasiPolynomial &x) const
QuasiPolynomial operator+(const QuasiPolynomial &x) const
QuasiPolynomial operator*(const QuasiPolynomial &x) const
Include the generated interface declarations.
A class to represent fractions.
Definition: Fraction.h:29
Eliminates variable at the specified position using Fourier-Motzkin variable elimination.