MLIR 22.0.0git
IndependenceTransforms.cpp
Go to the documentation of this file.
1//===- IndependenceTransforms.cpp - Make ops independent of values --------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8
10
15
16using namespace mlir;
17using namespace mlir::tensor;
18
19/// Make the given OpFoldResult independent of all independencies.
20static FailureOr<OpFoldResult> makeIndependent(OpBuilder &b, Location loc,
21 OpFoldResult ofr,
22 ValueRange independencies) {
23 if (isa<Attribute>(ofr))
24 return ofr;
25 Value value = cast<Value>(ofr);
26 AffineMap boundMap;
27 ValueDimList mapOperands;
29 boundMap, mapOperands, presburger::BoundType::UB, value,
30 independencies,
31 /*closedUB=*/true)))
32 return failure();
33 return mlir::affine::materializeComputedBound(b, loc, boundMap, mapOperands);
34}
35
36FailureOr<Value> tensor::buildIndependentOp(OpBuilder &b, tensor::PadOp padOp,
37 ValueRange independencies) {
39 b.setInsertionPoint(padOp);
40 Location loc = padOp.getLoc();
41
42 // Non-constant padding not supported.
43 Value constantPadding = padOp.getConstantPaddingValue();
44 if (!constantPadding)
45 return failure();
46
47 SmallVector<OpFoldResult> newMixedLow, newMixedHigh;
48 for (OpFoldResult ofr : padOp.getMixedLowPad()) {
49 auto ub = makeIndependent(b, loc, ofr, independencies);
50 if (failed(ub))
51 return failure();
52 newMixedLow.push_back(*ub);
53 }
54 for (OpFoldResult ofr : padOp.getMixedHighPad()) {
55 auto ub = makeIndependent(b, loc, ofr, independencies);
56 if (failed(ub))
57 return failure();
58 newMixedHigh.push_back(*ub);
59 }
60
61 // Return existing tensor::PadOp if nothing has changed.
62 if (llvm::equal(padOp.getMixedLowPad(), newMixedLow) &&
63 llvm::equal(padOp.getMixedHighPad(), newMixedHigh))
64 return padOp.getResult();
65
66 // Create a new tensor::PadOp.
67 auto newPadOp =
68 PadOp::create(b, loc, padOp.getResultType(), padOp.getSource(),
69 newMixedLow, newMixedHigh, constantPadding,
70 padOp.getNofold(), /*attrs=*/ArrayRef<NamedAttribute>{});
71
72 // Create a tensor::ExtractSliceOp.
73 // Reify the result sizes of the old tensor::PadOp.
74 ReifiedRankedShapedTypeDims reifiedSizes;
75 ReifyRankedShapedTypeOpInterface reifyShapedTypeInterface =
76 dyn_cast<ReifyRankedShapedTypeOpInterface>(padOp.getOperation());
77 if (failed(reifyShapedTypeInterface.reifyResultShapes(b, reifiedSizes)))
78 return failure();
79 SmallVector<OpFoldResult> offsets, sizes, strides;
80 for (int64_t i = 0, e = padOp.getResultType().getRank(); i < e; ++i) {
81 // offset = ub(low_padding) - low_padding
82 OpFoldResult prevLow = padOp.getMixedLowPad()[i];
83 if (isa<Attribute>(prevLow)) {
84 offsets.push_back(b.getIndexAttr(0));
85 } else {
86 offsets.push_back(
87 affine::AffineApplyOp::create(
88 b, loc, b.getAffineDimExpr(0) - b.getAffineDimExpr(1),
89 std::initializer_list<Value>{cast<Value>(newMixedLow[i]),
90 cast<Value>(prevLow)})
91 .getResult());
92 }
93 // size = reified result size
94 if (!padOp.getResultType().isDynamicDim(i)) {
95 sizes.push_back(b.getIndexAttr(padOp.getResultType().getDimSize(i)));
96 } else {
97 sizes.push_back(reifiedSizes[0][i]);
98 }
99 // stride = 1
100 strides.push_back(b.getIndexAttr(1));
101 }
102
103 return ExtractSliceOp::create(b, loc, newPadOp, offsets, sizes, strides)
104 .getResult();
105}
106
108 tensor::EmptyOp emptyOp,
109 ValueRange independencies) {
111 b.setInsertionPoint(emptyOp);
112 Location loc = emptyOp.getLoc();
113
115 for (OpFoldResult ofr : emptyOp.getMixedSizes()) {
116 auto ub = makeIndependent(b, loc, ofr, independencies);
117 if (failed(ub))
118 return failure();
119 newSizes.push_back(*ub);
120 }
121
122 // Return existing tensor::EmptyOp if nothing has changed.
123 if (llvm::equal(emptyOp.getMixedSizes(), newSizes))
124 return emptyOp.getResult();
125
126 // Create a new tensor::EmptyOp.
127 Value newEmptyOp =
128 EmptyOp::create(b, loc, newSizes, emptyOp.getType().getElementType());
129
130 // Create a tensor::ExtractSliceOp.
131 SmallVector<OpFoldResult> offsets(newSizes.size(), b.getIndexAttr(0));
132 SmallVector<OpFoldResult> strides(newSizes.size(), b.getIndexAttr(1));
133 return ExtractSliceOp::create(b, loc, newEmptyOp, offsets,
134 emptyOp.getMixedSizes(), strides)
135 .getResult();
136}
b
Return true if permutation is a valid permutation of the outer_dims_perm (case OuterOrInnerPerm::Oute...
static FailureOr< OpFoldResult > makeIndependent(OpBuilder &b, Location loc, OpFoldResult ofr, ValueRange independencies)
Make the given OpFoldResult independent of all independencies.
A multi-dimensional affine map Affine map's are immutable like Type's, and they are uniqued.
Definition AffineMap.h:46
This class defines the main interface for locations in MLIR and acts as a non-nullable wrapper around...
Definition Location.h:76
RAII guard to reset the insertion point of the builder when destroyed.
Definition Builders.h:348
This class helps build Operations.
Definition Builders.h:207
This class represents a single result from folding an operation.
static LogicalResult computeIndependentBound(AffineMap &resultMap, ValueDimList &mapOperands, presburger::BoundType type, const Variable &var, ValueRange independencies, bool closedUB=false)
Compute a bound in that is independent of all values in independencies.
This class provides an abstraction over the different types of ranges over Values.
Definition ValueRange.h:387
This class represents an instance of an SSA value in the MLIR system, representing a computable value...
Definition Value.h:96
OpFoldResult materializeComputedBound(OpBuilder &b, Location loc, AffineMap boundMap, ArrayRef< std::pair< Value, std::optional< int64_t > > > mapOperands)
Materialize an already computed bound with Affine dialect ops.
FailureOr< Value > buildIndependentOp(OpBuilder &b, tensor::PadOp padOp, ValueRange independencies)
Build a new tensor::PadOp with low/high padding that is independent of all given independencies.
Include the generated interface declarations.
SmallVector< SmallVector< OpFoldResult > > ReifiedRankedShapedTypeDims
SmallVector< std::pair< Value, std::optional< int64_t > > > ValueDimList