MLIR  20.0.0git
TosaMakeBroadcastable.cpp
Go to the documentation of this file.
1 //===- TosaMakeBroadcastable.cpp ------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Insert reshape to binary op's input if needed to match rank
10 //
11 //===----------------------------------------------------------------------===//
12 
19 #include "mlir/Pass/Pass.h"
21 
22 namespace mlir {
23 namespace tosa {
24 #define GEN_PASS_DEF_TOSAMAKEBROADCASTABLE
25 #include "mlir/Dialect/Tosa/Transforms/Passes.h.inc"
26 } // namespace tosa
27 } // namespace mlir
28 
29 using namespace mlir;
30 using namespace mlir::tosa;
31 
32 namespace {
33 
34 /// Common code to create the reshape op where necessary to make the rank of the
35 /// operations equal. input1 and input2 will be updated when the rank has
36 /// changed. The caller is expected to use these to rewrite the original
37 /// operator with the RESHAPE now in the graph.
38 /// return failure when (1) no reshape needed, or (2) output_type is specified
39 /// and it has different rank
40 LogicalResult reshapeLowerToHigher(PatternRewriter &rewriter, Location loc,
41  RankedTensorType outputType, Value &input1,
42  Value &input2) {
43  auto input1Ty = dyn_cast<RankedTensorType>(input1.getType());
44  auto input2Ty = dyn_cast<RankedTensorType>(input2.getType());
45 
46  if (!input1Ty || !input2Ty) {
47  return rewriter.notifyMatchFailure(loc, "input not a ranked tensor");
48  }
49 
50  int64_t input1Rank = input1Ty.getRank();
51  int64_t input2Rank = input2Ty.getRank();
52 
53  if (input1Rank == input2Rank)
54  return rewriter.notifyMatchFailure(loc,
55  "cannot rewrite as its already correct");
56 
57  Value input1Copy = input1;
58  Value input2Copy = input2;
59  if (EqualizeRanks(rewriter, loc, input1Copy, input2Copy).failed()) {
60  return rewriter.notifyMatchFailure(loc, "failed to reshape inputs");
61  }
62 
63  // Verify the rank agrees with the output type if the output type is ranked.
64  if (outputType) {
65  if (outputType.getRank() !=
66  llvm::cast<RankedTensorType>(input1Copy.getType()).getRank() ||
67  outputType.getRank() !=
68  llvm::cast<RankedTensorType>(input2Copy.getType()).getRank())
69  return rewriter.notifyMatchFailure(
70  loc, "the reshaped type doesn't agrees with the ranked output type");
71  }
72 
73  input1 = input1Copy;
74  input2 = input2Copy;
75 
76  return success();
77 }
78 
79 template <typename OpTy>
80 struct ConvertTosaOp : public OpRewritePattern<OpTy> {
82 
83  LogicalResult matchAndRewrite(OpTy tosaBinaryOp,
84  PatternRewriter &rewriter) const override {
85 
86  Value input1 = tosaBinaryOp.getInput1();
87  Value input2 = tosaBinaryOp.getInput2();
88  Value output = tosaBinaryOp.getResult();
89 
90  auto outputType = dyn_cast<RankedTensorType>(output.getType());
91  if (!outputType)
92  return failure();
93 
94  if (reshapeLowerToHigher(rewriter, tosaBinaryOp.getLoc(), outputType,
95  input1, input2)
96  .failed())
97  return failure();
98 
99  rewriter.replaceOpWithNewOp<OpTy>(tosaBinaryOp, outputType, input1, input2);
100 
101  return success();
102  }
103 };
104 
105 // The MulOp has an extra parameter 'shift' not present in other elementwise
106 // binary ops, that necessitates special handling of its builder.
107 template <>
108 struct ConvertTosaOp<tosa::MulOp> : public OpRewritePattern<tosa::MulOp> {
110 
111  LogicalResult matchAndRewrite(tosa::MulOp tosaBinaryOp,
112  PatternRewriter &rewriter) const override {
113 
114  Value input1 = tosaBinaryOp.getInput1();
115  Value input2 = tosaBinaryOp.getInput2();
116  int32_t shift = tosaBinaryOp.getShift();
117  Value output = tosaBinaryOp.getResult();
118  auto outputType = dyn_cast<RankedTensorType>(output.getType());
119  if (!outputType)
120  return failure();
121 
122  if (reshapeLowerToHigher(rewriter, tosaBinaryOp.getLoc(), outputType,
123  input1, input2)
124  .failed())
125  return failure();
126 
127  rewriter.replaceOpWithNewOp<tosa::MulOp>(tosaBinaryOp, outputType, input1,
128  input2, shift);
129 
130  return success();
131  }
132 };
133 
134 // The ArithmeticRightShiftOp has an extra parameter 'round' not present in
135 // other elementwise binary ops, that necessitates special handling of its
136 // builder.
137 template <>
138 struct ConvertTosaOp<tosa::ArithmeticRightShiftOp>
139  : public OpRewritePattern<tosa::ArithmeticRightShiftOp> {
141 
142  LogicalResult matchAndRewrite(tosa::ArithmeticRightShiftOp tosaBinaryOp,
143  PatternRewriter &rewriter) const override {
144 
145  Value input1 = tosaBinaryOp.getInput1();
146  Value input2 = tosaBinaryOp.getInput2();
147  int32_t round = tosaBinaryOp.getRound();
148  Value output = tosaBinaryOp.getResult();
149  auto outputType = dyn_cast<RankedTensorType>(output.getType());
150  if (!outputType)
151  return failure();
152 
153  if (reshapeLowerToHigher(rewriter, tosaBinaryOp.getLoc(), outputType,
154  input1, input2)
155  .failed())
156  return failure();
157 
158  rewriter.replaceOpWithNewOp<tosa::ArithmeticRightShiftOp>(
159  tosaBinaryOp, outputType, input1, input2, round);
160 
161  return success();
162  }
163 };
164 
165 template <>
166 struct ConvertTosaOp<tosa::SelectOp> : public OpRewritePattern<tosa::SelectOp> {
168 
169  LogicalResult matchAndRewrite(tosa::SelectOp tosaOp,
170  PatternRewriter &rewriter) const override {
171 
172  Value input1 = tosaOp.getPred();
173  Value input2 = tosaOp.getOnTrue();
174  Value input3 = tosaOp.getOnFalse();
175  Value output = tosaOp.getResult();
176 
177  auto outputType = dyn_cast<RankedTensorType>(output.getType());
178  if (!outputType)
179  return rewriter.notifyMatchFailure(tosaOp, "output not a ranked tensor");
180 
181  // Apply broadcasting to each pair of inputs separately, and chain them as
182  // compound as below so that the broadcasting happens all at once.
183  bool reshaped1 = reshapeLowerToHigher(rewriter, tosaOp.getLoc(), outputType,
184  input1, input2)
185  .succeeded();
186 
187  bool reshaped2 = reshapeLowerToHigher(rewriter, tosaOp.getLoc(), outputType,
188  input1, input3)
189  .succeeded();
190 
191  bool reshaped3 = reshapeLowerToHigher(rewriter, tosaOp.getLoc(), outputType,
192  input2, input3)
193  .succeeded();
194 
195  if (!reshaped1 && !reshaped2 && !reshaped3)
196  return rewriter.notifyMatchFailure(
197  tosaOp,
198  "cannot rewrite as the rank of all operands is already aligned");
199 
200  int32_t result1Rank = cast<RankedTensorType>(input1.getType()).getRank();
201  int32_t result2Rank = cast<RankedTensorType>(input2.getType()).getRank();
202  int32_t result3Rank = cast<RankedTensorType>(input3.getType()).getRank();
203  int32_t outputRank = outputType.getRank();
204 
205  if ((result1Rank != result2Rank) || (result2Rank != result3Rank) ||
206  (result1Rank != outputRank))
207  return rewriter.notifyMatchFailure(
208  tosaOp, "not all ranks are aligned with each other");
209 
210  rewriter.replaceOpWithNewOp<tosa::SelectOp>(tosaOp, outputType, input1,
211  input2, input3);
212 
213  return success();
214  }
215 };
216 } // namespace
217 
218 namespace {
219 /// Pass that enables broadcast by making all input arrays have the same
220 /// number of dimensions. Insert RESHAPE operations to lower rank operand
221 struct TosaMakeBroadcastable
222  : public tosa::impl::TosaMakeBroadcastableBase<TosaMakeBroadcastable> {
223 public:
224  void runOnOperation() override {
225  auto func = getOperation();
226  RewritePatternSet patterns(func.getContext());
227  MLIRContext *ctx = func.getContext();
228  // Add the generated patterns to the list.
229  patterns.add<ConvertTosaOp<tosa::BitwiseAndOp>>(ctx);
230  patterns.add<ConvertTosaOp<tosa::BitwiseOrOp>>(ctx);
231  patterns.add<ConvertTosaOp<tosa::BitwiseXorOp>>(ctx);
232  patterns.add<ConvertTosaOp<tosa::AddOp>>(ctx);
233  patterns.add<ConvertTosaOp<tosa::SubOp>>(ctx);
234  patterns.add<ConvertTosaOp<tosa::MulOp>>(ctx);
235  patterns.add<ConvertTosaOp<tosa::IntDivOp>>(ctx);
236  patterns.add<ConvertTosaOp<tosa::MaximumOp>>(ctx);
237  patterns.add<ConvertTosaOp<tosa::MinimumOp>>(ctx);
238  patterns.add<ConvertTosaOp<tosa::EqualOp>>(ctx);
239  patterns.add<ConvertTosaOp<tosa::GreaterOp>>(ctx);
240  patterns.add<ConvertTosaOp<tosa::GreaterEqualOp>>(ctx);
241  patterns.add<ConvertTosaOp<tosa::LogicalLeftShiftOp>>(ctx);
242  patterns.add<ConvertTosaOp<tosa::ArithmeticRightShiftOp>>(ctx);
243  patterns.add<ConvertTosaOp<tosa::LogicalRightShiftOp>>(ctx);
244  patterns.add<ConvertTosaOp<tosa::LogicalAndOp>>(ctx);
245  patterns.add<ConvertTosaOp<tosa::LogicalOrOp>>(ctx);
246  patterns.add<ConvertTosaOp<tosa::LogicalXorOp>>(ctx);
247  patterns.add<ConvertTosaOp<tosa::SelectOp>>(ctx);
248  patterns.add<ConvertTosaOp<tosa::PowOp>>(ctx);
249  (void)applyPatternsAndFoldGreedily(func, std::move(patterns));
250  }
251 };
252 } // namespace
253 
255  return std::make_unique<TosaMakeBroadcastable>();
256 }
This class defines the main interface for locations in MLIR and acts as a non-nullable wrapper around...
Definition: Location.h:66
MLIRContext is the top-level object for a collection of MLIR operations.
Definition: MLIRContext.h:60
A special type of RewriterBase that coordinates the application of a rewrite pattern on the current I...
Definition: PatternMatch.h:791
std::enable_if_t<!std::is_convertible< CallbackT, Twine >::value, LogicalResult > notifyMatchFailure(Location loc, CallbackT &&reasonCallback)
Used to notify the listener that the IR failed to be rewritten because of a match failure,...
Definition: PatternMatch.h:724
OpTy replaceOpWithNewOp(Operation *op, Args &&...args)
Replace the results of the given (original) op with a new op that is created without verification (re...
Definition: PatternMatch.h:542
This class represents an instance of an SSA value in the MLIR system, representing a computable value...
Definition: Value.h:96
Type getType() const
Return the type of this value.
Definition: Value.h:129
DynamicAPInt round(const Fraction &f)
Definition: Fraction.h:136
std::unique_ptr< Pass > createTosaMakeBroadcastablePass()
LogicalResult EqualizeRanks(PatternRewriter &rewriter, Location loc, Value &input1, Value &input2)
Common code to create the reshape op where necessary to make the rank of two values equal.
Include the generated interface declarations.
LogicalResult applyPatternsAndFoldGreedily(Region &region, const FrozenRewritePatternSet &patterns, GreedyRewriteConfig config=GreedyRewriteConfig(), bool *changed=nullptr)
Rewrite ops in the given region, which must be isolated from above, by repeatedly applying the highes...
OpRewritePattern is a wrapper around RewritePattern that allows for matching and rewriting against an...
Definition: PatternMatch.h:358