MLIR 22.0.0git
FusePadOpWithLinalgProducer.cpp
Go to the documentation of this file.
1//===- FusePadOpWithLinalgProducer.cpp ---- Fuse pad with linalg producer -===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file implements patterns that fuses a linalg.generic -> tensor.pad op
10// chain into a tensor.extract_slice -> linalg.generic -> tensor.insert_slice
11// op chain.
12//
13//===----------------------------------------------------------------------===//
14
16
18
19using namespace mlir;
20
21namespace {
22
23/// A sequence of operations
24///
25/// ```mlir
26/// %0 = linalg. ...
27/// %1 = tensor.pad %0 ...
28/// ```
29///
30/// can be replaced with
31///
32/// ```mlir
33/// %0 = linalg.fill
34/// %1 = tensor.extract_slice %0 ...
35/// %2 = linalg. .... outs(..., %1, ....) ....
36/// %3 = tensor.insert_slice %2 into %1 ...
37/// ```
38///
39/// if the `linalg.generic` has all parallel iterator types.
40struct FusePadOp : OpRewritePattern<tensor::PadOp> {
41 using OpRewritePattern<tensor::PadOp>::OpRewritePattern;
42
43 LogicalResult matchAndRewrite(tensor::PadOp padOp,
44 PatternRewriter &rewriter) const override {
45 // Only works on padding op that sets the padded value to a constant.
46 Value padValue = padOp.getConstantPaddingValue();
47 if (!padValue)
48 return rewriter.notifyMatchFailure(padOp, "non constant padding");
49
50 // This pattern could work for any Linalg op. For now restrict it to generic
51 // ops.
52 Value source = padOp.getSource();
53 auto linalgOp = source.getDefiningOp<linalg::GenericOp>();
54 if (!linalgOp) {
55 return rewriter.notifyMatchFailure(
56 padOp, "expected source to be linalg.generic op");
57 }
58 // All iterator types need to be parallel.
59 if (linalgOp.getNumLoops() != linalgOp.getNumParallelLoops()) {
60 return rewriter.notifyMatchFailure(
61 padOp, "only supported for ops with all parallel iterator types");
62 }
64 if (failed(reifyResultShapes(rewriter, padOp, resultShape)) ||
65 resultShape.size() != 1) {
66 return rewriter.notifyMatchFailure(
67 padOp, "failed to get shape of pad op result");
68 }
69
70 Location loc = padOp.getLoc();
71
72 // Create the tensor of same size as output of the pad op.
73 RankedTensorType padResultType = padOp.getResultType();
74 auto resultSizes = resultShape[0];
75 auto emptyTensor = tensor::EmptyOp::create(rewriter, loc, resultSizes,
76 padResultType.getElementType());
77
78 // Fill the tensor with the pad value.
79 // TODO: There is an option to fill only the boundaries. For now just
80 // filling the whole tensor.
81 auto fillTensor = linalg::FillOp::create(rewriter, loc, padValue,
82 emptyTensor.getResult());
83
84 // Construct a slice of the fill result that is to be replaced with the
85 // result of the generic op. The low pad values are the offsets, the size of
86 // the source is the size of the slice.
87 // TODO: This insert/extract could be potentially made a utility method.
88 unsigned resultNumber = cast<OpResult>(source).getResultNumber();
89 SmallVector<OpFoldResult> offsets = padOp.getMixedLowPad();
90 SmallVector<OpFoldResult> sizes;
91 sizes.reserve(offsets.size());
92 for (const auto &shape :
93 llvm::enumerate(cast<RankedTensorType>(source.getType()).getShape())) {
94 if (ShapedType::isDynamic(shape.value())) {
95 sizes.push_back(
96 tensor::DimOp::create(rewriter, loc, source, shape.index())
97 .getResult());
98 } else {
99 sizes.push_back(rewriter.getIndexAttr(shape.value()));
100 }
101 }
102 SmallVector<OpFoldResult> strides(offsets.size(), rewriter.getIndexAttr(1));
103 auto slice = tensor::ExtractSliceOp::create(
104 rewriter, loc, fillTensor.getResult(0), offsets, sizes, strides);
105
106 // Clone the generic op.
107 auto clonedOp =
108 cast<linalg::GenericOp>(rewriter.clone(*linalgOp.getOperation()));
109 clonedOp.setDpsInitOperand(resultNumber, slice.getResult());
110
111 // Insert it back into the result of the fill.
112 rewriter.replaceOpWithNewOp<tensor::InsertSliceOp>(
113 padOp, clonedOp.getResult(resultNumber), fillTensor.getResult(0),
114 offsets, sizes, strides);
115 return success();
116 }
117};
118} // namespace
119
return success()
IntegerAttr getIndexAttr(int64_t value)
Definition Builders.cpp:108
Operation * clone(Operation &op, IRMapping &mapper)
Creates a deep copy of the specified operation, remapping any operands that use values outside of the...
Definition Builders.cpp:562
Location getLoc()
The source location the operation was defined or derived from.
Definition Operation.h:223
std::enable_if_t<!std::is_convertible< CallbackT, Twine >::value, LogicalResult > notifyMatchFailure(Location loc, CallbackT &&reasonCallback)
Used to notify the listener that the IR failed to be rewritten because of a match failure,...
OpTy replaceOpWithNewOp(Operation *op, Args &&...args)
Replace the results of the given (original) op with a new op that is created without verification (re...
Type getType() const
Return the type of this value.
Definition Value.h:105
Operation * getDefiningOp() const
If this value is the result of an operation, return the operation that defines it.
Definition Value.cpp:18
void populateFuseTensorPadWithProducerLinalgOpPatterns(RewritePatternSet &patterns)
Pattern to fuse a tensor.pad operation with the producer of its source, if the producer is a linalg o...
detail::InFlightRemark failed(Location loc, RemarkOpts opts)
Report an optimization remark that failed.
Definition Remarks.h:561
Include the generated interface declarations.
LogicalResult reifyResultShapes(OpBuilder &b, Operation *op, ReifiedRankedShapedTypeDims &reifiedReturnShapes)
Reify the shape of the result of an operation (typically in terms of the shape of its operands).
SmallVector< SmallVector< OpFoldResult > > ReifiedRankedShapedTypeDims
const FrozenRewritePatternSet & patterns
OpRewritePattern is a wrapper around RewritePattern that allows for matching and rewriting against an...