MLIR  17.0.0git
Namespaces | Classes | Typedefs | Enumerations | Functions
mlir::linalg Namespace Reference

Namespaces

 detail
 

Classes

class  LinalgOpToLibraryCallRewrite
 
class  Aliases
 A very primitive alias analysis which just records for each view, either: More...
 
class  LinalgDependenceGraph
 Data structure for holding a dependence graph that operates on LinalgOp and views as SSA values. More...
 
struct  TiledLinalgOp
 Perform standalone tiling of a single LinalgOp by tileSizes. More...
 
struct  LinalgPromotionOptions
 
struct  PromotionInfo
 Create a new buffer using the allocationFn provided. More...
 
struct  MultiSizeSpecification
 A description of a multi-size tiling comprising tile sizes and numbers of tiles, expressed as Values which may or may not be constant. More...
 
struct  StaticMultiSizeSpecification
 
struct  ForeachThreadTilingResult
 Rewrite a TilingInterface op to a tiled scf.foreach_thread, applying tiling by numThreads. More...
 
struct  ForeachThreadReductionTilingResult
 Transformation information returned after reduction tiling. More...
 
struct  LinalgPaddingOptions
 
struct  LinalgTilingAndFusionOptions
 
struct  LinalgTilingOptions
 
struct  LinalgPaddingPattern
 Linalg padding pattern. More...
 
struct  DownscaleSizeOneWindowed2DConvolution
 Rewrites 2-D convolution ops with size-1 window dimensions into 1-D convolution ops. More...
 
struct  DownscaleDepthwiseConv2DNhwcHwcOp
 Rewrites 2-D depthwise convolution ops with size-1 (w, kw) or (h, kh) dimensions into 1-D depthwise convolution ops. More...
 
struct  LinalgGeneralizationPattern
 Linalg generalization pattern. More...
 
struct  CopyVectorizationPattern
 Vectorization pattern for memref::CopyOp. More...
 
struct  PadOpTransformationPattern
 tensor::PadOp is not canonicalized away yet, so we provide a transformation to linalg.generic. More...
 
struct  GeneralizePadOpPattern
 Rewrite a tensor::PadOp into a sequence of EmptyOp, FillOp and InsertSliceOp. More...
 
struct  GeneralizeOuterUnitDimsPackOpPattern
 Rewrites a tensor::PackOp into a sequence of tensor.pad + linalg.transpose + tensor.insert_slice ops, where the tensor::PackOp has outer dims being all 1s. More...
 
struct  GeneralizeOuterUnitDimsUnPackOpPattern
 Rewrites a tensor::UnPackOp into a sequence of rank-reduced extract_slice op. More...
 
struct  LinalgCopyVTRForwardingPattern
 Match and rewrite for the pattern: More...
 
struct  LinalgCopyVTWForwardingPattern
 Match and rewrite for the pattern: More...
 
struct  ExtractSliceOfPadTensorSwapPattern
 Rewrite extract_slice(tensor.pad(x)) into tensor.pad(extract_slice(x)). More...
 
struct  SplitReductionOptions
 Split Reduction options. More...
 
struct  SplitReductionResult
 Apply transformation to split the single linalg op reduction into a parallel and reduction dimension. More...
 
struct  PackTransposeResult
 Struct to hold the result of a packTranspose call. More...
 
struct  SliceParameters
 A struct containg offsets-sizes-strides arguments of the tiled shape. More...
 
struct  FusionInfo
 A struct containing the Linalg producer before and after fusion. More...
 
struct  ProcInfo
 Callback function type used to get processor ID, and number of processors used for distribution for all parallel loops generated. More...
 
struct  LinalgLoopDistributionOptions
 Options that allow distribution of loops generated in Linalg transforms to processors while generating the loops. More...
 
class  TileLoopNest
 A struct to manage the tile loop nest specific information. More...
 
struct  RegionMatcher
 A struct containing common matchers over linalg op's region. More...
 
struct  GenerateLoopNest
 Utility class used to generate nested loops with ranges described by loopRanges and loop type described by the iteratorTypes. More...
 

Typedefs

using LinalgLoops = SmallVector< Operation *, 4 >
 
using ControlFusionFn = std::function< bool(OpOperand *fusedOperand)>
 Function type which is used to control when to stop fusion. More...
 
using GetCollapsableDimensionsFn = std::function< SmallVector< ReassociationIndices >(linalg::GenericOp)>
 Function type to control generic op dimension collapsing. More...
 
using AllocBufferCallbackFn = std::function< std::optional< Value >(OpBuilder &b, memref::SubViewOp subView, ArrayRef< Value > boundingSubViewSize, DataLayout &layout)>
 Callback function type used to perform the allocation for the promoted subView. More...
 
using DeallocBufferCallbackFn = std::function< LogicalResult(OpBuilder &b, Value buffer)>
 Callback function type used to deallocate the buffers used to hold the promoted subview. More...
 
using CopyCallbackFn = std::function< LogicalResult(OpBuilder &b, Value src, Value dst)>
 Callback function type used to insert copy from original subview to subview of the promoted region for the read operands/subview of promoted region to original subview for the results. More...
 
using TileSizeComputationFunction = std::function< SmallVector< Value, 4 >(OpBuilder &, Operation *)>
 
using LoopIndexToRangeIndexMap = DenseMap< int, int >
 Creates a number of ranges equal to the number of non-zero in tileSizes. More...
 
using OptimizeCopyFn = std::function< LogicalResult(PatternRewriter &, tensor::PadOp, Value)>
 
using ControlSplitReductionFn = std::function< SplitReductionOptions(LinalgOp op)>
 Function signature to control reduction splitting. More...
 
using FusableOpDependencesTy = llvm::MapVector< Operation *, SmallVector< LinalgDependenceGraph::LinalgDependenceGraphElem, 1 > >
 
using ProcInfoCallBackFn = std::function< SmallVector< ProcInfo >(OpBuilder &b, Location loc, ArrayRef< Range > parallelLoopRanges)>
 

Enumerations

enum class  LinalgTilingLoopType { Loops = 0 , AffineLoops = 1 , ParallelLoops = 2 }
 The type of loops to be generated during tiling. More...
 
enum class  DistributionMethod { Cyclic = 0 , CyclicNumProcsGeNumIters = 1 , CyclicNumProcsEqNumIters = 2 , None = 3 }
 Scheme used to distribute loops to processors. More...
 

Functions

void populateLinalgToStandardConversionPatterns (RewritePatternSet &patterns)
 Populate the given list with patterns that convert from Linalg to Standard. More...
 
std::string generateLibraryCallName (Operation *op)
 Returns the name mangled library call name to disambiguate between different overloads at the C level. More...
 
SmallVector< AffineExpr, 4 > makeAffineDimExprs (unsigned num, unsigned &startIdx, MLIRContext *context)
 Returns num AffineDimExpr dimensions at positions [startIdx, startIdx + num) and increments startIdx to startIdx + num. More...
 
AffineMap extractOrIdentityMap (std::optional< AffineMap > maybeMap, unsigned rank, MLIRContext *context)
 Returns maybeMap.get() if maybeMap is set, otherwise returns the symbol-less identity map of rank. More...
 
SmallVector< AffineExpr, 4 > concat (ArrayRef< AffineExpr > a, ArrayRef< AffineExpr > b)
 Return the vector that is the concatenation of a and b. More...
 
bool isaContractionOpInterface (LinalgOp linalgOp)
 Checks whether linalgOp conforms to ContractionOpInterface. More...
 
void registerTransformDialectExtension (DialectRegistry &registry)
 
void registerBufferizableOpInterfaceExternalModels (DialectRegistry &registry)
 
void hoistRedundantVectorTransfers (func::FuncOp func)
 Hoist vector.transfer_read/vector.transfer_write on buffers pairs out of immediately enclosing scf::ForOp iteratively, if the following conditions are true: More...
 
void hoistRedundantVectorTransfersOnTensor (func::FuncOp func)
 Same behavior as hoistRedundantVectorTransfers but works on tensors instead of buffers. More...
 
FailureOr< ValuehoistPaddingOnTensors (tensor::PadOp opToHoist, int numLoops, ArrayRef< int64_t > transposeVector, tensor::PadOp &hoistedOp, SmallVectorImpl< GenericOp > &transposeOps)
 Mechanically hoist padding operations on tensors by numLoops into a new, generally larger tensor. More...
 
void registerTilingInterfaceExternalModels (DialectRegistry &registry)
 
void populatePadTensorTilingPatterns (RewritePatternSet &patterns, const LinalgTilingOptions &options)
 
void populateDecomposeLinalgOpsPattern (RewritePatternSet &patterns, bool removeDeadArgsAndResults=true)
 Populate patterns for splitting a LinalgOp with multiple statements within its payload into multiple GenericOp that have a single statement. More...
 
void populateConvertToDestinationStylePatterns (RewritePatternSet &patterns)
 Populate patterns that convert non-destination-style ops to destination style ops. More...
 
void populateConvolutionVectorizationPatterns (RewritePatternSet &patterns, PatternBenefit benefit=1)
 Populate patterns for vectorizing low-D convolution ops. More...
 
void populateElementwiseToLinalgConversionPatterns (RewritePatternSet &patterns)
 Populate patterns that convert ElementwiseMappable ops to linalg parallel loops. More...
 
void populateSparseTensorRewriting (RewritePatternSet &patterns)
 Populate patterns that are only useful in the context of sparse tensors. More...
 
void populateElementwiseOpsFusionPatterns (RewritePatternSet &patterns, const ControlFusionFn &controlElementwiseOpFusion)
 Patterns for fusing linalg operation on tensors. More...
 
void populateDataLayoutPropagationPatterns (RewritePatternSet &patterns)
 Patterns to bubble up or down data layout ops across other operations. More...
 
void populateEraseUnusedOperandsAndResultsPatterns (RewritePatternSet &patterns)
 Pattern to remove dead operands and results of linalg.generic operations. More...
 
void populateEraseUnnecessaryInputsPatterns (RewritePatternSet &patterns)
 Patterns to promote inputs to outputs and remove unused inputs of linalg.generic ops. More...
 
void populateCollapseDimensions (RewritePatternSet &patterns, const GetCollapsableDimensionsFn &controlCollapseDimensions)
 Pattern to collapse dimensions in a linalg.generic op. More...
 
void populateFoldReshapeOpsByExpansionPatterns (RewritePatternSet &patterns, const ControlFusionFn &controlFoldingReshapes)
 Patterns to fold an expanding (collapsing) tensor_reshape operation with its producer (consumer) generic operation by expanding the dimensionality of the loop in the generic op. More...
 
void populateFoldReshapeOpsByCollapsingPatterns (RewritePatternSet &patterns, const ControlFusionFn &controlFoldingReshapes)
 Patterns to fold an expanding tensor.expand_shape operation with its producer generic operation by collapsing the dimensions of the generic op. More...
 
void populateConstantFoldLinalgOperations (RewritePatternSet &patterns, const ControlFusionFn &controlFn)
 Patterns to constant fold Linalg operations. More...
 
void populateFuseTensorPadWithProducerLinalgOpPatterns (RewritePatternSet &patterns)
 Pattern to fuse a tensor.pad operation with the producer of its source, if the producer is a linalg operation with all parallel iterator types. More...
 
void populateLinalgNamedOpConversionPatterns (RewritePatternSet &patterns)
 Patterns to convert from one named op to another. More...
 
void populateFoldUnitExtentDimsViaReshapesPatterns (RewritePatternSet &patterns)
 Patterns to fold unit-extent dimensions in operands/results of linalg ops on tensors via reassociative reshape ops. More...
 
void populateFoldUnitExtentDimsViaSlicesPatterns (RewritePatternSet &patterns)
 Patterns to fold unit-extent dimensions in operands/results of linalg ops on tensors via rank-reducing slices. More...
 
void populateMoveInitOperandsToInputPattern (RewritePatternSet &patterns)
 A pattern that converts init operands to input operands. More...
 
void populateInlineConstantOperandsPatterns (RewritePatternSet &patterns)
 Patterns that are used to inline constant operands into linalg generic ops. More...
 
void populateBubbleUpExtractSliceOpPatterns (RewritePatternSet &patterns)
 Patterns that are used to bubble up extract slice op above linalg op. More...
 
void populateSwapExtractSliceWithFillPatterns (RewritePatternSet &patterns)
 Adds patterns that waps tensor.extract_slice(linalg.fill(cst, init)) into linalg.fill(cst, tensor.extract_slice(init)). More...
 
bool areElementwiseOpsFusable (OpOperand *fusedOperand)
 Return true if two linalg.generic operations with producer/consumer relationship through fusedOperand can be fused using elementwise op fusion. More...
 
FailureOr< Operation * > fuseElementwiseOps (RewriterBase &rewriter, OpOperand *fusedOperand)
 Fuse two linalg.generic operations that have a producer-consumer relationship captured through fusedOperand. More...
 
std::pair< TilingInterface, TilingInterface > splitOp (RewriterBase &rewriter, TilingInterface op, unsigned dimension, OpFoldResult splitPoint)
 Split the given op into two parts along the given iteration space dimension at the specified splitPoint, and return the two parts. More...
 
FailureOr< TiledLinalgOptileLinalgOp (RewriterBase &b, LinalgOp op, const LinalgTilingOptions &options)
 
SmallVector< ValuepeelLoop (RewriterBase &rewriter, Operation *op)
 Try to peel and canonicalize loop op and return the new result. More...
 
void peelLoops (RewriterBase &rewriter, ArrayRef< scf::ForOp > loops)
 Peel and canonicalize 'loops'. More...
 
FailureOr< GenericOp > interchangeGenericOp (RewriterBase &rewriter, GenericOp genericOp, ArrayRef< unsigned > interchangeVector)
 Interchange the iterator_types and iterator_maps dimensions and adapts the index accesses of op. More...
 
FailureOr< GenericOp > generalizeNamedOp (RewriterBase &rewriter, LinalgOp namedOp)
 Create a GenericOp from the given named operation namedOp and replace namedOp. More...
 
FailureOr< PromotionInfopromoteSubviewAsNewBuffer (OpBuilder &b, Location loc, memref::SubViewOp subView, const AllocBufferCallbackFn &allocationFn, DataLayout &layout)
 
FailureOr< LinalgOp > promoteSubViews (OpBuilder &b, LinalgOp op, const LinalgPromotionOptions &options)
 Promote the subViews into a new buffer allocated at the insertion point b. More...
 
LogicalResult vectorize (RewriterBase &rewriter, LinalgOp linalgOp, ArrayRef< int64_t > inputVectorSizes={}, bool vectorizeNDExtract=false)
 Emit a suitable vector form for a Linalg op. More...
 
LogicalResult vectorizeCopy (RewriterBase &builder, memref::CopyOp copyOp)
 Emit a suitable vector form for a Copy op with fully static shape. More...
 
FailureOr< LinalgLoopslinalgOpToLoops (PatternRewriter &rewriter, LinalgOp linalgOp)
 Emit a loop nest of scf.for with the proper body for linalgOp. More...
 
FailureOr< LinalgLoopslinalgOpToParallelLoops (PatternRewriter &rewriter, LinalgOp linalgOp)
 Emit a loop nest of scf.parallel with the proper body for linalgOp. More...
 
FailureOr< LinalgLoopslinalgOpToAffineLoops (PatternRewriter &rewriter, LinalgOp linalgOp)
 Emit a loop nest of affine.for with the proper body for linalgOp. More...
 
LogicalResult promoteSubviewsPrecondition (Operation *op, LinalgPromotionOptions options)
 Promote memref.subviews feeding linalg-on-buffers operations. More...
 
LogicalResult vectorizeLinalgOpPrecondition (LinalgOp linalgOp, ArrayRef< int64_t > inputVectorSizes={}, bool vectorizeNDExtract=false)
 Return success if the operation can be vectorized. More...
 
std::tuple< SmallVector< Range, 4 >, LoopIndexToRangeIndexMapmakeTiledLoopRanges (RewriterBase &b, Location loc, AffineMap map, ArrayRef< OpFoldResult > allShapeSizes, ArrayRef< OpFoldResult > allTileSizes)
 
FailureOr< MultiSizeSpecificationcomputeMultiTileSizes (OpBuilder &builder, LinalgOp op, unsigned dimension, OpFoldResult targetSize, OpFoldResult divisor, bool emitAssertions=true)
 Emits the IR computing the multi-sized tiling specification with two tile sizes not exceeding targetSize, each divisible by sizeDivisor, such that there exist numbers of tiles with these sizes that fully cover the given iteration space dimension of the structured op. More...
 
FailureOr< StaticMultiSizeSpecificationcomputeStaticMultiTileSizes (LinalgOp op, unsigned dimension, int64_t targetSize, int64_t divisor)
 
FailureOr< ForeachThreadTilingResulttileToForeachThreadOp (RewriterBase &builder, TilingInterface op, ArrayRef< OpFoldResult > numThreads, std::optional< ArrayAttr > mapping)
 
FailureOr< ForeachThreadTilingResulttileToForeachThreadOpUsingTileSizes (RewriterBase &builder, TilingInterface op, ArrayRef< OpFoldResult > tileSizes, std::optional< ArrayAttr > mapping)
 Same as tileToForeachThreadOp, but calculate the number of threads required using the given tileSizes. More...
 
FailureOr< ForeachThreadReductionTilingResulttileReductionUsingForeachThread (RewriterBase &b, PartialReductionOpInterface op, ArrayRef< OpFoldResult > numThreads, ArrayRef< OpFoldResult > tileSizes={}, std::optional< ArrayAttr > mapping=std::nullopt)
 Method to tile a reduction to parallel iterations computing partial reductions. More...
 
void transformIndexOps (RewriterBase &b, LinalgOp op, SmallVectorImpl< Value > &ivs, const LoopIndexToRangeIndexMap &loopIndexToRangeIndex)
 All indices returned by IndexOp should be invariant with respect to tiling. More...
 
RewritePatternSet getLinalgTilingCanonicalizationPatterns (MLIRContext *ctx)
 Canonicalization patterns relevant to apply after tiling patterns. More...
 
void populateLinalgTilingCanonicalizationPatterns (RewritePatternSet &patterns)
 
std::optional< vector::CombiningKind > getCombinerOpKind (Operation *combinerOp)
 Return vector::CombiningKind for the given op. More...
 
void populateLinalgNamedOpsGeneralizationPatterns (RewritePatternSet &patterns)
 Linalg generalization patterns. More...
 
void populateDecomposeConvolutionPatterns (RewritePatternSet &patterns, PatternBenefit benefit=1)
 Linalg decompose convolutions patterns. More...
 
FailureOr< SmallVector< Value > > rewriteAsPaddedOp (OpBuilder &b, LinalgOp opToPad, ArrayRef< int64_t > paddingDimensions, ArrayRef< Attribute > paddingValues, ArrayRef< bool > packPaddings, LinalgOp &paddedOp)
 Pad the iterator dimensions paddingDimensions of all opToPad operands to a static bounding box. More...
 
void populatePadOpVectorizationPatterns (RewritePatternSet &patterns, PatternBenefit baseBenefit=1)
 Populates patterns with patterns that vectorize tensor.pad. More...
 
void populateExtractOpVectorizationPatterns (RewritePatternSet &patterns, PatternBenefit baseBenefit=1)
 
void populateSplitReductionPattern (RewritePatternSet &patterns, const ControlSplitReductionFn &controlSplitReductionFn, bool useAlloc=false)
 Patterns to apply splitReduction below. More...
 
FailureOr< SplitReductionResultsplitReduction (PatternRewriter &b, LinalgOp op, const ControlSplitReductionFn &controlSplitReductionFn, bool useAlloc=false)
 
FailureOr< SplitReductionResultsplitReductionByScaling (PatternRewriter &b, LinalgOp op, const ControlSplitReductionFn &controlSplitReductionFn, bool useAlloc=false)
 Scaling-based implementation of the split reduction transformation. More...
 
FailureOr< SmallVector< Value > > collapseGenericOpIterationDims (GenericOp genericOp, ArrayRef< ReassociationIndices > foldedIterationDims, RewriterBase &rewriter)
 Collapses dimensions of linalg.generic operation. More...
 
FailureOr< linalg::LinalgOp > pack (RewriterBase &rewriter, linalg::LinalgOp linalgOp, ArrayRef< OpFoldResult > packedSizes)
 Implement packing of a single LinalgOp by packedSizes. More...
 
FailureOr< PackTransposeResultpackTranspose (RewriterBase &rewriter, tensor::PackOp packOp, linalg::LinalgOp linalgOp, tensor::UnPackOp maybeUnPackOp, ArrayRef< int64_t > outerPerm, ArrayRef< int64_t > innerPerm)
 Transpose a single PackOp -> LinalgOp -> UnPackOp chain and return the transposed PackOp -> LinalgOp -> UnPackOp chain after replacements. More...
 
bool allIndexingsAreProjectedPermutation (LinalgOp op)
 Check if all indexing maps are projected permutations. More...
 
bool hasOnlyScalarElementwiseOp (Region &r)
 Detect whether r has only ConstantOp, ElementwiseMappable and YieldOp. More...
 
bool isElementwise (LinalgOp op)
 Check if a LinalgOp is an element-wise operation. More...
 
bool isParallelIterator (utils::IteratorType iteratorType)
 Check if iterator type has "parallel" semantics. More...
 
bool isReductionIterator (utils::IteratorType iteratorType)
 Check if iterator type has "reduction" semantics. More...
 
Value createOrFoldDimOp (OpBuilder &b, Location loc, Value source, int64_t dim)
 Helper function that creates a memref::DimOp or tensor::DimOp depending on the type of source. More...
 
OpFoldResult createFoldedDimOp (OpBuilder &b, Location loc, Value source, int64_t dim)
 
SmallVector< Value, 4 > getDynOperands (Location loc, Value val, OpBuilder &b)
 Given an operation, retrieves the value of each dynamic dimension through constructing the necessary DimOp operators. More...
 
void getUpperBoundForIndex (Value value, AffineMap &boundMap, SmallVectorImpl< Value > &boundOperands, bool constantRequired=false)
 Computes an upper bound for the result value of an index computation. More...
 
FailureOr< int64_t > getConstantUpperBoundForIndex (Value value)
 Returns a constant upper bound for the result value of an index computation. More...
 
Value makeComposedPadHighOp (OpBuilder &b, Location loc, RankedTensorType type, Value source, Value pad, bool nofold)
 Create a tensor::PadOp that pads source to the size of the statically sized type whose static sizes are assumed to be greater than the dynamic source size. More...
 
GenericOp makeTransposeOp (OpBuilder &b, Location loc, Value inputTensor, Value outputTensor, ArrayRef< int64_t > transposeVector)
 Returns a GenericOp that tansposes inputTensor into outputTensor using transposeVector to permute the inputTensor dimensions. More...
 
GenericOp makeMemRefCopyOp (OpBuilder &b, Location loc, Value from, Value to)
 Returns GenericOp that copies an n-D memref. More...
 
std::optional< SmallVector< ReassociationIndices > > getReassociationMapForFoldingUnitDims (ArrayRef< OpFoldResult > mixedSizes)
 Get the reassociation maps to fold the result of a extract_slice (or source of a insert_slice) operation with given offsets, and sizes to its rank-reduced version. More...
 
std::optional< AttributegetNeutralElement (Operation *op)
 Return the identity numeric value associated to the give op. More...
 
bool isProducerLastWriteOfView (const LinalgDependenceGraph &graph, LinalgOp consumer, Value consumedView, LinalgOp producer)
 Checks whether the specific producer is the last write to exactly the whole consumedView. More...
 
bool isFusableInto (const LinalgDependenceGraph &graph, LinalgOp consumer, Value consumedView, LinalgOp producer)
 Checks whether fusing the specific producer of the consumedView is feasible. More...
 
SmallVector< OpFoldResultcomputeTileOffsets (OpBuilder &b, Location loc, ArrayRef< OpFoldResult > ivs, ArrayRef< OpFoldResult > tileSizes)
 Computes tile offsets, given a list of loop ivs and tileSizes. More...
 
SmallVector< OpFoldResultcomputeTileSizes (OpBuilder &b, Location loc, ArrayRef< OpFoldResult > tileSizes, ArrayRef< OpFoldResult > sizeBounds)
 Computes tile sizes, given a list of tileSizes and dimension sizes (sizeBounds). More...
 
SmallVector< TypegetTensorOutputTypes (LinalgOp op, ValueRange operands)
 Returns the list of tensor output types produced when the given structured operation op is applied to the given operands. More...
 
SmallVector< ValueinsertSlicesBack (OpBuilder &builder, Location loc, LinalgOp op, ValueRange operands, ValueRange results)
 Creates insert_slice ops that insert results back into larger tensors they were originally extracted from with extract_slice before being passed as operands to the given structured operation op or its clone. More...
 
SliceParameters computeSliceParameters (OpBuilder &builder, Location loc, Value valueToTile, ArrayRef< OpFoldResult > tileSizes, AffineMap map, ArrayRef< OpFoldResult > lbs, ArrayRef< OpFoldResult > ubs, ArrayRef< OpFoldResult > subShapeSizes, bool omitPartialTileCheck)
 Computes SliceParameters for a single valueToTile assuming that its user is being tiled with the given loop bounds lbs and ubs and the tile sizes tileSizes. More...
 
SmallVector< std::optional< SliceParameters > > computeAllSliceParameters (OpBuilder &builder, Location loc, LinalgOp linalgOp, ValueRange valuesToTile, ArrayRef< OpFoldResult > ivs, ArrayRef< OpFoldResult > tileSizes, ArrayRef< OpFoldResult > sizeBounds, bool omitPartialTileCheck)
 Computes SliceParamaters for all valuesToTile of the given linalgOp, assuming linalgOp is being fused into a loop nest. More...
 
Value makeTiledShape (OpBuilder &builder, Location loc, Value valueToTile, ArrayRef< OpFoldResult > tileSizes, AffineMap map, ArrayRef< OpFoldResult > lbs, ArrayRef< OpFoldResult > ubs, ArrayRef< OpFoldResult > subShapeSizes, bool omitPartialTileCheck)
 Creates an extract_slice/subview op for a single valueToTile with builder. More...
 
SmallVector< ValuemakeTiledShapes (OpBuilder &builder, Location loc, LinalgOp linalgOp, ValueRange valuesToTile, ArrayRef< OpFoldResult > ivs, ArrayRef< OpFoldResult > tileSizes, ArrayRef< OpFoldResult > sizeBounds, bool omitPartialTileCheck)
 Creates extract_slice/subview ops for all valuesToTile of the given linalgOp with builder, assuming linalgOp is being fused into a loop nest for tiling with the given induction variables ivs and tile sizes tileSizes. More...
 
void offsetIndices (OpBuilder &b, LinalgOp linalgOp, ArrayRef< OpFoldResult > offests)
 Add the specified offsets to any linalg.index ops contained in the given linalgOp. More...
 
void offsetIndices (RewriterBase &b, LinalgOp linalgOp, ArrayRef< OpFoldResult > offests)
 
FusableOpDependencesTy findAllFusableDependences (ArrayRef< LinalgOp > ops, const LinalgDependenceGraph &dependenceGraph)
 
FailureOr< FusionInfofuseProducerOfBuffer (OpBuilder &b, OpOperand &consumerOpOperand, const LinalgDependenceGraph &graph)
 Fuses producer into consumer if the producer is structurally feasible and the fusion would not violate dependencies. More...
 
FailureOr< FusionInfofuseProducerOfTensor (OpBuilder &b, OpOperand &consumerOpOperand)
 Tensor counterpart of fuseProducerOfBuffer. More...
 
FailureOr< FusionInfofuseProducerOfTensor (OpBuilder &b, OpResult producerOpResult, OpOperand &consumerOpOperand)
 Tensor counterpart of fuseProducerOfBuffer. More...
 
void updateBoundsForCyclicDistribution (OpBuilder &builder, Location loc, Value procId, Value nprocs, Value &lb, Value &ub, Value &step)
 Update the lb, ub and step to get per processor lb, ub and step. More...
 
template<typename OpTy >
SmallVector< NamedAttributegetPrunedAttributeList (OpTy op)
 Returns an attribute list that excludes pre-defined attributes. More...
 
static void generateParallelLoopNest (OpBuilder &b, Location loc, ValueRange lbs, ValueRange ubs, ValueRange steps, ArrayRef< utils::IteratorType > iteratorTypes, ArrayRef< linalg::ProcInfo > procInfo, function_ref< void(OpBuilder &, Location, ValueRange)> bodyBuilderFn, SmallVectorImpl< Value > &ivStorage)
 Generates a loop nest consisting of scf.parallel and scf.for, depending on the iteratorTypes. More...
 
static Value materializeTiledShape (OpBuilder &builder, Location loc, Value valueToTile, const SliceParameters &sliceParams)
 

Typedef Documentation

◆ AllocBufferCallbackFn

using mlir::linalg::AllocBufferCallbackFn = typedef std::function<std::optional<Value>( OpBuilder &b, memref::SubViewOp subView, ArrayRef<Value> boundingSubViewSize, DataLayout &layout)>

Callback function type used to perform the allocation for the promoted subView.

In boundingSubViewsize a best attempt is made to find the smallest constant value for the size of the buffer needed for each dimension. If that is not possible, contains the dynamic size of the subview. The call back should return the buffer to use.

Definition at line 255 of file Transforms.h.

◆ ControlFusionFn

using mlir::linalg::ControlFusionFn = typedef std::function<bool(OpOperand *fusedOperand)>

Function type which is used to control when to stop fusion.

It is expected that OpOperand is not modified in the callback. The OpOperand is not marked as const to allow callers to use non-const methods.

Definition at line 79 of file Transforms.h.

◆ ControlSplitReductionFn

using mlir::linalg::ControlSplitReductionFn = typedef std::function<SplitReductionOptions(LinalgOp op)>

Function signature to control reduction splitting.

This returns SplitReductionOptions.

Definition at line 1027 of file Transforms.h.

◆ CopyCallbackFn

using mlir::linalg::CopyCallbackFn = typedef std::function<LogicalResult(OpBuilder &b, Value src, Value dst)>

Callback function type used to insert copy from original subview to subview of the promoted region for the read operands/subview of promoted region to original subview for the results.

The copy has to happen from src to dst.

Definition at line 268 of file Transforms.h.

◆ DeallocBufferCallbackFn

using mlir::linalg::DeallocBufferCallbackFn = typedef std::function<LogicalResult(OpBuilder &b, Value buffer)>

Callback function type used to deallocate the buffers used to hold the promoted subview.

Definition at line 261 of file Transforms.h.

◆ FusableOpDependencesTy

Definition at line 271 of file Utils.h.

◆ GetCollapsableDimensionsFn

using mlir::linalg::GetCollapsableDimensionsFn = typedef std::function<SmallVector<ReassociationIndices>(linalg::GenericOp)>

Function type to control generic op dimension collapsing.

It is expected to return an array of ReassociationIndices representing dimensions that should be merged.

Definition at line 103 of file Transforms.h.

◆ LinalgLoops

Definition at line 45 of file Transforms.h.

◆ LoopIndexToRangeIndexMap

Creates a number of ranges equal to the number of non-zero in tileSizes.

One for each loop of the LinalgOp that is tiled. The tileSizes argument has one entry per surrounding loop. It uses zero as the convention that a particular loop is not tiled. This convention simplifies implementations by avoiding affine map manipulations. The returned ranges correspond to the loop ranges, in the proper order, that are tiled and for which new loops will be created. Also the function returns a map from loop indices of the LinalgOp to the corresponding non-empty range indices of newly created loops.

Definition at line 418 of file Transforms.h.

◆ OptimizeCopyFn

using mlir::linalg::OptimizeCopyFn = typedef std::function<LogicalResult(PatternRewriter &, tensor::PadOp, Value)>

Definition at line 873 of file Transforms.h.

◆ ProcInfoCallBackFn

using mlir::linalg::ProcInfoCallBackFn = typedef std::function<SmallVector<ProcInfo>( OpBuilder &b, Location loc, ArrayRef<Range> parallelLoopRanges)>

Definition at line 366 of file Utils.h.

◆ TileSizeComputationFunction

Definition at line 406 of file Transforms.h.

Enumeration Type Documentation

◆ DistributionMethod

Scheme used to distribute loops to processors.

Enumerator
Cyclic 

Cyclic distribution where no assumption is made about the dynamic relationship between number of processors and number of iterations of the distributed loop.

Distributes the following loop

scf.parallel (iv) = (lb) to (ub) step (step)

to

scf.parallel(iv)= (lb + procId * step) to (ub) step (step * nprocs)

CyclicNumProcsGeNumIters 

Cyclic distribution where the number of processors can be assumed to be more than or equal to the number of iterations of the distributed loop.

In such cases, a simple in-bounds check is enough (instead of materializing a loop). Distributes the following loop

scf.parallel (iv) = (lb) to (ub) step (step)

to

iv = lb + procId * step cond = arith.cmpi "slt", iv, ub scf.if cond { ... }

CyclicNumProcsEqNumIters 

Cyclic distribution where the number of processors can be assumed to be equal to the number of iterations of the distributed loop.

In such cases, no bounds check is needed. Distributes the following loop

scf.parallel (iv) = (lb) to (ub) step (step)

to

iv = lb + procId * step

None 

No Distribution.

Definition at line 316 of file Utils.h.

◆ LinalgTilingLoopType

The type of loops to be generated during tiling.

Enumerator
Loops 
AffineLoops 
ParallelLoops 

Definition at line 150 of file Utils.h.

Function Documentation

◆ allIndexingsAreProjectedPermutation()

bool mlir::linalg::allIndexingsAreProjectedPermutation ( LinalgOp  op)

Check if all indexing maps are projected permutations.

Definition at line 156 of file Utils.cpp.

Referenced by isElementwise(), and vectorizeLinalgOpPrecondition().

◆ areElementwiseOpsFusable()

bool mlir::linalg::areElementwiseOpsFusable ( OpOperand fusedOperand)

Return true if two linalg.generic operations with producer/consumer relationship through fusedOperand can be fused using elementwise op fusion.

Conditions for elementwise fusion of generic operations.

Definition at line 75 of file ElementwiseOpFusion.cpp.

References mlir::IROperand< DerivedT, IRValueT >::get(), mlir::Value::getDefiningOp(), getIndexingMapOfProducerOperandsInCoordinatesOfFusedOp(), mlir::AffineMap::getNumResults(), mlir::detail::IROperandBase::getOwner(), mlir::Value::getType(), mlir::Type::isa(), and mlir::AffineMap::isPermutation().

Referenced by fuseElementwiseOps().

◆ collapseGenericOpIterationDims()

FailureOr< SmallVector< Value > > mlir::linalg::collapseGenericOpIterationDims ( GenericOp  genericOp,
ArrayRef< ReassociationIndices foldedIterationDims,
RewriterBase rewriter 
)

◆ computeAllSliceParameters()

SmallVector< std::optional< SliceParameters > > mlir::linalg::computeAllSliceParameters ( OpBuilder builder,
Location  loc,
LinalgOp  linalgOp,
ValueRange  valuesToTile,
ArrayRef< OpFoldResult ivs,
ArrayRef< OpFoldResult tileSizes,
ArrayRef< OpFoldResult sizeBounds,
bool  omitPartialTileCheck 
)

Computes SliceParamaters for all valuesToTile of the given linalgOp, assuming linalgOp is being fused into a loop nest.

Calls computeSliceParameters for every individual value.

Note that a constant zero in tileSizes means no tiling at that implicit loop. The number of non-zero values in tileSizes should be equal to the number of values in ivs.

Some of the valuesToTile won't be affected by tiling. For these values, std::nullopt will be returned.

Definition at line 934 of file Utils.cpp.

References computeSliceParameters(), computeTileOffsets(), computeTileSizes(), mlir::Type::isa(), and isTiled().

Referenced by makeTiledShapes().

◆ computeMultiTileSizes()

FailureOr< MultiSizeSpecification > mlir::linalg::computeMultiTileSizes ( OpBuilder builder,
LinalgOp  op,
unsigned  dimension,
OpFoldResult  targetSize,
OpFoldResult  divisor,
bool  emitAssertions = true 
)

Emits the IR computing the multi-sized tiling specification with two tile sizes not exceeding targetSize, each divisible by sizeDivisor, such that there exist numbers of tiles with these sizes that fully cover the given iteration space dimension of the structured op.

The computation is as follows:

b = originalTripCount floordiv sizeDivisor t = (targetSize + sizeDivisor - 1) floordiv sizeDivisor d = (b + t - 1) floordiv t s = (b floordiv d) * sizeDivisor v = b % d u = d - v

where the tile sizes are s and s + sizeDivisor, and the numbers of the corresponding tiles are u and v, respectively. Alternatively,

s * u + (s + sizeDivisor) * v == original size, where s mod sizeDivisor = 0.

Expects all values to be positive. In some cases with the target tile size sufficiently close to the dimension shape and non-unit divisor, it is impossible to compute such sizes. If emitAssertion is set, also emit the assertion that size computation succeeded.

Returns the specification consisting of both tile values and the number of tiles of each size.

Definition at line 147 of file Tiling.cpp.

References mlir::ImplicitLocOpBuilder::create(), emitIsPositiveIndexAssertion(), mlir::failure(), mlir::floorDiv(), mlir::AffineExpr::floorDiv(), mlir::Builder::getAffineSymbolExpr(), mlir::ImplicitLocOpBuilder::getLoc(), mlir::Builder::getStringAttr(), mlir::getValueOrCreateConstantIndexOp(), mlir::linalg::detail::MultiSizeSpecificationBase< T >::lowTileSize, mlir::makeComposedAffineApply(), and mlir::makeComposedFoldedMultiResultAffineApply().

◆ computeSliceParameters()

SliceParameters mlir::linalg::computeSliceParameters ( OpBuilder builder,
Location  loc,
Value  valueToTile,
ArrayRef< OpFoldResult tileSizes,
AffineMap  map,
ArrayRef< OpFoldResult lbs,
ArrayRef< OpFoldResult ubs,
ArrayRef< OpFoldResult subShapeSizes,
bool  omitPartialTileCheck 
)

Computes SliceParameters for a single valueToTile assuming that its user is being tiled with the given loop bounds lbs and ubs and the tile sizes tileSizes.

omitPartialTileCheck controls whether to omit the partial/boundary tile condition check in cases where we statically know that it is unnecessary.

Definition at line 759 of file Utils.cpp.

References mlir::bindDims(), createFoldedDimOp(), mlir::Type::dyn_cast(), mlir::getAffineSymbolExpr(), mlir::getConstantIntValue(), mlir::Builder::getContext(), mlir::Builder::getIndexAttr(), mlir::AffineMap::getSubMap(), mlir::Value::getType(), mlir::AffineMap::inferFromExprList(), isTiled(), mlir::makeComposedFoldedAffineApply(), mlir::makeComposedFoldedAffineMin(), mlir::linalg::SliceParameters::offsets, mlir::linalg::SliceParameters::sizes, and mlir::linalg::SliceParameters::strides.

Referenced by computeAllSliceParameters(), and makeTiledShape().

◆ computeStaticMultiTileSizes()

FailureOr< StaticMultiSizeSpecification > mlir::linalg::computeStaticMultiTileSizes ( LinalgOp  op,
unsigned  dimension,
int64_t  targetSize,
int64_t  divisor 
)

◆ computeTileOffsets()

SmallVector< OpFoldResult > mlir::linalg::computeTileOffsets ( OpBuilder b,
Location  loc,
ArrayRef< OpFoldResult ivs,
ArrayRef< OpFoldResult tileSizes 
)

Computes tile offsets, given a list of loop ivs and tileSizes.

In case a tile size is zero (i.e., no tiling), the corresponding offset is also zero.

Definition at line 866 of file Utils.cpp.

References mlir::Builder::getIndexAttr(), isTiled(), and isZero().

Referenced by computeAllSliceParameters(), and tilePadOp().

◆ computeTileSizes()

SmallVector< OpFoldResult > mlir::linalg::computeTileSizes ( OpBuilder b,
Location  loc,
ArrayRef< OpFoldResult tileSizes,
ArrayRef< OpFoldResult sizeBounds 
)

Computes tile sizes, given a list of tileSizes and dimension sizes (sizeBounds).

In case a tile size is zero (i.e., no tiling), the corresponding result size is the corresponding value from sizeBounds. Note: The returned tile sizes are closed intervals.

Definition at line 880 of file Utils.cpp.

References mlir::getAffineDimExpr(), mlir::Builder::getContext(), isTiled(), isZero(), and mlir::makeComposedFoldedAffineApply().

Referenced by computeAllSliceParameters(), and tilePadOp().

◆ concat()

SmallVector< AffineExpr, 4 > mlir::linalg::concat ( ArrayRef< AffineExpr a,
ArrayRef< AffineExpr b 
)

Return the vector that is the concatenation of a and b.

Definition at line 1790 of file LinalgOps.cpp.

Referenced by mlir::presburger::Simplex::makeProduct().

◆ createFoldedDimOp()

OpFoldResult mlir::linalg::createFoldedDimOp ( OpBuilder b,
Location  loc,
Value  source,
int64_t  dim 
)

◆ createOrFoldDimOp()

Value mlir::linalg::createOrFoldDimOp ( OpBuilder b,
Location  loc,
Value  source,
int64_t  dim 
)

◆ extractOrIdentityMap()

AffineMap mlir::linalg::extractOrIdentityMap ( std::optional< AffineMap maybeMap,
unsigned  rank,
MLIRContext context 
)

Returns maybeMap.get() if maybeMap is set, otherwise returns the symbol-less identity map of rank.

Definition at line 1770 of file LinalgOps.cpp.

References mlir::AffineMap::get(), and mlir::AffineMap::getMultiDimIdentityMap().

◆ findAllFusableDependences()

FusableOpDependencesTy mlir::linalg::findAllFusableDependences ( ArrayRef< LinalgOp >  ops,
const LinalgDependenceGraph dependenceGraph 
)

◆ fuseElementwiseOps()

FailureOr< Operation * > mlir::linalg::fuseElementwiseOps ( RewriterBase rewriter,
OpOperand fusedOperand 
)

Fuse two linalg.generic operations that have a producer-consumer relationship captured through fusedOperand.

The method expects that areElementwiseOpsFusable returns true for the given fusedOperand.

Find the results of the producer that have uses outside of the consumer.

Definition at line 274 of file ElementwiseOpFusion.cpp.

References areElementwiseOpsFusable(), mlir::Value::cast(), mlir::AffineMap::compose(), mlir::OpBuilder::create(), mlir::detail::enumerate(), mlir::RewriterBase::eraseOp(), generateFusedElementwiseOpRegion(), mlir::IROperand< DerivedT, IRValueT >::get(), mlir::Builder::getAffineMapArrayAttr(), getIndexingMapOfProducerOperandsInCoordinatesOfFusedOp(), mlir::detail::IROperandBase::getOwner(), mlir::inversePermutation(), mlir::Type::isa(), and mlir::RewriterBase::notifyMatchFailure().

◆ fuseProducerOfBuffer()

FailureOr< FusionInfo > mlir::linalg::fuseProducerOfBuffer ( OpBuilder b,
OpOperand consumerOpOperand,
const LinalgDependenceGraph graph 
)

Fuses producer into consumer if the producer is structurally feasible and the fusion would not violate dependencies.

Implements the fusion part of the "tileAndFuse on buffers" transformation and thus requires the consumerOpOperand to be a subview op (generally obtained by applying the tiling transformation).

Definition at line 335 of file Fusion.cpp.

References mlir::failure(), findFusableProducer(), fuse(), mlir::IROperand< DerivedT, IRValueT >::get(), mlir::Value::getDefiningOp(), mlir::detail::IROperandBase::getOwner(), mlir::Value::getParentBlock(), and mlir::OpBuilder::setInsertionPoint().

◆ fuseProducerOfTensor() [1/2]

FailureOr< FusionInfo > mlir::linalg::fuseProducerOfTensor ( OpBuilder b,
OpOperand consumerOpOperand 
)

Tensor counterpart of fuseProducerOfBuffer.

This implements the fusion part of the "tileAndFuse on tensors" transformation and thus requires the consumerOpOperand to be a extract_slice op (generally obtained by applying the tiling transformation).

Definition at line 405 of file Fusion.cpp.

References mlir::failure(), mlir::IROperand< DerivedT, IRValueT >::get(), and getProducerOfTensor().

◆ fuseProducerOfTensor() [2/2]

FailureOr< FusionInfo > mlir::linalg::fuseProducerOfTensor ( OpBuilder b,
OpResult  producerOpResult,
OpOperand consumerOpOperand 
)

Tensor counterpart of fuseProducerOfBuffer.

This implements the fusion part of the "tileAndFuse on tensors" transformation and thus requires the consumerOpOperand to be a extract_slice op (generally obtained by applying the tiling transformation). Assumes producerOfTensor is a Linalg op that produces consumerOpOperand.

Definition at line 417 of file Fusion.cpp.

References mlir::OpBuilder::create(), mlir::failure(), fuse(), mlir::IROperand< DerivedT, IRValueT >::get(), mlir::Value::getDefiningOp(), mlir::detail::IROperandBase::getOwner(), mlir::OpResult::getOwner(), mlir::Value::getParentBlock(), mlir::OpResult::getResultNumber(), mlir::Value::getType(), mlir::IROperand< DerivedT, IRValueT >::set(), and mlir::OpBuilder::setInsertionPoint().

◆ generalizeNamedOp()

FailureOr< GenericOp > mlir::linalg::generalizeNamedOp ( RewriterBase rewriter,
LinalgOp  namedOp 
)

Create a GenericOp from the given named operation namedOp and replace namedOp.

Return failure if namedOp is a GenericOp or misses a region builder.

Definition at line 48 of file Generalization.cpp.

References mlir::OpBuilder::create(), mlir::failed(), generalizeNamedOpPrecondition(), mlir::RewriterBase::inlineRegionBefore(), mlir::RewriterBase::notifyMatchFailure(), and mlir::RewriterBase::replaceOp().

Referenced by packGemmGreedily(), and mlir::linalg::LinalgGeneralizationPattern::returningMatchAndRewrite().

◆ generateLibraryCallName()

std::string mlir::linalg::generateLibraryCallName ( Operation op)

Returns the name mangled library call name to disambiguate between different overloads at the C level.

The name mangling scheme is basic and uses MLIR type names:

  1. form a string which is the concatenation of the linalg op name with all the operand type names, separate by underscores;
  2. drop the linalg. prefix, and the <, >, ? symbols from the type. Assumes op is a LinalgOp.

Examples:

  1. linalg.fill(f, A) : f32, memref<f32> name mangles into linalg_fill_f32_viewf32
  2. linalg.dot A, B, C : (memref<?xf32, stride_specification>, memref<?xf32, stride_specification>, memref<f32>) name mangles into linalg_dot_viewxf32_viewxf32_viewf32
  3. linalg.matmul(...) : memref<?x?xf32, stride_specification>, memref<?x?xf32, stride_specification>, memref<?x?xf32, stride_specification> name mangles into linalg_matmul_viewxxf32_viewxxf32_viewxxf32

Definition at line 1824 of file LinalgOps.cpp.

References appendMangledType(), mlir::failed(), mlir::Operation::getName(), mlir::Operation::getOperandTypes(), and mlir::OperationName::getStringRef().

◆ generateParallelLoopNest()

static void mlir::linalg::generateParallelLoopNest ( OpBuilder b,
Location  loc,
ValueRange  lbs,
ValueRange  ubs,
ValueRange  steps,
ArrayRef< utils::IteratorType >  iteratorTypes,
ArrayRef< linalg::ProcInfo procInfo,
function_ref< void(OpBuilder &, Location, ValueRange)>  bodyBuilderFn,
SmallVectorImpl< Value > &  ivStorage 
)
static

Generates a loop nest consisting of scf.parallel and scf.for, depending on the iteratorTypes.

Consecutive parallel loops create a single scf.parallel operation; each sequential loop creates a new scf.for operation. The body of the innermost loop is populated by bodyBuilderFn that accepts a range of induction variables for all loops. ivStorage is used to store the partial list of induction variables.

Definition at line 565 of file Utils.cpp.

References mlir::ArithBuilder::_and(), mlir::scf::buildLoopNest(), mlir::OpBuilder::create(), mlir::linalg::ProcInfo::distributionMethod, isParallelIterator(), None, and mlir::ArithBuilder::slt().

Referenced by mlir::linalg::GenerateLoopNest< LoopTy >::doit().

◆ getCombinerOpKind()

std::optional< vector::CombiningKind > mlir::linalg::getCombinerOpKind ( Operation combinerOp)

Return vector::CombiningKind for the given op.

Definition at line 363 of file Vectorization.cpp.

Referenced by buildMultiDimReduce(), and reductionPreconditions().

◆ getConstantUpperBoundForIndex()

FailureOr< int64_t > mlir::linalg::getConstantUpperBoundForIndex ( Value  value)

Returns a constant upper bound for the result value of an index computation.

Calls getUpperBoundForIndex and returns a constant upper bound if the result of boundMap is a constant expression and failure otherwise.

Example:

%0 = affine.min affine.map<(d0) -> (40, d0)> (%d0)
%1 = affine.apply affine.map<(d0) -> (d0 + 2)> (%0)

getConstantUpperBoundForIndex(%1) returns 42 (boundsMap = affine.map<() -> (42)>)

Definition at line 329 of file Utils.cpp.

References mlir::failure(), mlir::AffineMap::getResults(), and getUpperBoundForIndex().

Referenced by padOperandToSmallestStaticBoundingBox(), and promoteSubviewAsNewBuffer().

◆ getDynOperands()

SmallVector< Value, 4 > mlir::linalg::getDynOperands ( Location  loc,
Value  val,
OpBuilder b 
)

Given an operation, retrieves the value of each dynamic dimension through constructing the necessary DimOp operators.

Definition at line 219 of file Utils.cpp.

References mlir::Type::cast(), createOrFoldDimOp(), mlir::detail::enumerate(), and mlir::Value::getType().

Referenced by getOrCreateOperandsMatchingResultTypes().

◆ getLinalgTilingCanonicalizationPatterns()

RewritePatternSet mlir::linalg::getLinalgTilingCanonicalizationPatterns ( MLIRContext ctx)

Canonicalization patterns relevant to apply after tiling patterns.

These are applied automatically by the tiling pass but need to be applied manually when tiling is called programmatically.

Definition at line 964 of file Tiling.cpp.

References populateLinalgTilingCanonicalizationPatterns().

◆ getNeutralElement()

std::optional< Attribute > mlir::linalg::getNeutralElement ( Operation op)

Return the identity numeric value associated to the give op.

Return std::nullopt if there is no known neutral element.

Definition at line 1064 of file Utils.cpp.

References mlir::Type::dyn_cast(), mlir::Operation::getContext(), mlir::Builder::getFloatAttr(), mlir::Builder::getIntegerAttr(), mlir::Operation::getResult(), mlir::Value::getType(), getZero(), max(), and min().

Referenced by splitReduction(), and splitReductionByScaling().

◆ getPrunedAttributeList()

template<typename OpTy >
SmallVector<NamedAttribute> mlir::linalg::getPrunedAttributeList ( OpTy  op)

Returns an attribute list that excludes pre-defined attributes.

Definition at line 494 of file Utils.h.

Referenced by matchAndReplaceDepthwiseConv().

◆ getReassociationMapForFoldingUnitDims()

std::optional< SmallVector< ReassociationIndices > > mlir::linalg::getReassociationMapForFoldingUnitDims ( ArrayRef< OpFoldResult mixedSizes)

Get the reassociation maps to fold the result of a extract_slice (or source of a insert_slice) operation with given offsets, and sizes to its rank-reduced version.

This is only done for the cases where the size is 1 and offset is 0. Strictly speaking the offset 0 is not required in general, but non-zero offsets are not handled by SPIR-V backend at this point (and potentially cannot be handled).

Definition at line 1042 of file Utils.cpp.

References mlir::detail::enumerate().

◆ getTensorOutputTypes()

SmallVector< Type > mlir::linalg::getTensorOutputTypes ( LinalgOp  op,
ValueRange  operands 
)

Returns the list of tensor output types produced when the given structured operation op is applied to the given operands.

Note that operands are not necessarily the actual operands of op.

Definition at line 896 of file Utils.cpp.

Referenced by tileLinalgOpImpl().

◆ getUpperBoundForIndex()

void mlir::linalg::getUpperBoundForIndex ( Value  value,
AffineMap boundMap,
SmallVectorImpl< Value > &  boundOperands,
bool  constantRequired = false 
)

Computes an upper bound for the result value of an index computation.

Translates AffineMinOps and AffineApplyOps along the use-def chains of the index computation to affine constraints and projects out intermediate values. The method sets boundMap to an affine map that given boundOperands evaluates to an upper bound for the index computation.

If constantRequired is true, only returns the constant bounds (potentially over-approximating) and fails when not possible.

Example:

%dim0 = dim %tensor, %c0
%dim1 = dim %tensor, %c1
%0 = affine.min affine.map<(d0) -> (40, d0)> (%dim0)
%1 = affine.apply affine.map<(d0, d1) -> (d0 + d1)> (%0, %dim1)

getUpperBoundForIndex(%1, boundMap, boundOperands) set the output parameters to:

  • boundMap = affine.map<(d0) -> (d0 + 40)>
  • boundOperands = [dim1]

Definition at line 229 of file Utils.cpp.

References mlir::FlatAffineValueConstraints::addBound(), mlir::FlatAffineValueConstraints::appendDimVar(), mlir::canonicalizeMapAndOperands(), mlir::FlatAffineValueConstraints::computeAlignedMap(), mlir::FlatAffineValueConstraints::containsVar(), mlir::presburger::IntegerRelation::EQ, mlir::failed(), mlir::FlatAffineValueConstraints::findVar(), mlir::FlatAffineValueConstraints::getAllValues(), mlir::getBackwardSlice(), mlir::presburger::IntegerRelation::getConstantBound64(), mlir::AffineMap::getConstantMap(), mlir::Value::getContext(), mlir::Value::getDefiningOp(), mlir::AffineMap::getMultiDimIdentityMap(), mlir::presburger::IntegerRelation::getNumDimVars(), mlir::Operation::getOperands(), mlir::Operation::getResults(), mlir::FlatAffineValueConstraints::getSliceBounds(), mlir::Value::getType(), mlir::Type::isIndex(), and mlir::presburger::IntegerRelation::UB.

Referenced by getConstantUpperBoundForIndex(), and HoistingAnalysis::getPackedTensorSizes().

◆ hasOnlyScalarElementwiseOp()

bool mlir::linalg::hasOnlyScalarElementwiseOp ( Region r)

Detect whether r has only ConstantOp, ElementwiseMappable and YieldOp.

Definition at line 162 of file Utils.cpp.

References mlir::Region::front(), and mlir::OpTrait::hasElementwiseMappableTraits().

Referenced by isElementwise().

◆ hoistPaddingOnTensors()

FailureOr< Value > mlir::linalg::hoistPaddingOnTensors ( tensor::PadOp  opToHoist,
int  numLoops,
ArrayRef< int64_t >  transposeVector,
tensor::PadOp &  hoistedOp,
SmallVectorImpl< GenericOp > &  transposeOps 
)

Mechanically hoist padding operations on tensors by numLoops into a new, generally larger tensor.

This achieves packing of multiple padding ops into a larger tensor. On success, opToHoist is replaced by the cloned version in the packing loop so the caller can continue reasoning about the padding operation. If transposeVector is non-empty, hoist padding introduces a GenericOp to transpose the padded tensor before inserting it into the packed tensor. A transposeVector can change the storage order of the padded tensor but does not change the order of the pack or compute loops.

Example in pseudo-mlir:

If hoistPaddingOnTensors is called with nLoops = 2 on the following IR.

scf.for (%i, %j, %k)
%st0 = tensor.extract_slice f(%i, %k) : ... to tensor<?x?xf32>
%0 = tensor.pad %st0 low[0, 0] high[...] {
^bb0( ... ):
linalg.yield %pad
} : tensor<?x?xf32> to tensor<4x8xf32>
compute(%0)
Eliminates variable at the specified position using Fourier-Motzkin variable elimination.

IR resembling the following is produced:

scf.for (%i) {
%packed_init = tensor.empty range(%j) : tensor<?x4x8xf32>
%packed = scf.for (%k) iter_args(%p : %packed_init) {
%st0 = tensor.extract_slice f(%i, %k) : ... to tensor<?x?xf32>
%0 = tensor.pad %st0 low[0, 0] high[...] {
^bb0( ... ):
linalg.yield %pad
} : tensor<?x?xf32> to tensor<4x8xf32>
%1 = tensor.insert_slice %0 ...
: tensor<4x8xf32> to tensor<?x4x8xf32>
scf.yield %1: tensor<?x4x8xf32>
} -> tensor<?x4x8xf32>
scf.for (%j, %k) {
%st0 = tensor.extract_slice %packed [%k, 0, 0][1, 4, 8][1, 1, 1] :
tensor<?x4x8xf32> to tensor<4x8xf32>
compute(%st0)
}
}

Definition at line 397 of file HoistPadding.cpp.

References HoistingAnalysis::backwardSlice, buildLoopIterationCount(), mlir::OpBuilder::clone(), computeTransposedType(), mlir::ImplicitLocOpBuilder::create(), DBGS, mlir::failed(), mlir::failure(), mlir::scf::getForInductionVarOwner(), mlir::Builder::getIndexAttr(), HoistingAnalysis::getPackedTensorSizes(), HoistingAnalysis::isValid(), mlir::IRMapping::lookup(), mlir::IRMapping::lookupOrDefault(), makeTransposeOp(), mlir::IRMapping::map(), HoistingAnalysis::outermostEnclosingForOp, HoistingAnalysis::packingLoops, mlir::OpBuilder::setInsertionPoint(), mlir::OpBuilder::setInsertionPointToEnd(), and mlir::OpBuilder::setInsertionPointToStart().

Referenced by mlir::linalg::LinalgPaddingPattern::returningMatchAndRewrite().

◆ hoistRedundantVectorTransfers()

void mlir::linalg::hoistRedundantVectorTransfers ( func::FuncOp  func)

Hoist vector.transfer_read/vector.transfer_write on buffers pairs out of immediately enclosing scf::ForOp iteratively, if the following conditions are true:

  1. The two ops access the same memref with the same indices.
  2. All operands are invariant under the enclosing scf::ForOp.
  3. No uses of the memref either dominate the transfer_read or are dominated by the transfer_write (i.e. no aliasing between the write and the read across the loop) To improve hoisting opportunities, call the moveLoopInvariantCode helper function on the candidate loop above which to hoist. Hoisting the transfers results in scf::ForOp yielding the value that originally transited through memory.

Definition at line 416 of file Hoisting.cpp.

References mlir::WalkResult::advance(), DBGS, mlir::getForwardSlice(), mlir::WalkResult::interrupt(), mlir::vector::isDisjointTransferSet(), mlir::moveLoopInvariantCode(), mlir::DominanceInfo::properlyDominates(), mlir::replaceForOpWithNewYields(), and mlir::replaceLoopWithNewYields().

◆ hoistRedundantVectorTransfersOnTensor()

void mlir::linalg::hoistRedundantVectorTransfersOnTensor ( func::FuncOp  func)

◆ insertSlicesBack()

SmallVector< Value > mlir::linalg::insertSlicesBack ( OpBuilder builder,
Location  loc,
LinalgOp  op,
ValueRange  operands,
ValueRange  results 
)

Creates insert_slice ops that insert results back into larger tensors they were originally extracted from with extract_slice before being passed as operands to the given structured operation op or its clone.

Note that operands are not necessarily the actual operands of op, the operation serves only as metadata container for operand types and positions.

Definition at line 905 of file Utils.cpp.

References mlir::OpBuilder::create(), and mlir::Value::getDefiningOp().

Referenced by tileLinalgOpImpl().

◆ interchangeGenericOp()

FailureOr< GenericOp > mlir::linalg::interchangeGenericOp ( RewriterBase rewriter,
GenericOp  genericOp,
ArrayRef< unsigned >  interchangeVector 
)

Interchange the iterator_types and iterator_maps dimensions and adapts the index accesses of op.

This is an in-place transformation controlled by interchangeVector. An empty vector is interpreted as the identity permutation and the transformation returns early.

E.g. the permutation (i,j,k) -> (j,k,i) is expressed with interchangeVector = [1,2,0]. All values in interchangeVector must be integers, in the range 0..op.rank without duplications (i.e. [1,1,2] is an invalid permutation).

Return failure if the permutation is not valid.

Definition at line 51 of file Interchange.cpp.

References mlir::applyPermutationToVector(), mlir::AffineMap::compose(), mlir::failed(), mlir::RewriterBase::finalizeRootUpdate(), mlir::Builder::getAffineMapArrayAttr(), mlir::Builder::getArrayAttr(), mlir::AffineMap::getPermutationMap(), mlir::AffineMap::getSubMap(), interchangeGenericOpPrecondition(), mlir::inversePermutation(), mlir::AffineMap::isEmpty(), mlir::RewriterBase::notifyMatchFailure(), mlir::RewriterBase::replaceOpWithNewOp(), mlir::OpBuilder::setInsertionPoint(), and mlir::RewriterBase::startRootUpdate().

Referenced by packGemmGreedily().

◆ isaContractionOpInterface()

bool mlir::linalg::isaContractionOpInterface ( LinalgOp  linalgOp)

Checks whether linalgOp conforms to ContractionOpInterface.

Definition at line 145 of file LinalgInterfaces.cpp.

References isContractionInterfaceImpl(), and Success.

◆ isElementwise()

bool mlir::linalg::isElementwise ( LinalgOp  op)

Check if a LinalgOp is an element-wise operation.

Definition at line 176 of file Utils.cpp.

References allIndexingsAreProjectedPermutation(), and hasOnlyScalarElementwiseOp().

Referenced by vectorizeLinalgOpPrecondition().

◆ isFusableInto()

bool mlir::linalg::isFusableInto ( const LinalgDependenceGraph graph,
LinalgOp  consumer,
Value  consumedView,
LinalgOp  producer 
)

Checks whether fusing the specific producer of the consumedView is feasible.

This checks producer is the last write of consumedView and that no interleaved dependence would be violated (RAW, WAR or WAW).

Definition at line 254 of file Fusion.cpp.

References mlir::linalg::LinalgDependenceGraph::findCoveringDependences(), and isProducerLastWriteOfView().

Referenced by findFusableProducer().

◆ isParallelIterator()

bool mlir::linalg::isParallelIterator ( utils::IteratorType  iteratorType)

Check if iterator type has "parallel" semantics.

Definition at line 191 of file Utils.cpp.

Referenced by generateParallelLoopNest(), getCollapsableIterationSpaceDims(), isFusableWithReshapeByDimExpansion(), and tileLinalgOpImpl().

◆ isProducerLastWriteOfView()

bool mlir::linalg::isProducerLastWriteOfView ( const LinalgDependenceGraph graph,
LinalgOp  consumer,
Value  consumedView,
LinalgOp  producer 
)

Checks whether the specific producer is the last write to exactly the whole consumedView.

This checks structural dominance, that the dependence is a RAW without any interleaved write to any piece of consumedView.

Definition at line 230 of file Fusion.cpp.

References mlir::linalg::LinalgDependenceGraph::findCoveringWrites(), and isStructurallyFusableProducer().

Referenced by isFusableInto().

◆ isReductionIterator()

bool mlir::linalg::isReductionIterator ( utils::IteratorType  iteratorType)

Check if iterator type has "reduction" semantics.

Definition at line 195 of file Utils.cpp.

Referenced by getCollapsableIterationSpaceDims(), getDimsToReduce(), isAdmissibleTensorExp(), reductionPreconditions(), and topSortOptimal().

◆ linalgOpToAffineLoops()

FailureOr< LinalgLoops > mlir::linalg::linalgOpToAffineLoops ( PatternRewriter rewriter,
LinalgOp  linalgOp 
)

Emit a loop nest of affine.for with the proper body for linalgOp.

Emits a loop nest of affine.for with the proper body for linalgOp.

Definition at line 368 of file Loops.cpp.

◆ linalgOpToLoops()

FailureOr< LinalgLoops > mlir::linalg::linalgOpToLoops ( PatternRewriter rewriter,
LinalgOp  linalgOp 
)

Emit a loop nest of scf.for with the proper body for linalgOp.

Emits a loop nest of scf.for with the proper body for linalgOp.

Definition at line 374 of file Loops.cpp.

◆ linalgOpToParallelLoops()

FailureOr< LinalgLoops > mlir::linalg::linalgOpToParallelLoops ( PatternRewriter rewriter,
LinalgOp  linalgOp 
)

Emit a loop nest of scf.parallel with the proper body for linalgOp.

Emits a loop nest of scf.parallel with the proper body for linalgOp.

Definition at line 381 of file Loops.cpp.

◆ makeAffineDimExprs()

SmallVector< AffineExpr, 4 > mlir::linalg::makeAffineDimExprs ( unsigned  num,
unsigned &  startIdx,
MLIRContext context 
)

Returns num AffineDimExpr dimensions at positions [startIdx, startIdx + num) and increments startIdx to startIdx + num.

Definition at line 1781 of file LinalgOps.cpp.

References mlir::getAffineDimExpr().

◆ makeComposedPadHighOp()

Value mlir::linalg::makeComposedPadHighOp ( OpBuilder b,
Location  loc,
RankedTensorType  type,
Value  source,
Value  pad,
bool  nofold 
)

Create a tensor::PadOp that pads source to the size of the statically sized type whose static sizes are assumed to be greater than the dynamic source size.

The padding introduces trailing pad values until the target size is met. If source is defined by one or more LinalgOps that have been padded with the same value and sizes, return their padded result instead of creating a tensor::PadOp.

Example:

%0 = tensor.extract_slice %arg0 [%iv0, %iv1] [%sz0, %sz1]
%1 = tensor.pad %0 low[0, 0] high[...] { tensor.yield %cst }
%2 = linalg.matmul ins(...) outs(%1)
%3 = tensor.extract_slice %2 [0, 0] [%sz0, %sz1]

makeComposedPadHighOp(source=%3, pad=cst) returns %2 makeComposedPadHighOp(source=%3, pad=other_cst) returns %4

%4 = tensor.pad %3 low[0, 0] high[...] { tensor.yield %other_cst }

Definition at line 348 of file Utils.cpp.

References mlir::Value::cast(), mlir::tensor::createPadHighOp(), mlir::Value::getDefiningOp(), mlir::OpResult::getResultNumber(), mlir::m_Constant(), and mlir::matchPattern().

Referenced by padOperandToSmallestStaticBoundingBox().

◆ makeMemRefCopyOp()

GenericOp mlir::linalg::makeMemRefCopyOp ( OpBuilder b,
Location  loc,
Value  from,
Value  to 
)

Returns GenericOp that copies an n-D memref.

Unlike the current implementation of memref::CopyOp, this op can further tile, lower to loops or vectorize.

Definition at line 445 of file Utils.cpp.

References mlir::Type::cast(), mlir::OpBuilder::create(), mlir::Builder::getContext(), mlir::AffineMap::getMultiDimIdentityMap(), and mlir::Value::getType().

◆ makeTiledLoopRanges()

std::tuple< SmallVector< Range, 4 >, LoopIndexToRangeIndexMap > mlir::linalg::makeTiledLoopRanges ( RewriterBase b,
Location  loc,
AffineMap  map,
ArrayRef< OpFoldResult allShapeSizes,
ArrayRef< OpFoldResult allTileSizes 
)

◆ makeTiledShape()

Value mlir::linalg::makeTiledShape ( OpBuilder builder,
Location  loc,
Value  valueToTile,
ArrayRef< OpFoldResult tileSizes,
AffineMap  map,
ArrayRef< OpFoldResult lbs,
ArrayRef< OpFoldResult ubs,
ArrayRef< OpFoldResult subShapeSizes,
bool  omitPartialTileCheck 
)

Creates an extract_slice/subview op for a single valueToTile with builder.

This new operation extracts a tile of valueToTile, starting at offsets lbs and with sizes subShapeSizes. omitPartialTileCheck controls whether to omit the partial/boundary tile condition check in cases where we statically know that it is unnecessary.

Definition at line 747 of file Utils.cpp.

References computeSliceParameters(), and materializeTiledShape().

Referenced by tilePadOp().

◆ makeTiledShapes()

SmallVector< Value > mlir::linalg::makeTiledShapes ( OpBuilder builder,
Location  loc,
LinalgOp  linalgOp,
ValueRange  valuesToTile,
ArrayRef< OpFoldResult ivs,
ArrayRef< OpFoldResult tileSizes,
ArrayRef< OpFoldResult sizeBounds,
bool  omitPartialTileCheck 
)

Creates extract_slice/subview ops for all valuesToTile of the given linalgOp with builder, assuming linalgOp is being fused into a loop nest for tiling with the given induction variables ivs and tile sizes tileSizes.

sizeBounds are the iteration space bounds for all the implicit loops in linalgOp. omitPartialTileCheck controls whether to omit the partial/boundary tile condition check in cases where we statically know that it is unnecessary.

Note that a constant zero in tileSizes means no tiling at that implicit loop. The number of non-zero values in tileSizes should be equal to the number of values in ivs.

Definition at line 985 of file Utils.cpp.

References computeAllSliceParameters(), and materializeTiledShape().

Referenced by fuse(), getTiledProducer(), and tileLinalgOpImpl().

◆ makeTransposeOp()

GenericOp mlir::linalg::makeTransposeOp ( OpBuilder b,
Location  loc,
Value  inputTensor,
Value  outputTensor,
ArrayRef< int64_t >  transposeVector 
)

◆ materializeTiledShape()

static Value mlir::linalg::materializeTiledShape ( OpBuilder builder,
Location  loc,
Value  valueToTile,
const SliceParameters sliceParams 
)
static

◆ offsetIndices() [1/2]

void mlir::linalg::offsetIndices ( OpBuilder b,
LinalgOp  linalgOp,
ArrayRef< OpFoldResult offests 
)

Add the specified offsets to any linalg.index ops contained in the given linalgOp.

The offsets are provided in the same order as iteration space dimensions. Null offests are assumed to be zero.

Definition at line 1006 of file Utils.cpp.

Referenced by fuse(), getTiledProducer(), and transformIndexOps().

◆ offsetIndices() [2/2]

void mlir::linalg::offsetIndices ( RewriterBase b,
LinalgOp  linalgOp,
ArrayRef< OpFoldResult offests 
)

◆ pack()

FailureOr< linalg::LinalgOp > mlir::linalg::pack ( RewriterBase rewriter,
linalg::LinalgOp  linalgOp,
ArrayRef< OpFoldResult packedSizes 
)

Implement packing of a single LinalgOp by packedSizes.

Implement packing of a single LinalgOp by performing packing by packedSizes.

There must be one packedSizes entry per linalgOp iterator. Return the packed Linalg op on success, failure otherwise.

Definition at line 1056 of file Transforms.cpp.

References mlir::OpBuilder::create(), DBGS, DBGSNL, mlir::failed(), mlir::failure(), mlir::getConstantIntValue(), mlir::getElementTypeOrSelf(), mlir::Operation::getRegion(), mlir::Value::getType(), mlir::ValueRange::getTypes(), mlir::Builder::getZeroAttr(), mlir::RewriterBase::notifyMatchFailure(), packLinalgMetadataOnce(), mlir::RewriterBase::replaceOp(), and mlir::Region::takeBody().

Referenced by packGemmGreedily().

◆ packTranspose()

FailureOr< PackTransposeResult > mlir::linalg::packTranspose ( RewriterBase rewriter,
tensor::PackOp  packOp,
linalg::LinalgOp  linalgOp,
tensor::UnPackOp  maybeUnPackOp,
ArrayRef< int64_t >  outerPerm,
ArrayRef< int64_t >  innerPerm 
)

Transpose a single PackOp -> LinalgOp -> UnPackOp chain and return the transposed PackOp -> LinalgOp -> UnPackOp chain after replacements.

Return failure if either:

  1. the packOp does not have the linalgOp as its unique use.
  2. the maybeUnPackOp, if specified must be a consumer of the result tied to the unique packOp use.
  3. outerPerm (resp. innerPerm) must be valid permutations of packOp.getOuterDimsPerm (resp. packOp.getInnerDimsPerm) or empty.

Definition at line 1231 of file Transforms.cpp.

References mlir::OpOperand::getOperandNumber(), mlir::detail::IROperandBase::getOwner(), mlir::isPermutationVector(), mlir::RewriterBase::notifyMatchFailure(), mlir::RewriterBase::replaceOp(), mlir::OpBuilder::setInsertionPoint(), and transposeOneLinalgOperandAndReplace().

◆ peelLoop()

SmallVector< Value > mlir::linalg::peelLoop ( RewriterBase rewriter,
Operation op 
)

Try to peel and canonicalize loop op and return the new result.

Try to peel a loop op and return the new result.

Definition at line 224 of file Transforms.cpp.

References mlir::Operation::getResults(), mlir::scf::peelAndCanonicalizeForLoop(), and mlir::succeeded().

Referenced by peelLoops().

◆ peelLoops()

void mlir::linalg::peelLoops ( RewriterBase rewriter,
ArrayRef< scf::ForOp >  loops 
)

Peel and canonicalize 'loops'.

Definition at line 239 of file Transforms.cpp.

References peelLoop().

◆ populateBubbleUpExtractSliceOpPatterns()

void mlir::linalg::populateBubbleUpExtractSliceOpPatterns ( RewritePatternSet patterns)

Patterns that are used to bubble up extract slice op above linalg op.

Definition at line 134 of file BubbleUpExtractSlice.cpp.

References mlir::RewritePatternSet::add(), and mlir::RewritePatternSet::getContext().

◆ populateCollapseDimensions()

void mlir::linalg::populateCollapseDimensions ( RewritePatternSet patterns,
const GetCollapsableDimensionsFn controlCollapseDimensions 
)

Pattern to collapse dimensions in a linalg.generic op.

This will collapse tensor operands when needed and expand back the result tensors.

Definition at line 1819 of file ElementwiseOpFusion.cpp.

References mlir::RewritePatternSet::add(), and mlir::RewritePatternSet::getContext().

◆ populateConstantFoldLinalgOperations()

void mlir::linalg::populateConstantFoldLinalgOperations ( RewritePatternSet patterns,
const ControlFusionFn controlFn 
)

Patterns to constant fold Linalg operations.

Definition at line 304 of file ConstantFold.cpp.

References mlir::RewritePatternSet::getContext(), and mlir::RewritePatternSet::insert().

◆ populateConvertToDestinationStylePatterns()

void mlir::linalg::populateConvertToDestinationStylePatterns ( RewritePatternSet patterns)

Populate patterns that convert non-destination-style ops to destination style ops.

Definition at line 237 of file ConvertToDestinationStyle.cpp.

References mlir::RewritePatternSet::getContext(), and mlir::RewritePatternSet::insert().

◆ populateConvolutionVectorizationPatterns()

void mlir::linalg::populateConvolutionVectorizationPatterns ( RewritePatternSet patterns,
PatternBenefit  benefit = 1 
)

Populate patterns for vectorizing low-D convolution ops.

This is a step in progressive lowering for convolution ops, it assume high-D convolution ops were decomposed previously.

Definition at line 2494 of file Vectorization.cpp.

References mlir::RewritePatternSet::add(), and mlir::RewritePatternSet::getContext().

◆ populateDataLayoutPropagationPatterns()

void mlir::linalg::populateDataLayoutPropagationPatterns ( RewritePatternSet patterns)

Patterns to bubble up or down data layout ops across other operations.

Definition at line 333 of file DataLayoutPropagation.cpp.

References mlir::RewritePatternSet::getContext(), and mlir::RewritePatternSet::insert().

◆ populateDecomposeConvolutionPatterns()

void mlir::linalg::populateDecomposeConvolutionPatterns ( RewritePatternSet patterns,
PatternBenefit  benefit = 1 
)

Linalg decompose convolutions patterns.

Populates patterns to decompose high-D convolution ops into low-D ones. This is a step in progressive lowering for convolution ops, afterwards we can vectorize the low-D convolution ops.

Definition at line 871 of file Transforms.cpp.

References mlir::RewritePatternSet::add(), and mlir::RewritePatternSet::getContext().

◆ populateDecomposeLinalgOpsPattern()

void mlir::linalg::populateDecomposeLinalgOpsPattern ( RewritePatternSet patterns,
bool  removeDeadArgsAndResults = true 
)

Populate patterns for splitting a LinalgOp with multiple statements within its payload into multiple GenericOp that have a single statement.

The option removeDeadArgsAndResults adds patterns to remove dead arguments and results from the generated decomposed ops. This is default true since the core decomposition patterns relies on these clean up patterns. It is set to false only for testing purposes.

Definition at line 379 of file DecomposeLinalgOps.cpp.

References mlir::RewritePatternSet::getContext(), mlir::RewritePatternSet::insert(), and populateEraseUnusedOperandsAndResultsPatterns().

◆ populateElementwiseOpsFusionPatterns()

void mlir::linalg::populateElementwiseOpsFusionPatterns ( RewritePatternSet patterns,
const ControlFusionFn controlElementwiseOpFusion 
)

Patterns for fusing linalg operation on tensors.

Pattern to fuse linalg.generic -> linalg.generic operations when both operations are fusable elementwise operations.

Definition at line 1808 of file ElementwiseOpFusion.cpp.

References mlir::RewritePatternSet::add(), mlir::RewritePatternSet::getContext(), and populateEraseUnusedOperandsAndResultsPatterns().

◆ populateElementwiseToLinalgConversionPatterns()

void mlir::linalg::populateElementwiseToLinalgConversionPatterns ( RewritePatternSet patterns)

Populate patterns that convert ElementwiseMappable ops to linalg parallel loops.

Definition at line 120 of file ElementwiseToLinalg.cpp.

References mlir::RewritePatternSet::add(), and mlir::RewritePatternSet::getContext().

◆ populateEraseUnnecessaryInputsPatterns()

void mlir::linalg::populateEraseUnnecessaryInputsPatterns ( RewritePatternSet patterns)

Patterns to promote inputs to outputs and remove unused inputs of linalg.generic ops.

Definition at line 421 of file EraseUnusedOperandsAndResults.cpp.

References mlir::RewritePatternSet::getContext(), and mlir::RewritePatternSet::insert().

◆ populateEraseUnusedOperandsAndResultsPatterns()

void mlir::linalg::populateEraseUnusedOperandsAndResultsPatterns ( RewritePatternSet patterns)

Pattern to remove dead operands and results of linalg.generic operations.

This is effectively DCE for a linalg op.

Definition at line 414 of file EraseUnusedOperandsAndResults.cpp.

References mlir::RewritePatternSet::getContext(), and mlir::RewritePatternSet::insert().

Referenced by populateDecomposeLinalgOpsPattern(), and populateElementwiseOpsFusionPatterns().

◆ populateExtractOpVectorizationPatterns()

void mlir::linalg::populateExtractOpVectorizationPatterns ( RewritePatternSet patterns,
PatternBenefit  baseBenefit = 1 
)

◆ populateFoldReshapeOpsByCollapsingPatterns()

void mlir::linalg::populateFoldReshapeOpsByCollapsingPatterns ( RewritePatternSet patterns,
const ControlFusionFn controlFoldingReshapes 
)

Patterns to fold an expanding tensor.expand_shape operation with its producer generic operation by collapsing the dimensions of the generic op.

Definition at line 1801 of file ElementwiseOpFusion.cpp.

References mlir::RewritePatternSet::add(), and mlir::RewritePatternSet::getContext().

◆ populateFoldReshapeOpsByExpansionPatterns()

void mlir::linalg::populateFoldReshapeOpsByExpansionPatterns ( RewritePatternSet patterns,
const ControlFusionFn controlFoldingReshapes 
)

Patterns to fold an expanding (collapsing) tensor_reshape operation with its producer (consumer) generic operation by expanding the dimensionality of the loop in the generic op.

Definition at line 1792 of file ElementwiseOpFusion.cpp.

References mlir::RewritePatternSet::add(), and mlir::RewritePatternSet::getContext().

◆ populateFoldUnitExtentDimsViaReshapesPatterns()

void mlir::linalg::populateFoldUnitExtentDimsViaReshapesPatterns ( RewritePatternSet patterns)

Patterns to fold unit-extent dimensions in operands/results of linalg ops on tensors via reassociative reshape ops.

Patterns that are used to canonicalize the use of unit-extent dims for broadcasting.

Definition at line 664 of file DropUnitDims.cpp.

References mlir::RewritePatternSet::add(), mlir::RewritePatternSet::getContext(), mlir::tensor::populateFoldTensorEmptyPatterns(), mlir::memref::populateResolveRankedShapeTypeResultDimsPatterns(), and mlir::memref::populateResolveShapedTypeResultDimsPatterns().

◆ populateFoldUnitExtentDimsViaSlicesPatterns()

void mlir::linalg::populateFoldUnitExtentDimsViaSlicesPatterns ( RewritePatternSet patterns)

◆ populateFuseTensorPadWithProducerLinalgOpPatterns()

void mlir::linalg::populateFuseTensorPadWithProducerLinalgOpPatterns ( RewritePatternSet patterns)

Pattern to fuse a tensor.pad operation with the producer of its source, if the producer is a linalg operation with all parallel iterator types.

Definition at line 124 of file FusePadOpWithLinalgProducer.cpp.

References mlir::RewritePatternSet::add(), and mlir::RewritePatternSet::getContext().

◆ populateInlineConstantOperandsPatterns()

void mlir::linalg::populateInlineConstantOperandsPatterns ( RewritePatternSet patterns)

Patterns that are used to inline constant operands into linalg generic ops.

Definition at line 94 of file InlineScalarOperands.cpp.

References mlir::RewritePatternSet::add(), and mlir::RewritePatternSet::getContext().

◆ populateLinalgNamedOpConversionPatterns()

void mlir::linalg::populateLinalgNamedOpConversionPatterns ( RewritePatternSet patterns)

Patterns to convert from one named op to another.

These can be seen as canonicalizations of named ops into another named op.

Definition at line 160 of file NamedOpConversions.cpp.

References mlir::RewritePatternSet::add(), and mlir::RewritePatternSet::getContext().

◆ populateLinalgNamedOpsGeneralizationPatterns()

void mlir::linalg::populateLinalgNamedOpsGeneralizationPatterns ( RewritePatternSet patterns)

Linalg generalization patterns.

Populates patterns with patterns to convert spec-generated named ops to linalg.generic ops.

Definition at line 88 of file Generalization.cpp.

References mlir::RewritePatternSet::add(), and mlir::RewritePatternSet::getContext().

◆ populateLinalgTilingCanonicalizationPatterns()

void mlir::linalg::populateLinalgTilingCanonicalizationPatterns ( RewritePatternSet patterns)

◆ populateLinalgToStandardConversionPatterns()

void mlir::linalg::populateLinalgToStandardConversionPatterns ( RewritePatternSet patterns)

Populate the given list with patterns that convert from Linalg to Standard.

Definition at line 127 of file LinalgToStandard.cpp.

References mlir::RewritePatternSet::add(), and mlir::RewritePatternSet::getContext().

◆ populateMoveInitOperandsToInputPattern()

void mlir::linalg::populateMoveInitOperandsToInputPattern ( RewritePatternSet patterns)

A pattern that converts init operands to input operands.

Definition at line 697 of file DropUnitDims.cpp.

References mlir::RewritePatternSet::add(), and mlir::RewritePatternSet::getContext().

◆ populatePadOpVectorizationPatterns()

void mlir::linalg::populatePadOpVectorizationPatterns ( RewritePatternSet patterns,
PatternBenefit  baseBenefit = 1 
)

Populates patterns with patterns that vectorize tensor.pad.

These patterns are meant to apply in a complementary fashion. Benefits are used to encode a certain ordering of pattern application. To avoid scattering magic constants throughout the code base, the patterns must be added with this function. baseBenefit can be used to offset the benefit of all tensor::PadOp vectorization patterns by a certain value.

Definition at line 1592 of file Vectorization.cpp.

References mlir::RewritePatternSet::add(), mlir::PatternBenefit::getBenefit(), and mlir::RewritePatternSet::getContext().

◆ populatePadTensorTilingPatterns()

void mlir::linalg::populatePadTensorTilingPatterns ( RewritePatternSet patterns,
const LinalgTilingOptions options 
)

◆ populateSparseTensorRewriting()

void mlir::linalg::populateSparseTensorRewriting ( RewritePatternSet patterns)

Populate patterns that are only useful in the context of sparse tensors.

◆ populateSplitReductionPattern()

void mlir::linalg::populateSplitReductionPattern ( RewritePatternSet patterns,
const ControlSplitReductionFn controlSplitReductionFn,
bool  useAlloc = false 
)

Patterns to apply splitReduction below.

Definition at line 442 of file SplitReduction.cpp.

References mlir::RewritePatternSet::add(), and mlir::RewritePatternSet::getContext().

◆ populateSwapExtractSliceWithFillPatterns()

void mlir::linalg::populateSwapExtractSliceWithFillPatterns ( RewritePatternSet patterns)

Adds patterns that waps tensor.extract_slice(linalg.fill(cst, init)) into linalg.fill(cst, tensor.extract_slice(init)).

Definition at line 38 of file SwapExtractSliceWithFillPatterns.cpp.

References mlir::RewritePatternSet::add(), and mlir::RewritePatternSet::getContext().

◆ promoteSubviewAsNewBuffer()

FailureOr< PromotionInfo > mlir::linalg::promoteSubviewAsNewBuffer ( OpBuilder b,
Location  loc,
memref::SubViewOp  subView,
const AllocBufferCallbackFn allocationFn,
DataLayout layout 
)

◆ promoteSubViews()

FailureOr< LinalgOp > mlir::linalg::promoteSubViews ( OpBuilder b,
LinalgOp  op,
const LinalgPromotionOptions options 
)

Promote the subViews into a new buffer allocated at the insertion point b.

Promotion occurs in 3 steps:

  1. Create a new buffer for a full tile (i.e. not clipped at the boundary).
  2. Take a full view on the buffer.
  3. Take a partial slice of the full view in step 2. and copy into it.

Return the modified linalg op (the modification happens in place) as well as all the copy ops created.

Definition at line 390 of file Promotion.cpp.

References mlir::failed(), mlir::failure(), options, and promoteSubViews().

◆ promoteSubviewsPrecondition()

LogicalResult mlir::linalg::promoteSubviewsPrecondition ( Operation op,
LinalgPromotionOptions  options 
)

Promote memref.subviews feeding linalg-on-buffers operations.

Definition at line 368 of file Promotion.cpp.

References mlir::failure(), options, and mlir::success().

◆ registerBufferizableOpInterfaceExternalModels()

void mlir::linalg::registerBufferizableOpInterfaceExternalModels ( DialectRegistry registry)

◆ registerTilingInterfaceExternalModels()

void mlir::linalg::registerTilingInterfaceExternalModels ( DialectRegistry registry)

◆ registerTransformDialectExtension()

void mlir::linalg::registerTransformDialectExtension ( DialectRegistry registry)

◆ rewriteAsPaddedOp()

FailureOr< SmallVector< Value > > mlir::linalg::rewriteAsPaddedOp ( OpBuilder b,
LinalgOp  opToPad,
ArrayRef< int64_t >  paddingDimensions,
ArrayRef< Attribute paddingValues,
ArrayRef< bool >  packPaddings,
LinalgOp &  paddedOp 
)

Pad the iterator dimensions paddingDimensions of all opToPad operands to a static bounding box.

Use paddingValues and packPaddings to set padding value and nofold attribute of the created tensor::PadOps, respectively. Update paddedOp to the cloned operation with statically shaped paddingDimensions and return the extracted dynamically shaped results. If padding fails, return failure.

Definition at line 166 of file Transforms.cpp.

References mlir::Type::cast(), mlir::clone(), mlir::OpBuilder::create(), mlir::detail::enumerate(), mlir::failed(), mlir::failure(), mlir::getAsOpFoldResult(), mlir::Builder::getIndexAttr(), mlir::Value::getType(), mlir::ValueRange::getTypes(), padOperandToSmallestStaticBoundingBox(), and mlir::OpBuilder::setInsertionPointAfter().

Referenced by mlir::linalg::LinalgPaddingPattern::returningMatchAndRewrite().

◆ splitOp()

std::pair< TilingInterface, TilingInterface > mlir::linalg::splitOp ( RewriterBase rewriter,
TilingInterface  op,
unsigned  dimension,
OpFoldResult  splitPoint 
)

Split the given op into two parts along the given iteration space dimension at the specified splitPoint, and return the two parts.

If the second part is statically known to be empty, do not create it and return nullptr instead. Error state is signalled by returning a pair of nullptrs.

For example, the following op:

linalg.matmul ins(%0, %1 : tensor<128x32xf32>, tensor<32x64xf32>) outs(%2 : tensor<128x64xf32>)

split along the first dimension at position 42 will result in:

%3 = tensor.extract_slice %0[0, 0][42, 32][1, 1] %4 = tensor.extract_slice %2[0, 0][42, 64][1, 1] %5 = linalg.matmul ins(%3, %1 : tensor<42x32xf32>, tensor<32x64xf32>) outs(%5 : tensor<42x64xf32>) %6 = tensor.insert_slice %5 into %2[0, 0][42, 64][1, 1]

%7 = tensor.extract_slice %0[42, 0][86, 32][1, 1] %8 = tensor.extract_slice %6[42, 0][86, 64][1, 1] %9 = linalg.matmul ins(%7, %1 : tensor<86x32xf32>, tensor<32x64xf32>) outs(%8 : tensor<86x64xf32>) tensor.insert_slice %5 into %6[42, 0][86, 64][1, 1]

Note that there is no simplification other than constant propagation applied to slice extraction and insertion.

Definition at line 67 of file Split.cpp.

References mlir::bindDims(), createSplitPart(), mlir::Builder::getContext(), mlir::tensor::getOrCreateDestinations(), mlir::AffineMap::inferFromExprList(), mlir::makeComposedFoldedAffineApply(), mlir::makeComposedFoldedAffineMin(), mlir::Range::offset, mlir::RewriterBase::replaceOp(), mlir::Range::size, mlir::succeeded(), and mlir::RewriterBase::updateRootInPlace().

◆ splitReduction()

FailureOr< SplitReductionResult > mlir::linalg::splitReduction ( PatternRewriter b,
LinalgOp  op,
const ControlSplitReductionFn controlSplitReductionFn,
bool  useAlloc = false 
)

◆ splitReductionByScaling()

FailureOr< SplitReductionResult > mlir::linalg::splitReductionByScaling ( PatternRewriter b,
LinalgOp  op,
const ControlSplitReductionFn controlSplitReductionFn,
bool  useAlloc = false 
)

Scaling-based implementation of the split reduction transformation.

Core rewrite implementation.

Instead of introducing an ExpandShapeOp, this rewrites a reduction dimension k into k * scale + kk.

Example: ``` %0 = linalg.matmul ins(A, B: tensor<16x256xf32>, tensor<256x32xf32>) outs(C: tensor<16x32xf32>) -> tensor<16x32xf32> ```

Is transformed to:

``` #map0 = affine_map<(d0, d1, d2, d3) -> (d0, d2 * 4 + d3)> #map1 = affine_map<(d0, d1, d2, d3) -> (d2 * 4 + d3, d1)> #map2 = affine_map<(d0, d1, d2, d3) -> (d2, d3)> #map3 = affine_map<(d0, d1, d2, d3) -> (d0, d1, d2)> #map4 = affine_map<(d0, d1, d2) -> (d0, d1, d2)> #map5 = affine_map<(d0, d1, d2) -> (d0, d1)> %0 = tensor.empty [16, 32, 64] : tensor<16x32x64xf32> cst = arith.constant 0.000000e+00 : f32 %1 = linalg.fill ins(cst : f32) outs(%0 : tensor<16x32x64xf32>) -> tensor<16x32x64xf32> %2 = tensor.empty [64, 4] : tensor<64x4xi1>

%3 = linalg.generic {indexing_maps = [#map0, #map1, #map2, #map3], iterator_types = ["parallel", "parallel", "parallel", "reduction"]} ins(A, B, %2 : tensor<16x256xf32>, tensor<256x32xf32>, tensor<64x4xi1>) outs(%1 : tensor<16x32x64xf32>) { ^bb0(arg3: f32, arg4: f32, arg5: i1, arg6: f32): %5 = arith.mulf arg3, arg4 : f32 %6 = arith.addf arg6, %5 : f32 linalg.yield %6 : f32 } -> tensor<16x32x64xf32>

%4 = linalg.generic {indexing_maps = [#map4, #map5], iterator_types = ["parallel", "parallel", "reduction"]} */ // ins(%3 : tensor<16x32x64xf32>) /** outs(C : tensor<16x32xf32>) { ^bb0(arg3: f32, arg4: f32): %5 = arith.addf arg3, arg4 : f32 linalg.yield %5 : f32 } -> tensor<16x32xf32>

return %4 : tensor<16x32xf32> ```

Definition at line 236 of file SplitReduction.cpp.

References mlir::Type::cast(), mlir::Operation::clone(), mlir::OpBuilder::create(), mlir::tensor::createDynamicDimValues(), mlir::AffineMap::dropResult(), mlir::AffineMap::get(), mlir::getAffineDimExpr(), mlir::Value::getDefiningOp(), mlir::Builder::getIntegerType(), mlir::Builder::getMultiDimIdentityMap(), getNeutralElement(), mlir::Operation::getResult(), mlir::Value::getType(), mlir::ValueRange::getTypes(), mlir::linalg::SplitReductionOptions::index, mlir::RewriterBase::inlineRegionBefore(), mlir::linalg::SplitReductionOptions::innerParallel, mlir::RankedTensorType::Builder::insertDim(), insertParallelDim(), mlir::matchReduction(), mlir::RewriterBase::notifyMatchFailure(), mlir::linalg::SplitReductionOptions::ratio, mlir::RewriterBase::replaceOp(), scaleReductionDim(), mlir::OpBuilder::setInsertionPoint(), and mlir::Operation::setOperand().

◆ tileLinalgOp()

FailureOr< TiledLinalgOp > mlir::linalg::tileLinalgOp ( RewriterBase b,
LinalgOp  op,
const LinalgTilingOptions options 
)

Definition at line 843 of file Tiling.cpp.

References mlir::failure(), Loops, options, and ParallelLoops.

Referenced by mlir::linalg::TileLoopNest::tileRootOp().

◆ tileReductionUsingForeachThread()

FailureOr< linalg::ForeachThreadReductionTilingResult > mlir::linalg::tileReductionUsingForeachThread ( RewriterBase b,
PartialReductionOpInterface  op,
ArrayRef< OpFoldResult numThreads,
ArrayRef< OpFoldResult tileSizes = {},
std::optional< ArrayAttr >  mapping = std::nullopt 
)

Method to tile a reduction to parallel iterations computing partial reductions.

After the loop all the partial reduction are merged into a final reduction. For example for the following sequence

%0 = linalg.generic %in ["parallel", "reduction"]
: tensor<7x9xf32> -> tensor<7xf32>

into:

%0 = linalg.fill ... : tensor<7x4xf32>
%1 = scf.foreach_thread (%iv) in (%c4) shared_outs(%arg0 = %0)
-> (tensor<7x4xf32>) {
%2 = tensor.extract_slice %arg3 : tensor<7x4xf32> to tensor<7xf32>
%3 = tensor.extract_slice %in : tensor<7x9xf32> -> tensor<7x?xf32>
%4 = linalg.generic %2, %3 ["parallel", "reduction"]
: tensor<7x?xf32> -> tensor<7xf32>
%5 = tensor.insert_slice %3, %arg0[0, %iv] : tensor<7x4xf32>
}
%6 = linalg.generic %1 ["parallel", "reduction"]
: tensor<7x4xf32> -> tensor<7xf32>

Definition at line 611 of file Tiling.cpp.

References calculateTileOffsetsAndSizes(), mlir::Attribute::cast(), mlir::OpBuilder::clone(), mlir::OpBuilder::create(), mlir::RewriterBase::eraseOp(), mlir::failed(), mlir::getAsValues(), mlir::Builder::getIndexAttr(), mlir::tensor::getOrCreateDestinations(), mlir::Operation::getResults(), mlir::linalg::ForeachThreadReductionTilingResult::initialOp, mlir::isConstantIntValue(), mlir::linalg::ForeachThreadReductionTilingResult::loops, mlir::mapLoopToProcessorIds(), mlir::linalg::ForeachThreadReductionTilingResult::mergeOp, mlir::RewriterBase::notifyMatchFailure(), options, mlir::linalg::ForeachThreadReductionTilingResult::parallelTiledOp, mlir::RewriterBase::replaceOp(), mlir::OpBuilder::setInsertionPoint(), mlir::OpBuilder::setInsertionPointAfter(), mlir::OpBuilder::setInsertionPointToEnd(), and mlir::RewriterBase::updateRootInPlace().

◆ tileToForeachThreadOp()

FailureOr< ForeachThreadTilingResult > mlir::linalg::tileToForeachThreadOp ( RewriterBase builder,
TilingInterface  op,
ArrayRef< OpFoldResult numThreads,
std::optional< ArrayAttr >  mapping 
)

Definition at line 426 of file Tiling.cpp.

References tileToForeachThreadOpImpl().

Referenced by mlir::transform::tileToForeachThreadOpImpl().

◆ tileToForeachThreadOpUsingTileSizes()

FailureOr< ForeachThreadTilingResult > mlir::linalg::tileToForeachThreadOpUsingTileSizes ( RewriterBase builder,
TilingInterface  op,
ArrayRef< OpFoldResult tileSizes,
std::optional< ArrayAttr >  mapping 
)

Same as tileToForeachThreadOp, but calculate the number of threads required using the given tileSizes.

Definition at line 435 of file Tiling.cpp.

References mlir::bindSymbols(), mlir::AffineExpr::ceilDiv(), mlir::Builder::getContext(), mlir::isConstantIntValue(), mlir::makeComposedFoldedAffineApply(), and tileToForeachThreadOpImpl().

Referenced by mlir::transform::tileToForeachThreadOpImpl().

◆ transformIndexOps()

void mlir::linalg::transformIndexOps ( RewriterBase b,
LinalgOp  op,
SmallVectorImpl< Value > &  ivs,
const LoopIndexToRangeIndexMap loopIndexToRangeIndex 
)

All indices returned by IndexOp should be invariant with respect to tiling.

Therefore, if an operation is tiled, we have to transform the indices accordingly, i.e. offset them by the values of the corresponding induction variables that are captured implicitly in the body of the op.

Example. linalg.generic before tiling:

#id_2d = (i, j) -> (i, j) #pointwise_2d_trait = { indexing_maps = [#id_2d, #id_2d], iterator_types = ["parallel", "parallel"] } linalg.generic #pointwise_2d_trait operand, result { ^bb0(operand_in: f32, result_in: f32): i = linalg.index 0 : index j = linalg.index 1 : index <some operations that use i, j> }: memref<50x100xf32>, memref<50x100xf32>

After tiling pass with tiles sizes 10 and 25:

#strided = (i, j)[s0, s1, s2] -> (i * s1 + s0 + j * s2)

c1 = arith.constant 1 : index c0 = arith.constant 0 : index c25 = arith.constant 25 : index c10 = arith.constant 10 : index operand_dim_0 = dim operand, 0 : memref<50x100xf32> operand_dim_1 = dim operand, 1 : memref<50x100xf32> scf.for k = c0 to operand_dim_0 step c10 { scf.for l = c0 to operand_dim_1 step c25 { %4 = memref.subview operand[k, l][c10, c25][c1, c1] : memref<50x100xf32> to memref<?x?xf32, #strided> %5 = memref.subview result[k, l][c10, c25][c1, c1] : memref<50x100xf32> to memref<?x?xf32, #strided> linalg.generic pointwise_2d_trait %4, %5 { ^bb0(operand_in: f32, result_in: f32): i = linalg.index 0 : index j = linalg.index 1 : index // Indices k and l are implicitly captured in the body. transformed_i = arith.addi i, k : index // index i is offset by k transformed_j = arith.addi j, l : index // index j is offset by l // Every use of i, j is replaced with transformed_i, transformed_j <some operations that use transformed_i, transformed_j> }: memref<?x?xf32, #strided>, memref<?x?xf32, #strided> } }

TODO: Investigate whether mixing implicit and explicit indices does not lead to losing information.

Definition at line 88 of file Tiling.cpp.

References mlir::detail::enumerate(), mlir::getAsOpFoldResult(), and offsetIndices().

Referenced by tileLinalgOpImpl().

◆ updateBoundsForCyclicDistribution()

void mlir::linalg::updateBoundsForCyclicDistribution ( OpBuilder builder,
Location  loc,
Value  procId,
Value  nprocs,
Value lb,
Value ub,
Value step 
)

Update the lb, ub and step to get per processor lb, ub and step.

Definition at line 545 of file Utils.cpp.

References mlir::bindDims(), mlir::getAffineSymbolExpr(), mlir::Builder::getContext(), and mlir::makeComposedAffineApply().

Referenced by mlir::linalg::GenerateLoopNest< LoopTy >::doit().

◆ vectorize()

LogicalResult mlir::linalg::vectorize ( RewriterBase rewriter,
LinalgOp  linalgOp,
ArrayRef< int64_t >  inputVectorSizes = {},
bool  vectorizeNDExtract = false 
)

Emit a suitable vector form for a Linalg op.

If provided, inputVectorSizes are used to vectorize this operation. inputVectorSizes must match the rank of the iteration space of the operation and the sizes must be smaller or equal than their counterpart interation space sizes, if static. inputVectorShapes also allows the vectorization of operations with dynamic shapes.

If provided, inputVectorSizes are used to vectorize this operation. inputVectorSizes must match the rank of the iteration space of the operation and the input vector sizes must be greater than or equal to their counterpart iteration space sizes, if static. inputVectorShapes also allows the vectorization of operations with dynamic shapes.

Definition at line 1074 of file Vectorization.cpp.

References convertAffineApply(), mlir::RewriterBase::eraseOp(), mlir::failed(), mlir::failure(), VectorizationState::initState(), LDBG, mlir::RewriterBase::replaceOp(), mlir::succeeded(), mlir::success(), vectorizeAsLinalgGeneric(), vectorizeConvolution(), and vectorizeLinalgOpPrecondition().

◆ vectorizeCopy()

LogicalResult mlir::linalg::vectorizeCopy ( RewriterBase builder,
memref::CopyOp  copyOp 
)

◆ vectorizeLinalgOpPrecondition()

LogicalResult mlir::linalg::vectorizeLinalgOpPrecondition ( LinalgOp  linalgOp,
ArrayRef< int64_t >  inputVectorSizes = {},
bool  vectorizeNDExtract = false 
)