MLIR  20.0.0git
Tiling.cpp
Go to the documentation of this file.
1 //===- Tiling.cpp - Implementation of linalg Tiling -----------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the linalg dialect Tiling pass.
10 //
11 //===----------------------------------------------------------------------===//
12 
14 
26 #include "mlir/IR/AffineExpr.h"
27 #include "mlir/IR/AffineMap.h"
28 #include "mlir/IR/BuiltinOps.h"
29 #include "mlir/IR/ValueRange.h"
32 #include "llvm/ADT/STLExtras.h"
33 #include "llvm/Support/CommandLine.h"
34 #include <utility>
35 
36 namespace mlir {
37 #define GEN_PASS_DEF_LINALGTILINGPASS
38 #include "mlir/Dialect/Linalg/Passes.h.inc"
39 } // namespace mlir
40 
41 using namespace mlir;
42 using namespace mlir::affine;
43 using namespace mlir::linalg;
44 using namespace mlir::scf;
45 
46 #define DEBUG_TYPE "linalg-tiling"
47 
48 std::tuple<SmallVector<Range, 4>, LoopIndexToRangeIndexMap>
50  ArrayRef<OpFoldResult> allShapeSizes,
51  ArrayRef<OpFoldResult> allTileSizes) {
52  assert(allTileSizes.size() == map.getNumResults());
53  // Apply `map` to get shape sizes in loop order.
54  SmallVector<OpFoldResult> shapeSizes =
55  makeComposedFoldedMultiResultAffineApply(b, loc, map, allShapeSizes);
56  SmallVector<OpFoldResult> tileSizes(allTileSizes);
57 
58  // Traverse the tile sizes, which are in loop order, erase zeros everywhere.
59  LoopIndexToRangeIndexMap loopIndexToRangeIndex;
60  for (int idx = 0, e = tileSizes.size(), zerosCount = 0; idx < e; ++idx) {
61  if (getConstantIntValue(tileSizes[idx - zerosCount]) ==
62  static_cast<int64_t>(0)) {
63  shapeSizes.erase(shapeSizes.begin() + idx - zerosCount);
64  tileSizes.erase(tileSizes.begin() + idx - zerosCount);
65  ++zerosCount;
66  continue;
67  }
68  loopIndexToRangeIndex[idx] = idx - zerosCount;
69  }
70 
71  // Create a new range with the applied tile sizes.
73  for (unsigned idx = 0, e = tileSizes.size(); idx < e; ++idx)
74  res.push_back(Range{b.getIndexAttr(0), shapeSizes[idx], tileSizes[idx]});
75  return std::make_tuple(res, loopIndexToRangeIndex);
76 }
77 
79  RewriterBase &b, LinalgOp op, SmallVectorImpl<Value> &ivs,
80  const LoopIndexToRangeIndexMap &loopIndexToRangeIndex) {
81  SmallVector<Value> allIvs(op.getNumLoops(), nullptr);
82  for (auto en : enumerate(allIvs)) {
83  auto rangeIndex = loopIndexToRangeIndex.find(en.index());
84  if (rangeIndex == loopIndexToRangeIndex.end())
85  continue;
86  en.value() = ivs[rangeIndex->second];
87  }
88  offsetIndices(b, op, getAsOpFoldResult(allIvs));
89 }
90 
91 /// Asserts that the given index-typed value is strictly positive. If the value
92 /// is an attribute, asserts at compile time, otherwise emits an assertion
93 /// checked at runtime.
95  OpFoldResult value) {
96  if (auto attr = llvm::dyn_cast_if_present<Attribute>(value)) {
97  assert(cast<IntegerAttr>(attr).getValue().isStrictlyPositive() &&
98  "expected strictly positive tile size and divisor");
99  return;
100  }
101 
102  Value zero = b.create<arith::ConstantIndexOp>(0);
103  Value condition = b.create<arith::CmpIOp>(arith::CmpIPredicate::sgt,
104  value.get<Value>(), zero);
105  b.create<cf::AssertOp>(
106  condition,
107  b.getStringAttr("expected strictly positive tile size and divisor"));
108 }
109 
110 FailureOr<StaticContinuousTileSizeSpecification>
112  unsigned dimension,
113  unsigned targetSize) {
114 
115  assert(!op.hasDynamicShape() &&
116  "cannot compute static multi-tile sizes for an op with dynamic shape");
117  assert(targetSize > 0 && "target size must be non-negative");
118  assert(dimension < op.getNumLoops() && "dimension overflow");
119 
121  int64_t loopRange = op.getStaticLoopRanges()[dimension];
122  int64_t tripCount = loopRange / targetSize;
123 
124  unsigned tileSize = targetSize;
125 
126  spec.tileSizes.push_back(tileSize);
127  spec.tripCounts.push_back(tripCount);
128 
129  int64_t remainderChunk = loopRange % targetSize;
130 
131  while (tileSize > 1 && remainderChunk != 0) {
132 
133  uint64_t maxPower = llvm::bit_floor(tileSize);
134  tileSize = maxPower == tileSize ? maxPower >> 1 : maxPower;
135 
136  tripCount = remainderChunk / tileSize;
137 
138  if (tripCount > 0) {
139  spec.tileSizes.push_back(tileSize);
140  spec.tripCounts.push_back(tripCount);
141  }
142 
143  remainderChunk = remainderChunk % tileSize;
144  }
145 
146  auto tripCountCheck = [&](SmallVector<int64_t> tileSizes,
147  SmallVector<int64_t> tripCounts,
148  int64_t range) -> bool {
149  int64_t computedRange = 0;
150  for (auto [tileSize, tripCount] : llvm::zip(tileSizes, tripCounts))
151  computedRange += tileSize * tripCount;
152  return range == computedRange;
153  };
154 
155  if (!tripCountCheck(spec.tileSizes, spec.tripCounts, loopRange))
156  return failure();
157 
158  return spec;
159 }
160 
161 FailureOr<ContinuousTileSizeSpecification>
163  unsigned dimension,
164  OpFoldResult targetSize,
165  bool emitAssertions) {
166 
167  SmallVector<Range> loopRanges = op.getIterationDomain(builder);
168  unsigned numLoops = loopRanges.size();
169 
170  // Bail out on dimension overflow.
171  if (dimension >= numLoops)
172  return failure();
173 
174  // The code below works only on values.
175  Location loc = op->getLoc();
176  ImplicitLocOpBuilder b(loc, builder);
177  if (emitAssertions) {
178  emitIsPositiveIndexAssertion(b, targetSize);
179  }
180  Value targetSizeValue =
181  getValueOrCreateConstantIndexOp(builder, loc, targetSize);
182 
183  // Find the trip count of the iteration space dimension for which the tile
184  // sizes are computed.
185  Value loopRange = getValueOrCreateConstantIndexOp(b, loc,
186  loopRanges[dimension].size);
188 
189  // Compute the tile sizes and the respective numbers of tiles.
192  auto apply = [&](AffineExpr expr, ArrayRef<OpFoldResult> ofrs) -> Value {
193  return affine::makeComposedAffineApply(b, b.getLoc(), expr, ofrs);
194  };
195 
196  Value tripCountValue = apply(s0.floorDiv(s1), {loopRange, targetSizeValue});
197  Value remainderChunkValue = apply(s0 % s1, {loopRange, targetSizeValue});
198 
200  b, b.getLoc(), s0.floorDiv(s1), {loopRange, targetSizeValue});
201 
202  // emitAssertions above already asserts that targetSize is
203  // a poistive integer.
204  uint64_t tileSizeInt = *getConstantIntValue(targetSizeValue);
205 
206  assert(tileSizeInt > 0 && "target size must be non-negative");
207 
208  spec.tileSizes.push_back(targetSizeValue);
209  spec.tripCounts.push_back(tripCountValue);
210 
211  while (tileSizeInt > 1) {
212  uint64_t maxPower = llvm::bit_floor(tileSizeInt);
213  tileSizeInt = maxPower == tileSizeInt ? maxPower >> 1 : maxPower;
214  auto constStepOp =
215  builder.createOrFold<arith::ConstantIndexOp>(b.getLoc(), tileSizeInt);
216  tripCountValue = apply(s0.floorDiv(s1), {remainderChunkValue, constStepOp});
217 
219  b, b.getLoc(), s0.floorDiv(s1), {remainderChunkValue, constStepOp});
220 
221  // Optimization if tripCount can be determined to be zero.
222  if (Attribute attr = llvm::dyn_cast_if_present<Attribute>(tripCountSize)) {
223  auto intAttr = cast<IntegerAttr>(attr);
224  bool isTripCountZero = intAttr.getValue().isZero();
225 
226  if (!isTripCountZero) {
227  spec.tileSizes.push_back(constStepOp);
228  spec.tripCounts.push_back(tripCountValue);
229  }
230  } else {
231  spec.tileSizes.push_back(constStepOp);
232  spec.tripCounts.push_back(tripCountValue);
233  }
234 
235  remainderChunkValue = apply(s0 % s1, {remainderChunkValue, constStepOp});
236  }
237 
238  return spec;
239 }
240 
241 FailureOr<StaticMultiSizeSpecification>
242 mlir::linalg::computeStaticMultiTileSizes(LinalgOp op, unsigned dimension,
243  int64_t targetSize, int64_t divisor) {
244  assert(!op.hasDynamicShape() &&
245  "cannot compute static multi-tile sizes for an op with dynamic shape");
246  assert(targetSize > 0 && "target size must be non-negative");
247  assert(divisor > 0 && "divisor must be non-negative");
248  assert(dimension < op.getNumLoops() && "dimension overflow");
249 
251  int64_t tripCount = op.getStaticLoopRanges()[dimension];
252  int64_t a = tripCount / divisor;
253  int64_t t = (targetSize + divisor - 1) / divisor;
254  int64_t totalTripCount = (a + t - 1) / t;
255  spec.lowTileSize = (a / totalTripCount) * divisor;
256  spec.highTileSize = spec.lowTileSize + divisor;
257  spec.highTripCount = a % totalTripCount;
258  spec.lowTripCount = totalTripCount - spec.highTripCount;
259  if (spec.lowTileSize * spec.lowTripCount +
260  spec.highTileSize * spec.highTripCount !=
261  tripCount) {
262  return failure();
263  }
264  return spec;
265 }
266 
267 FailureOr<MultiSizeSpecification>
269  unsigned dimension, OpFoldResult targetSize,
270  OpFoldResult divisor, bool emitAssertions) {
271  // Bail out on dimension overflow.
272  if (dimension >= op.getNumLoops())
273  return failure();
274 
275  // The code below works only on values.
276  Location loc = op.getLoc();
277  ImplicitLocOpBuilder b(loc, builder);
278  if (emitAssertions) {
279  emitIsPositiveIndexAssertion(b, targetSize);
280  emitIsPositiveIndexAssertion(b, divisor);
281  }
282  Value targetSizeValue =
283  getValueOrCreateConstantIndexOp(builder, loc, targetSize);
284  Value divisorValue = getValueOrCreateConstantIndexOp(builder, loc, divisor);
285 
286  // Find the trip count of the iteration space dimension for which the tile
287  // sizes are computed.
288  SmallVector<OpFoldResult> allShapes =
289  op.createFlatListOfOperandDims(b, b.getLoc());
290  AffineMap shapesToLoops = op.getShapesToLoopsMap();
291  SmallVector<OpFoldResult> loopRanges =
292  makeComposedFoldedMultiResultAffineApply(b, op.getLoc(), shapesToLoops,
293  allShapes);
294  Value tripCount =
295  getValueOrCreateConstantIndexOp(b, op.getLoc(), loopRanges[dimension]);
296 
297  // Compute the tile sizes and the respective numbers of tiles.
301  auto apply = [&](AffineExpr expr, ArrayRef<OpFoldResult> ofrs) -> Value {
302  return affine::makeComposedAffineApply(b, b.getLoc(), expr, ofrs);
303  };
304  Value a = apply(s0.floorDiv(s1), {tripCount, divisorValue});
305  Value t = apply((s0 + s1 - 1).floorDiv(s1), {targetSizeValue, divisorValue});
306  Value d = apply((s0 + s1 - 1).floorDiv(s1), {a, t});
307  Value s = apply(s0.floorDiv(s1) * s2, {a, d, divisorValue});
308  Value v = apply(s0 % s1, {a, d});
309  Value u = apply(s0 - s1, {d, v});
310 
312  spec.lowTileSize = s;
313  spec.highTileSize = apply(s0 + s1, {s, divisorValue});
314  spec.lowTripCount = u;
315  spec.highTripCount = v;
316 
317  // If requested, emit the check that the tile sizes are computed correctly.
318  // For example, for iteration dimension size of 15 and the target size 8 it is
319  // impossible to find two tile sizes both divisible by 8 that fully cover the
320  // original space dimension.
321  if (emitAssertions) {
322  AffineExpr s3 = builder.getAffineSymbolExpr(3);
323  Value coveredSize =
324  apply(s0 * s1 + s2 * s3, {spec.lowTileSize, spec.lowTripCount,
325  spec.highTileSize, spec.highTripCount});
326  Value equals = b.create<arith::CmpIOp>(arith::CmpIPredicate::eq,
327  coveredSize, tripCount);
328  b.create<cf::AssertOp>(
329  equals, builder.getStringAttr(
330  "could not compute dynamic multi-size tile shapes"));
331  }
332 
333  return spec;
334 }
335 
336 /// Returns true if the maximum tile offset `tileSize * numThreads-1` is less
337 /// than `iterationSize`.
339  OpFoldResult numThreads,
340  OpFoldResult iterationSize) {
341  std::optional<int64_t> tileSizeConst = getConstantIntValue(tileSize);
342  std::optional<int64_t> numThreadsConst = getConstantIntValue(numThreads);
343  std::optional<int64_t> iterSizeConst = getConstantIntValue(iterationSize);
344  if (!tileSizeConst || !numThreadsConst || !iterSizeConst)
345  return false;
346  return *tileSizeConst * (*numThreadsConst - 1) < *iterSizeConst;
347 }
348 
349 /// Build an `affine_max` of all the `vals`.
351  ArrayRef<OpFoldResult> vals) {
353  b, loc, AffineMap::getMultiDimIdentityMap(vals.size(), loc.getContext()),
354  vals);
355 }
356 
357 /// Build an `affine_min` of all the `vals`.
359  ArrayRef<OpFoldResult> vals) {
361  b, loc, AffineMap::getMultiDimIdentityMap(vals.size(), loc.getContext()),
362  vals);
363 }
364 
365 /// Fill out the `tiledOffsets` and `tiledSizes` to be used to tile to a given
366 /// number of threads.
368  RewriterBase &b, Location loc, scf::ForallOp forallOp,
369  ArrayRef<OpFoldResult> numThreads, SmallVector<Range> loopRanges,
370  bool omitTileOffsetBoundsCheck,
371  std::optional<ArrayRef<OpFoldResult>> nominalTileSizes,
372  SmallVector<OpFoldResult> &tiledOffsets,
373  SmallVector<OpFoldResult> &tiledSizes) {
375  b.setInsertionPointToStart(forallOp.getBody(0));
376 
377  SmallVector<Value> threadIds = forallOp.getInductionVars();
378  SmallVector<OpFoldResult> nonZeroNumThreads =
379  llvm::to_vector(llvm::make_filter_range(numThreads, [](OpFoldResult ofr) {
380  return !isConstantIntValue(ofr, 0);
381  }));
382  int64_t nLoops = loopRanges.size();
383  tiledOffsets.reserve(nLoops);
384  tiledSizes.reserve(nLoops);
385  for (unsigned loopIdx = 0, threadIdIdx = 0; loopIdx < nLoops; ++loopIdx) {
386  bool overflow = loopIdx >= numThreads.size();
387  bool isZero = !overflow && isConstantIntValue(numThreads[loopIdx], 0);
388  // Degenerate case: take the whole domain.
389  if (overflow || isZero) {
390  tiledOffsets.push_back(loopRanges[loopIdx].offset);
391  tiledSizes.push_back(loopRanges[loopIdx].size);
392  continue;
393  }
394 
395  // Tiled case: compute the offset and size.
396  AffineExpr i, j, m, n, o;
397  bindDims(b.getContext(), i, j);
398  bindSymbols(b.getContext(), m, n, o);
399  OpFoldResult size = loopRanges[loopIdx].size;
400  OpFoldResult offset = loopRanges[loopIdx].offset;
401  OpFoldResult threadId = threadIds[threadIdIdx];
402  // Symbolic fixed max size per thread.
403  // TODO: floor + 0/1 depending on case for better load-balancing.
404  OpFoldResult tileSizePerThread =
405  nominalTileSizes.has_value()
406  ? (*nominalTileSizes)[loopIdx]
408  b, loc, m.ceilDiv(n),
409  ArrayRef<OpFoldResult>{size, nonZeroNumThreads[threadIdIdx]});
410 
411  // Dynamic offset shifted by threadId * maxSizePerThread.
413  b, loc, i + j * m, {offset, threadId, tileSizePerThread});
414  // Dynamic upper-bound depending on the threadId.
415  OpFoldResult residualTileSize = makeComposedFoldedAffineApply(
416  b, loc, i + j * m - n,
417  {offset, nonZeroNumThreads[threadIdIdx], tileSizePerThread, size});
418  if (!isConstantIntValue(residualTileSize, 0)) {
419  OpFoldResult sizeMinusOffsetPerThread = makeComposedFoldedAffineApply(
420  b, loc, -i + m, {offsetPerThread, size});
421  tileSizePerThread =
422  buildMin(b, loc, {sizeMinusOffsetPerThread, tileSizePerThread});
423  }
424 
425  tiledOffsets.push_back(offsetPerThread);
426  // TODO: if tileSizePerThread <= 0 early exit.
427  if (!omitTileOffsetBoundsCheck &&
428  !canOmitTileOffsetInBoundsCheck(tileSizePerThread,
429  nonZeroNumThreads[threadIdIdx], size))
430  tileSizePerThread =
431  buildMax(b, loc, {b.getIndexAttr(0), tileSizePerThread});
432 
433  tiledSizes.push_back(tileSizePerThread);
434  ++threadIdIdx;
435  }
436 }
437 
438 template <typename LoopTy>
439 static FailureOr<TiledLinalgOp>
441  const LinalgTilingOptions &options) {
443 
444  auto nLoops = op.getNumLoops();
445  // Initial tile sizes may be too big, only take the first nLoops.
446  tileSizes = tileSizes.take_front(nLoops);
447 
448  if (llvm::all_of(tileSizes, [](OpFoldResult ofr) {
449  return getConstantIntValue(ofr) == static_cast<int64_t>(0);
450  })) {
451  TiledLinalgOp tiledOp;
452  tiledOp.op = cast<LinalgOp>(b.clone(*op.getOperation()));
453  tiledOp.tensorResults.assign(tiledOp.op->result_begin(),
454  tiledOp.op->result_end());
455  return tiledOp;
456  }
457 
458  // 1. Build the tiled loop ranges.
459  SmallVector<OpFoldResult> allShapeSizes =
460  op.createFlatListOfOperandDims(b, op.getLoc());
461  AffineMap shapeSizesToLoopsMap = op.getShapesToLoopsMap();
462  if (!shapeSizesToLoopsMap)
463  return failure();
464 
465  auto [loopRanges, loopIndexToRangeIndex] = makeTiledLoopRanges(
466  b, op.getLoc(), shapeSizesToLoopsMap, allShapeSizes, tileSizes);
467 
469  for (const auto &attr : enumerate(op.getIteratorTypesArray())) {
470  if (loopIndexToRangeIndex.count(attr.index()))
471  iteratorTypes.push_back(attr.value());
472  }
473  // If interchangeVector is empty, use the identity. Build the permutation map
474  // otherwise.
475  auto invPermutationMap =
476  AffineMap::getMultiDimIdentityMap(tileSizes.size(), b.getContext());
477  if (!options.interchangeVector.empty()) {
478  // Based on the pruned iterations (due to zero tile size), recompute the
479  // interchange vector.
480  SmallVector<unsigned, 4> interchangeVector;
481  interchangeVector.reserve(options.interchangeVector.size());
482  for (auto pos : options.interchangeVector) {
483  auto it = loopIndexToRangeIndex.find(pos);
484  if (it == loopIndexToRangeIndex.end())
485  continue;
486  interchangeVector.push_back(it->second);
487  }
488  // Interchange vector is guaranteed to be a permutation,
489  // `inversePermutation` must succeed.
490  invPermutationMap = inversePermutation(
491  AffineMap::getPermutationMap(interchangeVector, b.getContext()));
492  assert(invPermutationMap);
493  SmallVector<int64_t> permutation(interchangeVector.begin(),
494  interchangeVector.end());
495  applyPermutationToVector(loopRanges, permutation);
496  applyPermutationToVector(iteratorTypes, permutation);
497  }
498 
499  // Handle distribution. Create a vector of the same size of loops that are to
500  // be tiled.
502  if (options.distribution) {
503  procInfo.resize(
504  iteratorTypes.size(),
505  linalg::ProcInfo{nullptr, nullptr, linalg::DistributionMethod::None});
506  // Collect loop ranges of tiled loops, loops that are parallel.
507  SmallVector<Range> parallelLoopRanges;
508  for (const auto &iteratorType : llvm::enumerate(iteratorTypes)) {
509  if (!isParallelIterator(iteratorType.value()))
510  break;
511  parallelLoopRanges.push_back(loopRanges[iteratorType.index()]);
512  }
513  auto returnedProcInfo =
514  options.distribution->procInfo(b, op.getLoc(), parallelLoopRanges);
515  unsigned procIdIdx = 0;
516  // Update the distribution information for the loops.
517  for (const auto &iteratorType : llvm::enumerate(iteratorTypes)) {
518  if (!isParallelIterator(iteratorType.value()))
519  break;
520  procInfo[iteratorType.index()] = returnedProcInfo[procIdIdx++];
521  }
522  }
523 
524  // 2. Create the tiled loops.
525  LinalgOp res = op;
526  SmallVector<Value, 4> ivs, tensorResults;
527  auto tiledLoopBodyBuilder =
528  [&](OpBuilder &builder, Location loc, ValueRange localIvs,
529  ValueRange operandValuesToUse) -> scf::ValueVector {
530  ivs.assign(localIvs.begin(), localIvs.end());
531 
532  // When an `interchangeVector` is present, it has been applied to the
533  // loop ranges and the iterator types. Apply its inverse to the
534  // resulting loop `ivs` to match the op definition.
535  SmallVector<Value, 4> interchangedIvs;
536  if (!options.interchangeVector.empty()) {
537  for (AffineExpr result : invPermutationMap.getResults())
538  interchangedIvs.push_back(
539  ivs[cast<AffineDimExpr>(result).getPosition()]);
540  } else {
541  interchangedIvs.assign(ivs.begin(), ivs.end());
542  }
543 
544  // Tile the `operandValuesToUse` that either match the `op` operands
545  // themselves or the tile loop arguments forwarding them.
546  assert(operandValuesToUse.size() ==
547  static_cast<size_t>(op->getNumOperands()) &&
548  "expect the number of operands and inputs and outputs to match");
549  SmallVector<Value> valuesToTile = operandValuesToUse;
550  SmallVector<OpFoldResult> sizeBounds =
551  makeComposedFoldedMultiResultAffineApply(b, loc, shapeSizesToLoopsMap,
552  allShapeSizes);
553  SmallVector<Value> tiledOperands = makeTiledShapes(
554  b, loc, op, valuesToTile, getAsOpFoldResult(interchangedIvs), tileSizes,
555  sizeBounds,
556  /*omitPartialTileCheck=*/false);
557 
558  SmallVector<Type> resultTensorTypes =
559  getTensorOutputTypes(op, tiledOperands);
560  res = clone(b, op, resultTensorTypes, tiledOperands);
561  tensorResults =
562  insertSlicesBack(builder, loc, op, tiledOperands, res->getResults());
563  return scf::ValueVector(tensorResults.begin(), tensorResults.end());
564  };
565  GenerateLoopNest<LoopTy>::doit(b, op.getLoc(), loopRanges, op, iteratorTypes,
566  tiledLoopBodyBuilder, procInfo);
567 
568  // 3. Transform IndexOp results w.r.t. the tiling.
569  transformIndexOps(b, res, ivs, loopIndexToRangeIndex);
570 
571  // 4. Gather the newly created loops and return them with the new op.
573  loops.reserve(ivs.size());
574  for (auto iv : ivs) {
575  if (isa<BlockArgument>(iv)) {
576  loops.push_back(cast<BlockArgument>(iv).getOwner()->getParentOp());
577  assert(loops.back() && "no owner found for induction variable!");
578  } else {
579  // TODO: Instead of doing this, try to recover the ops used instead of the
580  // loop.
581  loops.push_back(nullptr);
582  }
583  }
584 
585  // 5. Get the tensor results from the outermost loop if available. Otherwise
586  // use the previously captured `tensorResults`.
587  Operation *outermostLoop = nullptr;
588  for (Operation *loop : loops)
589  if ((outermostLoop = loop))
590  break;
591 
592  return TiledLinalgOp{
593  res, loops, outermostLoop ? outermostLoop->getResults() : tensorResults};
594 }
595 
596 FailureOr<linalg::ForallReductionTilingResult> linalg::tileReductionUsingForall(
597  RewriterBase &b, PartialReductionOpInterface op,
598  ArrayRef<OpFoldResult> numThreads, ArrayRef<OpFoldResult> tileSizes,
599  std::optional<ArrayAttr> mapping) {
600  Location loc = op.getLoc();
602 
603  // Ops implementing PartialReductionOpInterface are expected to implement
604  // TilingInterface.
605  // TODO: proper core mechanism to tie interfaces together.
606  auto tilingInterfaceOp = cast<TilingInterface>(op.getOperation());
607 
608  // Ops implementing PartialReductionOpInterface are not necessarily expected
609  // to implement TilingInterface.. This cast is unsafe atm.
610  // TODO: proper core mechanism to tie interfaces together.
611  // TODO: this function requires a pair of interfaces ..
612  auto destinationStyleOp =
613  dyn_cast<DestinationStyleOpInterface>(op.getOperation());
614  if (!destinationStyleOp)
615  return b.notifyMatchFailure(op, "not a destination style op");
616 
617  // Actually this only work for Linalg ops atm.
618  auto linalgOp = dyn_cast<linalg::LinalgOp>(op.getOperation());
619  if (!linalgOp)
620  return b.notifyMatchFailure(op, "not a linalg op");
621 
622  SmallVector<Range> iterationDomain = tilingInterfaceOp.getIterationDomain(b);
623  if (op->getNumResults() != 1)
624  return b.notifyMatchFailure(
625  op, "don't support ops with multiple results for now");
626 
628  tilingInterfaceOp.getLoopIteratorTypes();
629  SmallVector<unsigned> redDims;
630  linalgOp.getReductionDims(redDims);
631  if (redDims.size() != 1)
632  return b.notifyMatchFailure(
633  op, "only support ops with one reduction dimension.");
634  if (!tileSizes.empty() && tileSizes.size() != numThreads.size())
635  return b.notifyMatchFailure(op, "if tile sizes are present it must have as "
636  "many elements as number of threads");
637  int reductionDim = static_cast<int>(redDims.front());
638 
639  if (redDims.front() >= numThreads.size())
640  return b.notifyMatchFailure(
641  op, "reduction dimension must be mapped to threads");
642 
643  // 1. Create the inital tensor value.
644  FailureOr<SmallVector<Value>> maybeInitTensors =
645  op.generateInitialTensorForPartialReduction(b, loc, numThreads,
646  reductionDim);
647  if (failed(maybeInitTensors))
648  return b.notifyMatchFailure(
649  op, "Failed to create inital tensors for partial reduction");
650  SmallVector<Value> &initTensors = maybeInitTensors.value();
651 
652  // Gather destination tensors.
653  SmallVector<Value> dest;
654  if (failed(tensor::getOrCreateDestinations(b, loc, op, dest)))
655  return b.notifyMatchFailure(op, "failed to get destination tensors");
656 
657  Operation *tiledOp = nullptr;
658 
659  SmallVector<OpFoldResult> nonZeroNumThreads =
660  llvm::to_vector(llvm::make_filter_range(numThreads, [](OpFoldResult ofr) {
661  return !isConstantIntValue(ofr, 0);
662  }));
663  SmallVector<Value> materializedNonZeroNumThreads =
664  getValueOrCreateConstantIndexOp(b, loc, nonZeroNumThreads);
665 
666  // 2. Create the ForallOp with an empty region.
667  scf::ForallOp forallOp = b.create<scf::ForallOp>(
668  loc, getAsOpFoldResult(materializedNonZeroNumThreads), initTensors,
669  mapping);
670 
671  // 3. Calculate the tile offsets and sizes for the subsequent loop that will
672  // be nested under `forallOp`.
673  SmallVector<OpFoldResult> tiledOffsets, tiledSizes;
674  calculateTileOffsetsAndSizes(b, loc, forallOp, numThreads, iterationDomain,
675  /*omitTileOffsetBoundsCheck =*/false,
676  /*nominalTileSizes=*/std::nullopt, tiledOffsets,
677  tiledSizes);
678 
679  // 4b. Clone the tileable op and update its destination operands to use the
680  // output bbArgs of the ForallOp.
681  SmallVector<Value> tilingResults;
682  ArrayRef<BlockArgument> destBbArgs = forallOp.getRegionIterArgs();
683  {
684  // 4.a. RAII guard, inserting within forallOp, before terminator.
686  b.setInsertionPoint(forallOp.getTerminator());
687 
688  SmallVector<Value> tiledDpsInitOperands;
689  for (Value initOperand : destinationStyleOp.getDpsInits()) {
690  auto *it = llvm::find(dest, initOperand);
691  assert(it != dest.end() && "dest operand not found in dest");
692  unsigned destNum = std::distance(dest.begin(), it);
693  SmallVector<OpFoldResult> strides(numThreads.size(), b.getIndexAttr(1));
694  SmallVector<OpFoldResult> outOffsets(numThreads.size(),
695  b.getIndexAttr(0));
696  SmallVector<OpFoldResult> sizes = tiledSizes;
697  sizes[reductionDim] = b.getIndexAttr(1);
698  outOffsets[reductionDim] = forallOp.getInductionVars()[0];
699  // TODO: use SubsetExtractOpInterface once it is available.
700  tiledDpsInitOperands.push_back(b.create<tensor::ExtractSliceOp>(
701  loc, cast<RankedTensorType>(initOperand.getType()),
702  destBbArgs[destNum], outOffsets, sizes, strides));
703  }
704 
705  // 4.b. Clone the op and update init operands.
706  // We cannot use a IRMapping here because it can replace
707  // different OpOperands with the same value.
708  Operation *clonedOp = b.clone(*op.getOperation());
709  b.modifyOpInPlace(clonedOp, [&]() {
710  for (auto [initOperandPtr, tiledInitValue] : llvm::zip_equal(
711  cast<DestinationStyleOpInterface>(clonedOp).getDpsInitsMutable(),
712  tiledDpsInitOperands)) {
713  initOperandPtr.set(tiledInitValue);
714  }
715  });
716 
717  // 5. Tile the cloned op and delete the clone.
718  if (tileSizes.empty()) {
719  FailureOr<TilingResult> tilingResult =
720  cast<TilingInterface>(clonedOp).getTiledImplementation(
721  b, tiledOffsets, tiledSizes);
722  if (failed(tilingResult))
723  return clonedOp->emitError("Failed to tile op: ");
724  if (tilingResult->tiledOps.size() != 1) {
725  return clonedOp->emitError("expected a single produced tiled op, got ")
726  << tilingResult->tiledOps.size();
727  }
728  tiledOp = tilingResult->tiledOps.front();
729  tilingResults = tilingResult->tiledValues;
730  } else {
732  FailureOr<TiledLinalgOp> maybeTiled = tileLinalgOpImpl<scf::ForOp>(
733  b, cast<LinalgOp>(clonedOp), tileSizes, options);
734  if (failed(maybeTiled))
735  return b.notifyMatchFailure(op, "failed tileLinalgOpImpl");
736 
737  SmallVector<Value> ids = forallOp.getInductionVars();
738  mapLoopToProcessorIds(cast<scf::ForOp>(maybeTiled->loops.back()), ids,
739  materializedNonZeroNumThreads);
740  if (maybeTiled->loops.size() != 1) {
741  return clonedOp->emitError("expected a single produced loop");
742  }
743  tiledOp = maybeTiled->op;
744  tilingResults = maybeTiled->loops.front()->getResults();
745  }
746 
747  b.eraseOp(clonedOp);
748  }
749 
750  // 6. Insert the partial reductions back into a new tensor.
751  for (auto [index, result, bbArg] : llvm::zip(
752  llvm::seq<unsigned>(0, dest.size()), tilingResults, destBbArgs)) {
753  // 6.a. Partial subset information is inserted just before the terminator.
755  b.setInsertionPoint(forallOp.getTerminator());
756 
757  SmallVector<OpFoldResult> resultOffsets, resultSizes;
758  if (failed(tilingInterfaceOp.getResultTilePosition(
759  b, index, tiledOffsets, tiledSizes, resultOffsets, resultSizes)))
760  return op->emitOpError("output offsets couldn't be calculated");
761  SmallVector<OpFoldResult> resultOffsetsRank, resultSizesRank;
762  int64_t offIdx = 0;
763  int64_t sizeIdx = 0;
764  for (int64_t i = 0, e = numThreads.size(); i < e; ++i) {
765  if (i == reductionDim) {
766  resultOffsetsRank.push_back(forallOp.getInductionVars()[0]);
767  resultSizesRank.push_back(b.getIndexAttr(1));
768  continue;
769  }
770  resultOffsetsRank.push_back(resultOffsets[offIdx++]);
771  resultSizesRank.push_back(resultSizes[sizeIdx++]);
772  }
773  SmallVector<OpFoldResult> strides(resultSizesRank.size(),
774  b.getIndexAttr(1));
775 
776  // 6.b. Parallel insertions are inserted at the end of the combining
777  // terminator.
778  b.setInsertionPointToEnd(forallOp.getTerminator().getBody());
779  b.create<tensor::ParallelInsertSliceOp>(
780  loc, result, bbArg, resultOffsetsRank, resultSizesRank, strides);
781  }
782 
783  // 7. Merge the partial reductions.
784  b.setInsertionPointAfter(forallOp);
785  FailureOr<MergeResult> mergeResult =
786  op.mergeReductions(b, loc, forallOp->getResults(), reductionDim);
787  if (failed(mergeResult)) {
788  return failure();
789  }
790  b.replaceOp(op, mergeResult->replacements);
791 
792  // 8. Return.
794  results.initialValues = initTensors;
795  results.loops = forallOp;
796  results.parallelTiledOps.push_back(tiledOp);
797  results.mergeOps.append(mergeResult->mergeOps);
798  return results;
799 }
800 
801 template <typename LoopTy>
802 FailureOr<TiledLinalgOp> static tileLinalgOpImpl(
803  RewriterBase &b, LinalgOp op, const LinalgTilingOptions &options) {
805  b.setInsertionPoint(op);
806 
807  if (!options.tileSizeComputationFunction)
808  return failure();
809 
810  // Enforce the convention that "tiling by zero" skips tiling a particular
811  // dimension. This convention is significantly simpler to handle instead of
812  // adjusting affine maps to account for missing dimensions.
813  auto nLoops = op.getNumLoops();
814  SmallVector<OpFoldResult> tileSizeVector =
815  getAsOpFoldResult(options.tileSizeComputationFunction(b, op));
816  if (tileSizeVector.size() < nLoops) {
817  tileSizeVector.append(nLoops - tileSizeVector.size(), b.getIndexAttr(0));
818  }
819 
820  return tileLinalgOpImpl<LoopTy>(b, op, tileSizeVector, options);
821 }
822 
823 FailureOr<TiledLinalgOp>
825  const LinalgTilingOptions &options) {
826  switch (options.loopType) {
828  return tileLinalgOpImpl<scf::ForOp>(b, op, options);
829  case LinalgTilingLoopType::ParallelLoops:
830  return tileLinalgOpImpl<scf::ParallelOp>(b, op, options);
831  default:;
832  }
833  return failure();
834 }
835 
836 namespace {
837 /// Helper classes for type list expansion.
838 template <typename... OpTypes>
839 class CanonicalizationPatternList;
840 
841 template <>
842 class CanonicalizationPatternList<> {
843 public:
844  static void insert(RewritePatternSet &patterns) {}
845 };
846 
847 template <typename OpTy, typename... OpTypes>
848 class CanonicalizationPatternList<OpTy, OpTypes...> {
849 public:
850  static void insert(RewritePatternSet &patterns) {
851  OpTy::getCanonicalizationPatterns(patterns, patterns.getContext());
852  CanonicalizationPatternList<OpTypes...>::insert(patterns);
853  }
854 };
855 } // namespace
856 
859  RewritePatternSet patterns(ctx);
861  return patterns;
862 }
863 
865  RewritePatternSet &patterns) {
866  auto *ctx = patterns.getContext();
867  affine::AffineApplyOp::getCanonicalizationPatterns(patterns, ctx);
868  affine::AffineForOp::getCanonicalizationPatterns(patterns, ctx);
869  affine::AffineMinOp::getCanonicalizationPatterns(patterns, ctx);
870  affine::AffineMaxOp::getCanonicalizationPatterns(patterns, ctx);
871  arith::ConstantIndexOp::getCanonicalizationPatterns(patterns, ctx);
872 
873  memref::SubViewOp::getCanonicalizationPatterns(patterns, ctx);
874  memref::ViewOp::getCanonicalizationPatterns(patterns, ctx);
875 
876  scf::ForOp::getCanonicalizationPatterns(patterns, ctx);
877  scf::ParallelOp::getCanonicalizationPatterns(patterns, ctx);
878 
879  tensor::CastOp::getCanonicalizationPatterns(patterns, ctx);
880  tensor::EmptyOp::getCanonicalizationPatterns(patterns, ctx);
881  tensor::ExtractSliceOp::getCanonicalizationPatterns(patterns, ctx);
882  tensor::InsertSliceOp::getCanonicalizationPatterns(patterns, ctx);
883  tensor::PadOp::getCanonicalizationPatterns(patterns, ctx);
884  ctx->getLoadedDialect<LinalgDialect>()->getCanonicalizationPatterns(patterns);
885 
886  CanonicalizationPatternList<
887 #define GET_OP_LIST
888 #include "mlir/Dialect/Linalg/IR/LinalgStructuredOps.cpp.inc"
889  >::insert(patterns);
890 }
DiagnosedSilenceableFailure doit(RewriterBase &rewriter, OpTy target, transform::ApplyToEachResultList &results, transform::TransformState &state)
static llvm::ManagedStatic< PassManagerOptions > options
static bool canOmitTileOffsetInBoundsCheck(OpFoldResult tileSize, OpFoldResult numThreads, OpFoldResult iterationSize)
Returns true if the maximum tile offset tileSize * numThreads-1 is less than iterationSize.
Definition: Tiling.cpp:338
static void emitIsPositiveIndexAssertion(ImplicitLocOpBuilder &b, OpFoldResult value)
Asserts that the given index-typed value is strictly positive.
Definition: Tiling.cpp:94
static OpFoldResult buildMax(OpBuilder &b, Location loc, ArrayRef< OpFoldResult > vals)
Build an affine_max of all the vals.
Definition: Tiling.cpp:350
static void calculateTileOffsetsAndSizes(RewriterBase &b, Location loc, scf::ForallOp forallOp, ArrayRef< OpFoldResult > numThreads, SmallVector< Range > loopRanges, bool omitTileOffsetBoundsCheck, std::optional< ArrayRef< OpFoldResult >> nominalTileSizes, SmallVector< OpFoldResult > &tiledOffsets, SmallVector< OpFoldResult > &tiledSizes)
Fill out the tiledOffsets and tiledSizes to be used to tile to a given number of threads.
Definition: Tiling.cpp:367
static FailureOr< TiledLinalgOp > tileLinalgOpImpl(RewriterBase &b, LinalgOp op, ArrayRef< OpFoldResult > tileSizes, const LinalgTilingOptions &options)
Definition: Tiling.cpp:440
static OpFoldResult buildMin(OpBuilder &b, Location loc, ArrayRef< OpFoldResult > vals)
Build an affine_min of all the vals.
Definition: Tiling.cpp:358
Base type for affine expression.
Definition: AffineExpr.h:68
AffineExpr floorDiv(uint64_t v) const
Definition: AffineExpr.cpp:907
A multi-dimensional affine map Affine map's are immutable like Type's, and they are uniqued.
Definition: AffineMap.h:46
static AffineMap getMultiDimIdentityMap(unsigned numDims, MLIRContext *context)
Returns an AffineMap with 'numDims' identity result dim exprs.
Definition: AffineMap.cpp:334
unsigned getNumResults() const
Definition: AffineMap.cpp:402
static AffineMap getPermutationMap(ArrayRef< unsigned > permutation, MLIRContext *context)
Returns an AffineMap representing a permutation.
Definition: AffineMap.cpp:264
Attributes are known-constant values of operations.
Definition: Attributes.h:25
IntegerAttr getIndexAttr(int64_t value)
Definition: Builders.cpp:148
AffineExpr getAffineSymbolExpr(unsigned position)
Definition: Builders.cpp:399
StringAttr getStringAttr(const Twine &bytes)
Definition: Builders.cpp:293
MLIRContext * getContext() const
Definition: Builders.h:55
ImplicitLocOpBuilder maintains a 'current location', allowing use of the create<> method without spec...
Location getLoc() const
Accessors for the implied location.
OpTy create(Args &&...args)
Create an operation of specific op type at the current insertion point and location.
This class defines the main interface for locations in MLIR and acts as a non-nullable wrapper around...
Definition: Location.h:66
MLIRContext * getContext() const
Return the context this location is uniqued in.
Definition: Location.h:76
MLIRContext is the top-level object for a collection of MLIR operations.
Definition: MLIRContext.h:60
RAII guard to reset the insertion point of the builder when destroyed.
Definition: Builders.h:356
This class helps build Operations.
Definition: Builders.h:215
Operation * clone(Operation &op, IRMapping &mapper)
Creates a deep copy of the specified operation, remapping any operands that use values outside of the...
Definition: Builders.cpp:579
void setInsertionPointToStart(Block *block)
Sets the insertion point to the start of the specified block.
Definition: Builders.h:439
void setInsertionPoint(Block *block, Block::iterator insertPoint)
Set the insertion point to the specified location.
Definition: Builders.h:406
void setInsertionPointToEnd(Block *block)
Sets the insertion point to the end of the specified block.
Definition: Builders.h:444
void createOrFold(SmallVectorImpl< Value > &results, Location location, Args &&...args)
Create an operation of specific op type at the current insertion point, and immediately try to fold i...
Definition: Builders.h:528
Operation * create(const OperationState &state)
Creates an operation given the fields represented as an OperationState.
Definition: Builders.cpp:488
void setInsertionPointAfter(Operation *op)
Sets the insertion point to the node after the specified operation, which will cause subsequent inser...
Definition: Builders.h:420
This class represents a single result from folding an operation.
Definition: OpDefinition.h:268
Operation is the basic unit of execution within MLIR.
Definition: Operation.h:88
Location getLoc()
The source location the operation was defined or derived from.
Definition: Operation.h:223
unsigned getNumOperands()
Definition: Operation.h:341
InFlightDiagnostic emitError(const Twine &message={})
Emit an error about fatal conditions with this operation, reporting up to any diagnostic handlers tha...
Definition: Operation.cpp:268
result_range getResults()
Definition: Operation.h:410
InFlightDiagnostic emitOpError(const Twine &message={})
Emit an error with the op name prefixed, like "'dim' op " which is convenient for verifiers.
Definition: Operation.cpp:671
unsigned getNumResults()
Return the number of results held by this operation.
Definition: Operation.h:399
MLIRContext * getContext() const
Definition: PatternMatch.h:823
This class coordinates the application of a rewrite on a set of IR, providing a way for clients to tr...
Definition: PatternMatch.h:400
std::enable_if_t<!std::is_convertible< CallbackT, Twine >::value, LogicalResult > notifyMatchFailure(Location loc, CallbackT &&reasonCallback)
Used to notify the listener that the IR failed to be rewritten because of a match failure,...
Definition: PatternMatch.h:718
virtual void replaceOp(Operation *op, ValueRange newValues)
Replace the results of the given (original) operation with the specified list of values (replacements...
virtual void eraseOp(Operation *op)
This method erases an operation that is known to have no uses.
void modifyOpInPlace(Operation *root, CallableT &&callable)
This method is a utility wrapper around an in-place modification of an operation.
Definition: PatternMatch.h:630
This class provides an abstraction over the different types of ranges over Values.
Definition: ValueRange.h:381
This class represents an instance of an SSA value in the MLIR system, representing a computable value...
Definition: Value.h:96
Specialization of arith.constant op that returns an integer of index type.
Definition: Arith.h:93
SmallVector< OpFoldResult > makeComposedFoldedMultiResultAffineApply(OpBuilder &b, Location loc, AffineMap map, ArrayRef< OpFoldResult > operands)
Variant of makeComposedFoldedAffineApply suitable for multi-result maps.
Definition: AffineOps.cpp:1239
AffineApplyOp makeComposedAffineApply(OpBuilder &b, Location loc, AffineMap map, ArrayRef< OpFoldResult > operands)
Returns a composed AffineApplyOp by composing map and operands with other AffineApplyOps supplying th...
Definition: AffineOps.cpp:1142
OpFoldResult makeComposedFoldedAffineMax(OpBuilder &b, Location loc, AffineMap map, ArrayRef< OpFoldResult > operands)
Constructs an AffineMinOp that computes a maximum across the results of applying map to operands,...
Definition: AffineOps.cpp:1305
OpFoldResult makeComposedFoldedAffineMin(OpBuilder &b, Location loc, AffineMap map, ArrayRef< OpFoldResult > operands)
Constructs an AffineMinOp that computes a minimum across the results of applying map to operands,...
Definition: AffineOps.cpp:1298
OpFoldResult makeComposedFoldedAffineApply(OpBuilder &b, Location loc, AffineMap map, ArrayRef< OpFoldResult > operands)
Constructs an AffineApplyOp that applies map to operands after composing the map with the maps of any...
Definition: AffineOps.cpp:1192
void mapLoopToProcessorIds(scf::ForOp forOp, ArrayRef< Value > processorId, ArrayRef< Value > numProcessors)
Maps forOp for execution on a parallel grid of virtual processorIds of size given by numProcessors.
Definition: LoopUtils.cpp:1720
constexpr void enumerate(std::tuple< Tys... > &tuple, CallbackT &&callback)
Definition: Matchers.h:344
SmallVector< Value > makeTiledShapes(OpBuilder &builder, Location loc, LinalgOp linalgOp, ValueRange valuesToTile, ArrayRef< OpFoldResult > ivs, ArrayRef< OpFoldResult > tileSizes, ArrayRef< OpFoldResult > sizeBounds, bool omitPartialTileCheck)
Creates extract_slice/subview ops for all valuesToTile of the given linalgOp with builder,...
Definition: Utils.cpp:794
void transformIndexOps(RewriterBase &b, LinalgOp op, SmallVectorImpl< Value > &ivs, const LoopIndexToRangeIndexMap &loopIndexToRangeIndex)
All indices returned by IndexOp should be invariant with respect to tiling.
Definition: Tiling.cpp:78
bool isParallelIterator(utils::IteratorType iteratorType)
Check if iterator type has "parallel" semantics.
Definition: Utils.cpp:184
void populateLinalgTilingCanonicalizationPatterns(RewritePatternSet &patterns)
Definition: Tiling.cpp:864
SmallVector< Value > insertSlicesBack(OpBuilder &builder, Location loc, LinalgOp op, ValueRange operands, ValueRange results)
Creates insert_slice ops that insert results back into larger tensors they were originally extracted ...
Definition: Utils.cpp:714
std::tuple< SmallVector< Range, 4 >, LoopIndexToRangeIndexMap > makeTiledLoopRanges(RewriterBase &b, Location loc, AffineMap map, ArrayRef< OpFoldResult > allShapeSizes, ArrayRef< OpFoldResult > allTileSizes)
Definition: Tiling.cpp:49
void offsetIndices(OpBuilder &b, LinalgOp linalgOp, ArrayRef< OpFoldResult > offests)
Add the specified offsets to any linalg.index ops contained in the given linalgOp.
Definition: Utils.cpp:816
FailureOr< StaticMultiSizeSpecification > computeStaticMultiTileSizes(LinalgOp op, unsigned dimension, int64_t targetSize, int64_t divisor)
Definition: Tiling.cpp:242
FailureOr< ContinuousTileSizeSpecification > computeContinuousTileSizes(OpBuilder &builder, TilingInterface op, unsigned dimension, OpFoldResult targetSize, bool emitAssertions)
Definition: Tiling.cpp:162
FailureOr< StaticContinuousTileSizeSpecification > computeStaticContinuousTileSizes(LinalgOp op, unsigned dimension, unsigned targetSize)
Definition: Tiling.cpp:111
FailureOr< ForallReductionTilingResult > tileReductionUsingForall(RewriterBase &b, PartialReductionOpInterface op, ArrayRef< OpFoldResult > numThreads, ArrayRef< OpFoldResult > tileSizes={}, std::optional< ArrayAttr > mapping=std::nullopt)
Method to tile a reduction to parallel iterations computing partial reductions.
Definition: Tiling.cpp:596
FailureOr< TiledLinalgOp > tileLinalgOp(RewriterBase &b, LinalgOp op, const LinalgTilingOptions &options)
Definition: Tiling.cpp:824
RewritePatternSet getLinalgTilingCanonicalizationPatterns(MLIRContext *ctx)
Canonicalization patterns relevant to apply after tiling patterns.
Definition: Tiling.cpp:858
SmallVector< Type > getTensorOutputTypes(LinalgOp op, ValueRange operands)
Returns the list of tensor output types produced when the given structured operation op is applied to...
Definition: Utils.cpp:705
FailureOr< MultiSizeSpecification > computeMultiTileSizes(OpBuilder &builder, LinalgOp op, unsigned dimension, OpFoldResult targetSize, OpFoldResult divisor, bool emitAssertions=true)
Emits the IR computing the multi-sized tiling specification with two tile sizes not exceeding targetS...
Definition: Tiling.cpp:268
SmallVector< Value > ValueVector
An owning vector of values, handy to return from functions.
Definition: SCF.h:70
LogicalResult getOrCreateDestinations(OpBuilder &b, Location loc, Operation *op, SmallVector< Value > &result)
This is a helper function for DestinationStyleOpInterface.
Definition: TensorOps.cpp:109
Include the generated interface declarations.
bool isConstantIntValue(OpFoldResult ofr, int64_t value)
Return true if ofr is constant integer equal to value.
std::optional< int64_t > getConstantIntValue(OpFoldResult ofr)
If ofr is a constant integer or an IntegerAttr, return the integer.
void bindDims(MLIRContext *ctx, AffineExprTy &...exprs)
Bind a list of AffineExpr references to DimExpr at positions: [0 .
Definition: AffineExpr.h:348
AffineMap inversePermutation(AffineMap map)
Returns a map of codomain to domain dimensions such that the first codomain dimension for a particula...
Definition: AffineMap.cpp:791
void bindSymbols(MLIRContext *ctx, AffineExprTy &...exprs)
Bind a list of AffineExpr references to SymbolExpr at positions: [0 .
Definition: AffineExpr.h:362
Value getValueOrCreateConstantIndexOp(OpBuilder &b, Location loc, OpFoldResult ofr)
Converts an OpFoldResult to a Value.
Definition: Utils.cpp:112
Operation * clone(OpBuilder &b, Operation *op, TypeRange newResultTypes, ValueRange newOperands)
OpFoldResult getAsOpFoldResult(Value val)
Given a value, try to extract a constant Attribute.
SmallVector< scf::ForOp, 8 > Loops
Tile a nest of standard for loops rooted at rootForOp by finding such parametric tile sizes that the ...
Definition: Utils.h:144
void applyPermutationToVector(SmallVector< T, N > &inVec, ArrayRef< int64_t > permutation)
Apply the permutation defined by permutation to inVec.
Represents a range (offset, size, and stride) where each element of the triple may be dynamic or stat...
Transformation information returned after reduction tiling.
Definition: Transforms.h:891
SmallVector< Operation * > mergeOps
The final reduction operation merging all the partial reductions.
Definition: Transforms.h:895
SmallVector< Value > initialValues
Initial values used for partial reductions.
Definition: Transforms.h:897
scf::ForallOp loops
The scf.forall operation that iterate over the tiles.
Definition: Transforms.h:899
SmallVector< Operation * > parallelTiledOps
The partial reduction tiled op generated.
Definition: Transforms.h:893
A description of a multi-size tiling comprising tile sizes and numbers of tiles, expressed as Values ...
Definition: Transforms.h:838
Callback function type used to get processor ID, and number of processors used for distribution for a...
Definition: Utils.h:288
Perform standalone tiling of a single LinalgOp by tileSizes.
Definition: Transforms.h:679
SmallVector< Value, 4 > tensorResults
Definition: Transforms.h:682
SmallVector< T > tripCounts
Number of tiles associated with each size.
Definition: Transforms.h:829
T lowTripCount
Number of tiles associated with each size.
Definition: Transforms.h:821
Eliminates variable at the specified position using Fourier-Motzkin variable elimination.