|
MLIR 22.0.0git
|
Classes | |
| class | ForLoopPipeliningPattern |
| struct | LoopNest |
| struct | PipeliningOption |
| Options to dictate how loops should be pipelined. More... | |
Typedefs | |
| using | ValueVector = SmallVector<Value> |
| An owning vector of values, handy to return from functions. | |
| using | LoopVector = SmallVector<scf::ForOp> |
| using | ValueTypeCastFnTy |
| Perform a replacement of one iter OpOperand of an scf.for to the replacement value with a different type. | |
| using | LoopMatcherFn |
| Match "for loop"-like operations: If the first parameter is an iteration variable, return lower/upper bounds via the second/third parameter and the step size via the last parameter. | |
Functions | |
| void | buildTerminatedBody (OpBuilder &builder, Location loc) |
| Default callback for IfOp builders. Inserts a yield without arguments. | |
| ForOp | getForInductionVarOwner (Value val) |
| Returns the loop parent of an induction variable. | |
| ParallelOp | getParallelForInductionVarOwner (Value val) |
| Returns the parallel loop parent of an induction variable. | |
| ForallOp | getForallOpThreadIndexOwner (Value val) |
| Returns the ForallOp parent of an thread index variable. | |
| bool | insideMutuallyExclusiveBranches (Operation *a, Operation *b) |
| Return true if ops a and b (or their ancestors) are in mutually exclusive regions/blocks of an IfOp. | |
| void | promote (RewriterBase &rewriter, scf::ForallOp forallOp) |
| Promotes the loop body of a scf::ForallOp to its containing block. | |
| LoopNest | buildLoopNest (OpBuilder &builder, Location loc, ValueRange lbs, ValueRange ubs, ValueRange steps, ValueRange iterArgs, function_ref< ValueVector(OpBuilder &, Location, ValueRange, ValueRange)> bodyBuilder=nullptr) |
| Creates a perfect nest of "for" loops, i.e. | |
| LoopNest | buildLoopNest (OpBuilder &builder, Location loc, ValueRange lbs, ValueRange ubs, ValueRange steps, function_ref< void(OpBuilder &, Location, ValueRange)> bodyBuilder=nullptr) |
| A convenience version for building loop nests without iteration arguments (like for reductions). | |
| SmallVector< Value > | replaceAndCastForOpIterArg (RewriterBase &rewriter, scf::ForOp forOp, OpOperand &operand, Value replacement, const ValueTypeCastFnTy &castFn) |
| std::optional< llvm::APSInt > | computeUbMinusLb (Value lb, Value ub, bool isSigned) |
| Helper function to compute the difference between two values. | |
| void | registerValueBoundsOpInterfaceExternalModels (DialectRegistry ®istry) |
| void | registerTransformDialectExtension (DialectRegistry ®istry) |
| void | registerBufferDeallocationOpInterfaceExternalModels (DialectRegistry ®istry) |
| void | registerBufferizableOpInterfaceExternalModels (DialectRegistry ®istry) |
| void | populateSCFStructuralTypeConversionsAndLegality (const TypeConverter &typeConverter, RewritePatternSet &patterns, ConversionTarget &target, PatternBenefit benefit=1) |
| Populates patterns for SCF structural type conversions and sets up the provided ConversionTarget with the appropriate legality configuration for the ops to get converted properly. | |
| void | populateSCFStructuralTypeConversions (const TypeConverter &typeConverter, RewritePatternSet &patterns, PatternBenefit benefit=1) |
| Similar to populateSCFStructuralTypeConversionsAndLegality but does not populate the conversion target. | |
| void | populateSCFStructuralTypeConversionTarget (const TypeConverter &typeConverter, ConversionTarget &target) |
| Updates the ConversionTarget with dynamic legality of SCF operations based on the provided type converter. | |
| void | populateSCFLoopPipeliningPatterns (RewritePatternSet &patterns, const PipeliningOption &options) |
| Populate patterns for SCF software pipelining transformation. | |
| void | populateSCFForLoopCanonicalizationPatterns (RewritePatternSet &patterns) |
| Populate patterns for canonicalizing operations inside SCF loop bodies. | |
| void | populateUpliftWhileToForPatterns (RewritePatternSet &patterns) |
| Populate patterns to uplift scf.while ops to scf.for. | |
| void | populateSCFRotateWhileLoopPatterns (RewritePatternSet &patterns) |
| Populate patterns to rotate scf.while ops, constructing do-while loops from while loops. | |
| LogicalResult | forallToForLoop (RewriterBase &rewriter, ForallOp forallOp, SmallVectorImpl< Operation * > *results=nullptr) |
| Try converting scf.forall into a set of nested scf.for loops. | |
| LogicalResult | forallToParallelLoop (RewriterBase &rewriter, ForallOp forallOp, ParallelOp *result=nullptr) |
| Try converting scf.forall into an scf.parallel loop. | |
| FailureOr< scf::LoopNest > | parallelForToNestedFors (RewriterBase &rewriter, ParallelOp parallelOp) |
| Try converting scf.forall into an scf.parallel loop. | |
| void | naivelyFuseParallelOps (Region ®ion, llvm::function_ref< bool(Value, Value)> mayAlias) |
| Fuses all adjacent scf.parallel operations with identical bounds and step into one scf.parallel operations. | |
| LogicalResult | peelForLoopAndSimplifyBounds (RewriterBase &rewriter, ForOp forOp, scf::ForOp &partialIteration) |
| Rewrite a for loop with bounds/step that potentially do not divide evenly into a for loop where the step divides the iteration space evenly, followed by another scf.for for the last (partial) iteration (if any; returned via partialIteration). | |
| LogicalResult | peelForLoopFirstIteration (RewriterBase &rewriter, ForOp forOp, scf::ForOp &partialIteration) |
| Peel the first iteration out of the scf.for loop. | |
| std::pair< ParallelOp, ParallelOp > | tileParallelLoop (ParallelOp op, llvm::ArrayRef< int64_t > tileSizes, bool noMinMaxBounds) |
| Tile a parallel loop of the form scf.parallel (i0, i1) = (arg0, arg1) to (arg2, arg3) step (arg4, arg5) | |
| FailureOr< ForOp > | pipelineForLoop (RewriterBase &rewriter, ForOp forOp, const PipeliningOption &options, bool *modifiedIR=nullptr) |
| Generate a pipelined version of the scf.for loop based on the schedule given as option. | |
| FailureOr< WhileOp > | wrapWhileLoopInZeroTripCheck (WhileOp whileOp, RewriterBase &rewriter, bool forceCreateCheck=false) |
| Create zero-trip-check around a while op and return the new loop op in the check. | |
| FailureOr< ForOp > | upliftWhileToForLoop (RewriterBase &rewriter, WhileOp loop) |
| Try to uplift scf.while op to scf.for. | |
| LogicalResult | matchForLikeLoop (Value iv, OpFoldResult &lb, OpFoldResult &ub, OpFoldResult &step) |
| Match "for loop"-like operations from the SCF dialect. | |
| LogicalResult | addLoopRangeConstraints (affine::FlatAffineValueConstraints &cstr, Value iv, OpFoldResult lb, OpFoldResult ub, OpFoldResult step) |
| Populate the given constraint set with induction variable constraints of a "for" loop with the given range and step. | |
| LogicalResult | canonicalizeMinMaxOpInLoop (RewriterBase &rewriter, Operation *op, LoopMatcherFn loopMatcher) |
| Try to canonicalize the given affine.min/max operation in the context of for loops with a known range. | |
| LogicalResult | rewritePeeledMinMaxOp (RewriterBase &rewriter, Operation *op, Value iv, Value ub, Value step, bool insideLoop) |
| Try to simplify the given affine.min/max operation op after loop peeling. | |
| using mlir::scf::LoopMatcherFn |
Match "for loop"-like operations: If the first parameter is an iteration variable, return lower/upper bounds via the second/third parameter and the step size via the last parameter.
The function should return success in that case. If the first parameter is not an iteration variable, return failure.
Definition at line 39 of file AffineCanonicalizationUtils.h.
| using mlir::scf::LoopVector = SmallVector<scf::ForOp> |
Perform a replacement of one iter OpOperand of an scf.for to the replacement value with a different type.
A callback is used to insert cast ops inside the block to account for type differences.
| using mlir::scf::ValueVector = SmallVector<Value> |
| LogicalResult mlir::scf::addLoopRangeConstraints | ( | affine::FlatAffineValueConstraints & | cstr, |
| Value | iv, | ||
| OpFoldResult | lb, | ||
| OpFoldResult | ub, | ||
| OpFoldResult | step ) |
Populate the given constraint set with induction variable constraints of a "for" loop with the given range and step.
Definition at line 77 of file AffineCanonicalizationUtils.cpp.
References mlir::affine::FlatAffineValueConstraints::addBound(), mlir::presburger::IntegerRelation::addInequality(), mlir::FlatLinearValueConstraints::appendDimVar(), mlir::FlatLinearValueConstraints::appendSymbolVar(), b, mlir::AffineMap::get(), mlir::getConstantIntValue(), mlir::Value::getContext(), mlir::presburger::IntegerRelation::getNumCols(), mlir::presburger::IntegerRelation::getNumDimVars(), and mlir::presburger::IntegerRelation::getNumSymbolVars().
Referenced by canonicalizeMinMaxOpInLoop().
| LoopNest mlir::scf::buildLoopNest | ( | OpBuilder & | builder, |
| Location | loc, | ||
| ValueRange | lbs, | ||
| ValueRange | ubs, | ||
| ValueRange | steps, | ||
| function_ref< void(OpBuilder &, Location, ValueRange)> | bodyBuilder = nullptr ) |
A convenience version for building loop nests without iteration arguments (like for reductions).
Does not take the initial value of reductions or expect the body building functions to return their current value. The built nested scf::For are captured in capturedLoops when non-null.
Definition at line 910 of file SCF.cpp.
References buildLoopNest().
| LoopNest mlir::scf::buildLoopNest | ( | OpBuilder & | builder, |
| Location | loc, | ||
| ValueRange | lbs, | ||
| ValueRange | ubs, | ||
| ValueRange | steps, | ||
| ValueRange | iterArgs, | ||
| function_ref< ValueVector(OpBuilder &, Location, ValueRange, ValueRange)> | bodyBuilder = nullptr ) |
Creates a perfect nest of "for" loops, i.e.
all loops but the innermost contain only another loop and a terminator. The lower, upper bounds and steps are provided as lbs, ubs and steps, which are expected to be of the same size. iterArgs points to the initial values of the loop iteration arguments, which will be forwarded through the nest to the innermost loop. The body of the loop is populated using bodyBuilder, which accepts an ordered list of induction variables of all loops, followed by a list of iteration arguments of the innermost loop, in the same order as provided to iterArgs. This function is expected to return as many values as iterArgs, of the same type and in the same order, that will be treated as yielded from the loop body and forwarded back through the loop nest. If the function is not provided, the loop nest is not expected to have iteration arguments, the body of the innermost loop will be left empty, containing only the zero-operand terminator. Returns the LoopNest containing the list of perfectly nest scf::ForOp build during the call. If bound arrays are empty, the body builder will be called once to construct the IR outside of the loop with an empty list of induction variables.
Definition at line 837 of file SCF.cpp.
References mlir::OpBuilder::setInsertionPointToEnd(), mlir::OpBuilder::setInsertionPointToStart(), and ValueRange.
Referenced by buildLoopNest(), mlir::linalg::GenerateLoopNest< LoopTy >::doit(), mlir::linalg::generateParallelLoopNest(), and insertCopyLoops().
| LogicalResult mlir::scf::canonicalizeMinMaxOpInLoop | ( | RewriterBase & | rewriter, |
| Operation * | op, | ||
| LoopMatcherFn | loopMatcher ) |
Try to canonicalize the given affine.min/max operation in the context of for loops with a known range.
Canonicalize min/max operations in the context of for loops with a known range.
loopMatcher is used to retrieve loop bounds and the step size for a given iteration variable.
Note: loopMatcher allows this function to be used with any "for loop"-like operation (scf.for, scf.parallel and even ops defined in other dialects).
Call canonicalizeMinMaxOp and add the following constraints to the constraint system (along with the missing dimensions):
Note: Due to limitations of IntegerPolyhedron, only constant step sizes are currently supported.
Definition at line 145 of file AffineCanonicalizationUtils.cpp.
References addLoopRangeConstraints(), canonicalizeMinMaxOp(), and mlir::Operation::getOperands().
Helper function to compute the difference between two values.
This is used by the loop implementations to compute the trip count.
Definition at line 114 of file SCF.cpp.
References mlir::m_ConstantInt(), and mlir::matchPattern().
Referenced by mlir::getConstLoopTripCounts().
| LogicalResult mlir::scf::forallToForLoop | ( | RewriterBase & | rewriter, |
| ForallOp | forallOp, | ||
| SmallVectorImpl< Operation * > * | results = nullptr ) |
Try converting scf.forall into a set of nested scf.for loops.
The newly created scf.for ops will be returned through the results vector if provided.
| LogicalResult mlir::scf::forallToParallelLoop | ( | RewriterBase & | rewriter, |
| ForallOp | forallOp, | ||
| ParallelOp * | result = nullptr ) |
Try converting scf.forall into an scf.parallel loop.
The conversion is only supported for forall operations with no results.
References result.
| ForallOp mlir::scf::getForallOpThreadIndexOwner | ( | Value | val | ) |
Returns the ForallOp parent of an thread index variable.
If the provided value is not a thread index variable, then return nullptr.
Definition at line 1609 of file SCF.cpp.
Referenced by matchForLikeLoop().
| ForOp mlir::scf::getForInductionVarOwner | ( | Value | val | ) |
Returns the loop parent of an induction variable.
If the provided value is not an induction variable, then return nullptr.
Definition at line 744 of file SCF.cpp.
Referenced by buildPackingLoopNestImpl(), matchForLikeLoop(), and replaceByPackingResult().
| ParallelOp mlir::scf::getParallelForInductionVarOwner | ( | Value | val | ) |
Returns the parallel loop parent of an induction variable.
If the provided value is not an induction variable, then return nullptr.
Definition at line 3267 of file SCF.cpp.
Referenced by matchForLikeLoop().
Return true if ops a and b (or their ancestors) are in mutually exclusive regions/blocks of an IfOp.
Definition at line 2151 of file SCF.cpp.
References b, and mlir::Operation::getParentOfType().
| LogicalResult mlir::scf::matchForLikeLoop | ( | Value | iv, |
| OpFoldResult & | lb, | ||
| OpFoldResult & | ub, | ||
| OpFoldResult & | step ) |
Match "for loop"-like operations from the SCF dialect.
Definition at line 31 of file AffineCanonicalizationUtils.cpp.
References getForallOpThreadIndexOwner(), getForInductionVarOwner(), getParallelForInductionVarOwner(), and success().
| void mlir::scf::naivelyFuseParallelOps | ( | Region & | region, |
| llvm::function_ref< bool(Value, Value)> | mayAlias ) |
Fuses all adjacent scf.parallel operations with identical bounds and step into one scf.parallel operations.
Uses a naive aliasing and dependency analysis. User can additionally customize alias checking with mayAlias hook. mayAlias must return false if 2 values are guaranteed to not alias.
Definition at line 235 of file ParallelLoopFusion.cpp.
References b, fuseIfLegal(), mlir::isMemoryEffectFree(), and mayAlias().
| FailureOr< scf::LoopNest > mlir::scf::parallelForToNestedFors | ( | RewriterBase & | rewriter, |
| ParallelOp | parallelOp ) |
Try converting scf.forall into an scf.parallel loop.
The conversion is only supported for parallel operations with no results.
References mayAlias().
| LogicalResult mlir::scf::peelForLoopAndSimplifyBounds | ( | RewriterBase & | rewriter, |
| ForOp | forOp, | ||
| scf::ForOp & | partialIteration ) |
Rewrite a for loop with bounds/step that potentially do not divide evenly into a for loop where the step divides the iteration space evenly, followed by another scf.for for the last (partial) iteration (if any; returned via partialIteration).
This transformation is called "loop peeling".
This transformation is beneficial for a wide range of transformations such as vectorization or loop tiling: It enables additional canonicalizations inside the peeled loop body such as rewriting masked loads into unmaked loads.
E.g., assuming a lower bound of 0 (for illustration purposes):
is rewritten into the following pseudo IR:
After loop peeling, this function tries to simplify affine.min and affine.max ops in the body of the peeled loop and in the body of the partial iteration loop, taking advantage of the fact that the peeled loop has only "full" iterations. This simplification is expected to enable further canonicalization opportunities through other patterns.
The return value indicates whether the loop was rewritten or not. Loops are not rewritten if:
Note: This function rewrites the given scf.for loop in-place and creates a new scf.for operation for the last iteration. It replaces all uses of the unpeeled loop with the results of the newly generated scf.for.
Referenced by mlir::linalg::peelLoop().
| LogicalResult mlir::scf::peelForLoopFirstIteration | ( | RewriterBase & | rewriter, |
| ForOp | forOp, | ||
| scf::ForOp & | partialIteration ) |
Peel the first iteration out of the scf.for loop.
If there is only one iteration, return the original loop.
| FailureOr< ForOp > mlir::scf::pipelineForLoop | ( | RewriterBase & | rewriter, |
| ForOp | forOp, | ||
| const PipeliningOption & | options, | ||
| bool * | modifiedIR = nullptr ) |
Generate a pipelined version of the scf.for loop based on the schedule given as option.
This applies the mechanical transformation of changing the loop and generating the prologue/epilogue for the pipelining and doesn't make any decision regarding the schedule. Based on the options the loop is split into several stages. The transformation assumes that the scheduling given by user is valid. For example if we break a loop into 3 stages named S0, S1, S2 we would generate the following code with the number in parenthesis as the iteration index:
S0(0) // Prologue S0(1) S1(0) // Prologue scf.for I = C0 to N - 2 { S0(I+2) S1(I+1) S2(I) // Pipelined kernel } S1(N) S2(N-1) // Epilogue S2(N) // Epilogue
If modifiedIR is provided, it will be set to a value that indicates whether pipelining modified the IR before failing, signaling to the caller whether they can proceed with different transformations.
Definition at line 789 of file LoopPipelining.cpp.
References mlir::RewriterBase::eraseOp(), options, mlir::RewriterBase::replaceOp(), and mlir::OpBuilder::setInsertionPointAfter().
Referenced by mlir::scf::ForLoopPipeliningPattern::returningMatchAndRewrite().
| void mlir::scf::populateSCFForLoopCanonicalizationPatterns | ( | RewritePatternSet & | patterns | ) |
Populate patterns for canonicalizing operations inside SCF loop bodies.
At the moment, only affine.min/max computations with iteration variables, loop bounds and loop steps are canonicalized.
Definition at line 176 of file LoopCanonicalization.cpp.
References mlir::patterns.
| void mlir::scf::populateSCFLoopPipeliningPatterns | ( | RewritePatternSet & | patterns, |
| const PipeliningOption & | options ) |
Populate patterns for SCF software pipelining transformation.
See the ForLoopPipeliningPattern for the transformation details.
Definition at line 847 of file LoopPipelining.cpp.
References options, and mlir::patterns.
| void mlir::scf::populateSCFRotateWhileLoopPatterns | ( | RewritePatternSet & | patterns | ) |
Populate patterns to rotate scf.while ops, constructing do-while loops from while loops.
Definition at line 40 of file RotateWhileLoop.cpp.
References mlir::patterns.
| void mlir::scf::populateSCFStructuralTypeConversions | ( | const TypeConverter & | typeConverter, |
| RewritePatternSet & | patterns, | ||
| PatternBenefit | benefit = 1 ) |
Similar to populateSCFStructuralTypeConversionsAndLegality but does not populate the conversion target.
Definition at line 243 of file StructuralTypeConversions.cpp.
References mlir::patterns.
Referenced by populateSCFStructuralTypeConversionsAndLegality().
| void mlir::scf::populateSCFStructuralTypeConversionsAndLegality | ( | const TypeConverter & | typeConverter, |
| RewritePatternSet & | patterns, | ||
| ConversionTarget & | target, | ||
| PatternBenefit | benefit = 1 ) |
Populates patterns for SCF structural type conversions and sets up the provided ConversionTarget with the appropriate legality configuration for the ops to get converted properly.
A "structural" type conversion is one where the underlying ops are completely agnostic to the actual types involved and simply need to update their types. An example of this is scf.if – the scf.if op and the corresponding scf.yield ops need to update their types accordingly to the TypeConverter, but otherwise don't care what type conversions are happening.
Definition at line 267 of file StructuralTypeConversions.cpp.
References mlir::patterns, populateSCFStructuralTypeConversions(), populateSCFStructuralTypeConversionTarget(), and target.
Referenced by mlir::xegpu::doSCFStructuralTypeConversionWithTensorType().
| void mlir::scf::populateSCFStructuralTypeConversionTarget | ( | const TypeConverter & | typeConverter, |
| ConversionTarget & | target ) |
Updates the ConversionTarget with dynamic legality of SCF operations based on the provided type converter.
Definition at line 252 of file StructuralTypeConversions.cpp.
References target.
Referenced by populateSCFStructuralTypeConversionsAndLegality().
| void mlir::scf::populateUpliftWhileToForPatterns | ( | RewritePatternSet & | patterns | ) |
Populate patterns to uplift scf.while ops to scf.for.
Uplifitng expects a specific ops pattern:
Definition at line 269 of file UpliftWhileToFor.cpp.
References mlir::patterns.
| void mlir::scf::promote | ( | RewriterBase & | rewriter, |
| scf::ForallOp | forallOp ) |
Promotes the loop body of a scf::ForallOp to its containing block.
Definition at line 792 of file SCF.cpp.
References mlir::RewriterBase::eraseOp(), mlir::Value::getType(), mlir::RewriterBase::inlineBlockBefore(), mlir::RewriterBase::replaceAllUsesWith(), and mlir::OpBuilder::setInsertionPointAfter().
| void mlir::scf::registerBufferDeallocationOpInterfaceExternalModels | ( | DialectRegistry & | registry | ) |
Definition at line 75 of file BufferDeallocationOpInterfaceImpl.cpp.
References mlir::DialectRegistry::addExtension().
Referenced by mlir::registerAllDialects().
| void mlir::scf::registerBufferizableOpInterfaceExternalModels | ( | DialectRegistry & | registry | ) |
Definition at line 1367 of file BufferizableOpInterfaceImpl.cpp.
References mlir::DialectRegistry::addExtension().
Referenced by mlir::registerAllDialects().
| void mlir::scf::registerTransformDialectExtension | ( | DialectRegistry & | registry | ) |
Referenced by mlir::registerAllExtensions().
| void mlir::scf::registerValueBoundsOpInterfaceExternalModels | ( | DialectRegistry & | registry | ) |
Definition at line 232 of file ValueBoundsOpInterfaceImpl.cpp.
References mlir::DialectRegistry::addExtension().
Referenced by mlir::registerAllDialects().
| SmallVector< Value > mlir::scf::replaceAndCastForOpIterArg | ( | RewriterBase & | rewriter, |
| scf::ForOp | forOp, | ||
| OpOperand & | operand, | ||
| Value | replacement, | ||
| const ValueTypeCastFnTy & | castFn ) |
Definition at line 926 of file SCF.cpp.
References mlir::RewriterBase::eraseOp(), mlir::Block::front(), mlir::IROperand< DerivedT, IRValueT >::get(), mlir::BlockArgument::getArgNumber(), mlir::Block::getArguments(), mlir::OpOperand::getOperandNumber(), mlir::detail::IROperandBase::getOwner(), mlir::Block::getTerminator(), mlir::Value::getType(), mlir::RewriterBase::mergeBlocks(), replacement(), mlir::OpBuilder::setInsertionPoint(), mlir::OpBuilder::setInsertionPointAfter(), and mlir::OpBuilder::setInsertionPointToStart().
| LogicalResult mlir::scf::rewritePeeledMinMaxOp | ( | RewriterBase & | rewriter, |
| Operation * | op, | ||
| Value | iv, | ||
| Value | ub, | ||
| Value | step, | ||
| bool | insideLoop ) |
Try to simplify the given affine.min/max operation op after loop peeling.
This function can simplify min/max operations such as (ub is the previous upper bound of the unpeeled loop):
and rewrites them into (in the case the peeled loop):
min/max operations inside the partial iteration are rewritten in a similar way.
This function can simplify min/max operations such as (ub is the previous upper bound of the unpeeled loop):
and rewrites them into (in the case the peeled loop):
min/max operations inside the partial iteration are rewritten in a similar way.
This function builds up a set of constraints, capable of proving that:
Returns success if the given operation was replaced by a new operation; failure otherwise.
Note: ub is the previous upper bound of the loop (before peeling). insideLoop must be true for min/max ops inside the loop and false for affine.min ops inside the partial iteration. For an explanation of the other parameters, see comment of canonicalizeMinMaxOpInLoop.
Definition at line 197 of file AffineCanonicalizationUtils.cpp.
References mlir::affine::FlatAffineValueConstraints::addBound(), mlir::presburger::IntegerRelation::addInequality(), mlir::FlatLinearValueConstraints::appendDimVar(), mlir::FlatLinearValueConstraints::appendSymbolVar(), canonicalizeMinMaxOp(), and mlir::getConstantIntValue().
Referenced by rewriteAffineOpAfterPeeling().
| std::pair< ParallelOp, ParallelOp > mlir::scf::tileParallelLoop | ( | ParallelOp | op, |
| llvm::ArrayRef< int64_t > | tileSizes, | ||
| bool | noMinMaxBounds ) |
Tile a parallel loop of the form scf.parallel (i0, i1) = (arg0, arg1) to (arg2, arg3) step (arg4, arg5)
into scf.parallel (i0, i1) = (arg0, arg1) to (arg2, arg3) step (arg4*tileSize[0], arg5*tileSize[1]) scf.parallel (j0, j1) = (0, 0) to (min(tileSize[0], arg2-j0) min(tileSize[1], arg3-j1)) step (arg4, arg5) The old loop is replaced with the new one.
The function returns the resulting ParallelOps, i.e. {outer_loop_op, inner_loop_op}.
| FailureOr< ForOp > mlir::scf::upliftWhileToForLoop | ( | RewriterBase & | rewriter, |
| WhileOp | loop ) |
Try to uplift scf.while op to scf.for.
Uplifitng expects a specific ops pattern:
| FailureOr< WhileOp > mlir::scf::wrapWhileLoopInZeroTripCheck | ( | WhileOp | whileOp, |
| RewriterBase & | rewriter, | ||
| bool | forceCreateCheck = false ) |
Create zero-trip-check around a while op and return the new loop op in the check.
The while loop is rotated to avoid evaluating the condition twice
By default the check won't be created for do-while loop as it is not required. forceCreateCheck can force the creation.
It turns:
scf.while (arg0 = init) : (i32) -> i64 { val = .., arg0 : i64 cond = arith.cmpi .., arg0 : i32 scf.condition(cond) val : i64 } do { ^bb0(arg1: i64): next = .., arg1 : i32 scf.yield next : i32 }
into:
pre_val = .., init : i64 pre_cond = arith.cmpi .., init : i32 scf.if pre_cond -> i64 { res = scf.while (arg1 = va0) : (i64) -> i64 { next = .., arg1 : i32 val = .., next : i64 cond = arith.cmpi .., next : i32 scf.condition(cond) val : i64 } do { ^bb0(arg2: i64): scf.yield arg2 : i32 } scf.yield res : i64 } else { scf.yield pre_val : i64 }
Failure mechanism is not implemented for this function, so it currently always returns a WhileOp operation: a new one if the transformation took place or the input whileOp if the loop was already in a do-while form and forceCreateCheck is false.