MLIR  20.0.0git
Utils.cpp
Go to the documentation of this file.
1 //===- Utils.cpp - Utilities to support the Linalg dialect ----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements utilities for the Linalg dialect.
10 //
11 //===----------------------------------------------------------------------===//
12 
14 
30 #include "mlir/IR/AffineExpr.h"
32 #include "mlir/IR/AffineMap.h"
33 #include "mlir/IR/Matchers.h"
35 #include "mlir/Pass/Pass.h"
36 #include "llvm/ADT/TypeSwitch.h"
37 #include "llvm/Support/Debug.h"
38 #include <optional>
39 
40 #define DEBUG_TYPE "linalg-utils"
41 
42 using namespace mlir;
43 using namespace presburger;
44 using namespace mlir::affine;
45 using namespace mlir::linalg;
46 using namespace mlir::scf;
47 
48 namespace {
49 
50 // Helper visitor to determine whether an AffineExpr is tiled.
51 // This is achieved by traversing every AffineDimExpr with position `pos` and
52 // checking whether the corresponding `tileSizes[pos]` is non-zero.
53 // This also enforces only positive coefficients occur in multiplications.
54 //
55 // Example:
56 // `d0 + 2 * d1 + d3` is tiled by [0, 0, 0, 2] but not by [0, 0, 2, 0]
57 //
58 struct TileCheck : public AffineExprVisitor<TileCheck> {
59  TileCheck(ArrayRef<OpFoldResult> tileSizes) : tileSizes(tileSizes) {}
60 
61  void visitDimExpr(AffineDimExpr expr) {
62  isTiled |= !isZeroIndex(tileSizes[expr.getPosition()]);
63  }
64  void visitAffineBinaryOpExpr(AffineBinaryOpExpr expr) {
65  visit(expr.getLHS());
66  visit(expr.getRHS());
67  if (expr.getKind() == mlir::AffineExprKind::Mul)
68  assert(cast<AffineConstantExpr>(expr.getRHS()).getValue() > 0 &&
69  "nonpositive multiplying coefficient");
70  }
71  bool isTiled = false;
72  ArrayRef<OpFoldResult> tileSizes;
73 };
74 
75 } // namespace
76 
77 static bool isTiled(AffineExpr expr, ArrayRef<OpFoldResult> tileSizes) {
78  if (!expr)
79  return false;
80  TileCheck t(tileSizes);
81  t.visit(expr);
82  return t.isTiled;
83 }
84 
85 // Checks whether the `map varies with respect to a non-zero `tileSize`.
86 static bool isTiled(AffineMap map, ArrayRef<OpFoldResult> tileSizes) {
87  if (!map)
88  return false;
89  for (unsigned r = 0; r < map.getNumResults(); ++r)
90  if (isTiled(map.getResult(r), tileSizes))
91  return true;
92  return false;
93 }
94 
95 std::optional<RegionMatcher::BinaryOpKind>
96 RegionMatcher::matchAsScalarBinaryOp(GenericOp op) {
97  auto &region = op.getRegion();
98  if (!llvm::hasSingleElement(region))
99  return std::nullopt;
100 
101  Block &block = region.front();
102  if (block.getNumArguments() != 2 ||
103  !block.getArgument(0).getType().isSignlessIntOrFloat() ||
105  return std::nullopt;
106 
107  auto &ops = block.getOperations();
108  if (!llvm::hasSingleElement(block.without_terminator()))
109  return std::nullopt;
110 
111  using mlir::matchers::m_Val;
112  auto a = m_Val(block.getArgument(0));
113  auto b = m_Val(block.getArgument(1));
114 
115  auto addPattern = m_Op<linalg::YieldOp>(m_Op<arith::AddIOp>(a, b));
116  if (addPattern.match(&ops.back()))
117  return BinaryOpKind::IAdd;
118 
119  return std::nullopt;
120 }
121 
122 /// Explicit instantiation of loop nest generator for different loop types.
126 
127 /// Given a list of subview ranges, extract individual values for lower, upper
128 /// bounds and steps and put them into the corresponding vectors.
129 static void unpackRanges(OpBuilder &builder, Location loc,
132  SmallVectorImpl<Value> &steps) {
133  for (Range range : ranges) {
134  lbs.emplace_back(
135  getValueOrCreateConstantIndexOp(builder, loc, range.offset));
136  ubs.emplace_back(getValueOrCreateConstantIndexOp(builder, loc, range.size));
137  steps.emplace_back(
138  getValueOrCreateConstantIndexOp(builder, loc, range.stride));
139  }
140 }
141 
142 //===----------------------------------------------------------------------===//
143 // General utilities
144 //===----------------------------------------------------------------------===//
145 
146 namespace mlir {
147 namespace linalg {
148 
150  return llvm::all_of(op.getIndexingMapsArray(), [](AffineMap m) {
151  return m.isProjectedPermutation(/*allowZeroInResults=*/true);
152  });
153 }
154 
156  if (!llvm::hasSingleElement(r))
157  return false;
158  for (Operation &op : r.front()) {
159  if (!(isa<arith::ConstantOp, func::ConstantOp, tensor::ExtractOp,
160  linalg::YieldOp, linalg::IndexOp, AffineApplyOp>(op) ||
162  llvm::any_of(op.getResultTypes(),
163  [](Type type) { return !type.isIntOrIndexOrFloat(); }))
164  return false;
165  }
166  return true;
167 }
168 
169 bool isElementwise(LinalgOp op) {
170  if (op.getNumLoops() != op.getNumParallelLoops())
171  return false;
172 
174  return false;
175 
176  // TODO: relax the restrictions on indexing map.
177  for (OpOperand &opOperand : op.getDpsInitsMutable()) {
178  if (!op.getMatchingIndexingMap(&opOperand).isPermutation())
179  return false;
180  }
181  return hasOnlyScalarElementwiseOp(op->getRegion(0));
182 }
183 
184 bool isParallelIterator(utils::IteratorType iteratorType) {
185  return iteratorType == utils::IteratorType::parallel;
186 }
187 
188 bool isReductionIterator(utils::IteratorType iteratorType) {
189  return iteratorType == utils::IteratorType::reduction;
190 }
191 
192 Value makeComposedPadHighOp(OpBuilder &b, Location loc, RankedTensorType type,
193  Value source, Value pad, bool nofold) {
194  // Exit if `source` is not defined by an ExtractSliceOp.
195  auto sliceOp = source.getDefiningOp<tensor::ExtractSliceOp>();
196  if (!sliceOp)
197  return tensor::createPadHighOp(type, source, pad, nofold, loc, b);
198 
199  // Search the `source` use-def chain for padded LinalgOps.
200  Value current = sliceOp.getSource();
201  while (current) {
202  auto linalgOp = current.getDefiningOp<LinalgOp>();
203  if (!linalgOp)
204  break;
205  OpResult opResult = cast<OpResult>(current);
206  current = linalgOp.getDpsInitOperand(opResult.getResultNumber())->get();
207  }
208  auto padOp = current ? current.getDefiningOp<tensor::PadOp>() : nullptr;
209 
210  // Exit if the search fails to match a tensor::PadOp at the end of the matched
211  // LinalgOp sequence.
212  if (!padOp)
213  return tensor::createPadHighOp(type, source, pad, nofold, loc, b);
214 
215  // Exit if the padded result type does not match.
216  if (sliceOp.getSource().getType() != type)
217  return tensor::createPadHighOp(type, source, pad, nofold, loc, b);
218 
219  // Exit if the LinalgOps are not high padded.
220  if (llvm::any_of(padOp.getMixedLowPad(), [](OpFoldResult ofr) {
221  return getConstantIntValue(ofr) != static_cast<int64_t>(0);
222  }))
223  return tensor::createPadHighOp(type, source, pad, nofold, loc, b);
224 
225  // Exit if `padOpSliceOp`, which defines the slice used by
226  // `padOp`, is rank-reducing.
227  auto padOpSliceOp = padOp.getSource().getDefiningOp<tensor::ExtractSliceOp>();
228  if (!padOpSliceOp ||
229  sliceOp.getMixedSizes().size() != padOpSliceOp.getMixedSizes().size())
230  return tensor::createPadHighOp(type, source, pad, nofold, loc, b);
231 
232  // Exit if the sizes of the dynamic sizes of `sliceOp` do not match the size
233  // of the slice padded by `padOp`.
234  if (llvm::any_of(
235  llvm::zip(sliceOp.getMixedSizes(), padOpSliceOp.getMixedSizes()),
236  [](std::tuple<OpFoldResult, OpFoldResult> it) {
237  return !isEqualConstantIntOrValue(std::get<0>(it), std::get<1>(it));
238  }))
239  return tensor::createPadHighOp(type, source, pad, nofold, loc, b);
240 
241  // Exit if the padding values do not match.
242  Attribute padOpPadAttr, padAttr;
243  Value padOpPad = padOp.getConstantPaddingValue();
244  if (!padOpPad || !matchPattern(padOpPad, m_Constant(&padOpPadAttr)) ||
245  !matchPattern(pad, m_Constant(&padAttr)) || padOpPadAttr != padAttr)
246  return tensor::createPadHighOp(type, source, pad, nofold, loc, b);
247 
248  // Return the padded result if the padding values and sizes match.
249  return sliceOp.getSource();
250 }
251 
252 GenericOp makeMemRefCopyOp(OpBuilder &b, Location loc, Value from, Value to) {
253  auto memrefTypeTo = cast<MemRefType>(to.getType());
254 #ifndef NDEBUG
255  auto memrefTypeFrom = cast<MemRefType>(from.getType());
256  assert(memrefTypeFrom.getRank() == memrefTypeTo.getRank() &&
257  "`from` and `to` memref must have the same rank");
258 #endif // NDEBUG
259 
260  AffineMap id =
261  AffineMap::getMultiDimIdentityMap(memrefTypeTo.getRank(), b.getContext());
262  SmallVector<utils::IteratorType> iteratorTypes(memrefTypeTo.getRank(),
263  utils::IteratorType::parallel);
264  return b.create<linalg::GenericOp>(
265  loc,
266  /*inputs=*/from,
267  /*outputs=*/to,
268  /*indexingMaps=*/llvm::ArrayRef({id, id}),
269  /*iteratorTypes=*/iteratorTypes,
270  [](OpBuilder &b, Location loc, ValueRange args) {
271  b.create<linalg::YieldOp>(loc, args.front());
272  });
273 }
274 
275 /// Specialization to build an scf "for" nest.
276 template <>
278  OpBuilder &b, Location loc, ArrayRef<Range> loopRanges, LinalgOp linalgOp,
279  ArrayRef<utils::IteratorType> iteratorTypes,
281  ValueRange)>
282  bodyBuilderFn,
283  ArrayRef<linalg::ProcInfo> procInfo) {
284  assert((procInfo.empty() || (procInfo.size() == loopRanges.size())) &&
285  "expected as many entries for proc info as number of loops, even if "
286  "they are null entries");
287  SmallVector<Value> iterArgInitValues;
288  if (!linalgOp.hasPureBufferSemantics())
289  llvm::append_range(iterArgInitValues, linalgOp.getDpsInits());
290  SmallVector<Value, 4> lbs, ubs, steps;
291  unpackRanges(b, loc, loopRanges, lbs, ubs, steps);
293  b, loc, lbs, ubs, steps, iterArgInitValues,
294  [&](OpBuilder &b, Location loc, ValueRange ivs, ValueRange iterArgs) {
295  assert(iterArgs.size() == iterArgInitValues.size() &&
296  "expect the number of output tensors and iter args to match");
297  SmallVector<Value> operandValuesToUse = linalgOp->getOperands();
298  if (!iterArgs.empty()) {
299  operandValuesToUse = linalgOp.getDpsInputs();
300  operandValuesToUse.append(iterArgs.begin(), iterArgs.end());
301  }
302  return bodyBuilderFn(b, loc, ivs, operandValuesToUse);
303  });
304 
305  if (loopNest.loops.empty() || procInfo.empty())
306  return;
307 
308  // Filter out scf.for loops that were created out of parallel dimensions.
309  for (const auto &loop : llvm::enumerate(loopNest.loops)) {
310  if (procInfo[loop.index()].distributionMethod ==
311  DistributionMethod::Cyclic) {
312  mapLoopToProcessorIds(loop.value(), procInfo[loop.index()].procId,
313  procInfo[loop.index()].nprocs);
314  }
315  }
316 }
317 
318 /// Specialization to build affine "for" nest.
319 template <>
321  OpBuilder &b, Location loc, ArrayRef<Range> loopRanges, LinalgOp linalgOp,
322  ArrayRef<utils::IteratorType> iteratorTypes,
324  ValueRange)>
325  bodyBuilderFn,
326  ArrayRef<linalg::ProcInfo> /*procInfo*/) {
327  SmallVector<Value> iterArgInitValues;
328  if (!linalgOp.hasPureBufferSemantics())
329  llvm::append_range(iterArgInitValues, linalgOp.getDpsInits());
330  assert(iterArgInitValues.empty() && "unexpected AffineForOp init values");
331  SmallVector<Value, 4> lbs, ubs, steps;
332  unpackRanges(b, loc, loopRanges, lbs, ubs, steps);
333 
334  // Affine loops require constant steps.
335  SmallVector<int64_t, 4> constantSteps;
336  constantSteps.reserve(steps.size());
337  for (Value v : steps) {
338  auto constVal = getConstantIntValue(v);
339  assert(constVal.has_value() && "Affine loops require constant steps");
340  constantSteps.push_back(constVal.value());
341  }
342 
343  affine::buildAffineLoopNest(b, loc, lbs, ubs, constantSteps,
344  [&](OpBuilder &b, Location loc, ValueRange ivs) {
345  bodyBuilderFn(b, loc, ivs,
346  linalgOp->getOperands());
347  });
348 }
349 
350 /// Update the `lb`, `ub` and `step` to get per processor `lb`, `ub` and `step`.
352  Value nprocs, Value &lb, Value &ub,
353  Value &step) {
354  AffineExpr d0, d1;
355  bindDims(b.getContext(), d0, d1);
357  lb =
358  affine::makeComposedAffineApply(b, loc, d0 + d1 * s0, {lb, procId, step});
359  step = affine::makeComposedAffineApply(b, loc, d0 * s0, {nprocs, step});
360 }
361 
362 /// Generates a loop nest consisting of scf.parallel and scf.for, depending
363 /// on the `iteratorTypes.` Consecutive parallel loops create a single
364 /// scf.parallel operation; each sequential loop creates a new scf.for
365 /// operation. The body of the innermost loop is populated by
366 /// `bodyBuilderFn` that accepts a range of induction variables for all
367 /// loops. `ivStorage` is used to store the partial list of induction
368 /// variables.
369 // TODO: this function can be made iterative instead. However, it
370 // will have at most as many recursive calls as nested loops, which rarely
371 // exceeds 10.
373  OpBuilder &b, Location loc, ValueRange lbs, ValueRange ubs,
374  ValueRange steps, ArrayRef<utils::IteratorType> iteratorTypes,
376  function_ref<void(OpBuilder &, Location, ValueRange)> bodyBuilderFn,
377  SmallVectorImpl<Value> &ivStorage) {
378  assert(lbs.size() == ubs.size());
379  assert(lbs.size() == steps.size());
380  assert(lbs.size() == iteratorTypes.size());
381  assert(procInfo.empty() || (lbs.size() == procInfo.size()));
382 
383  // If there are no (more) loops to be generated, generate the body and be
384  // done with it.
385  if (iteratorTypes.empty()) {
386  bodyBuilderFn(b, loc, ivStorage);
387  return;
388  }
389 
390  // If there are no outer parallel loops, generate one sequential loop and
391  // recurse.
392  if (!isParallelIterator(iteratorTypes.front())) {
393  LoopNest singleLoop = buildLoopNest(
394  b, loc, lbs.take_front(), ubs.take_front(), steps.take_front(),
395  [&](OpBuilder &b, Location loc, ValueRange ivs) {
396  ivStorage.append(ivs.begin(), ivs.end());
397  generateParallelLoopNest(
398  b, loc, lbs.drop_front(), ubs.drop_front(), steps.drop_front(),
399  iteratorTypes.drop_front(),
400  procInfo.empty() ? procInfo : procInfo.drop_front(),
401  bodyBuilderFn, ivStorage);
402  });
403  return;
404  }
405 
406  unsigned nLoops = iteratorTypes.size();
407  unsigned numProcessed = 0;
408  DistributionMethod distributionMethod = DistributionMethod::None;
409  if (procInfo.empty()) {
410  numProcessed = nLoops - iteratorTypes.drop_while(isParallelIterator).size();
411  } else {
412  distributionMethod = procInfo.front().distributionMethod;
413  numProcessed =
414  nLoops - procInfo
415  .drop_while([&](linalg::ProcInfo p) {
416  return p.distributionMethod == distributionMethod;
417  })
418  .size();
419  }
420 
421  auto remainderProcInfo =
422  procInfo.empty() ? procInfo : procInfo.drop_front(numProcessed);
423  switch (distributionMethod) {
425  // Generate a single parallel loop-nest operation for all outermost
426  // parallel loops and recurse.
427  b.create<scf::ParallelOp>(
428  loc, lbs.take_front(numProcessed), ubs.take_front(numProcessed),
429  steps.take_front(numProcessed),
430  [&](OpBuilder &nestedBuilder, Location nestedLoc, ValueRange localIvs) {
431  ivStorage.append(localIvs.begin(), localIvs.end());
433  nestedBuilder, nestedLoc, lbs.drop_front(numProcessed),
434  ubs.drop_front(numProcessed), steps.drop_front(numProcessed),
435  iteratorTypes.drop_front(numProcessed), remainderProcInfo,
436  bodyBuilderFn, ivStorage);
437  });
438  return;
439  }
440  case DistributionMethod::Cyclic: {
441  // Generate a single parallel loop-nest operation for all outermost
442  // parallel loops and recurse.
443  b.create<scf::ParallelOp>(
444  loc, lbs.take_front(numProcessed), ubs.take_front(numProcessed),
445  steps.take_front(numProcessed),
446  [&](OpBuilder &nestedBuilder, Location nestedLoc, ValueRange localIvs) {
447  ivStorage.append(localIvs.begin(), localIvs.end());
449  nestedBuilder, nestedLoc, lbs.drop_front(numProcessed),
450  ubs.drop_front(numProcessed), steps.drop_front(numProcessed),
451  iteratorTypes.drop_front(numProcessed), remainderProcInfo,
452  bodyBuilderFn, ivStorage);
453  });
454  return;
455  }
456  case DistributionMethod::CyclicNumProcsGeNumIters: {
457  // Check (for the processed loops) that the iteration is in-bounds.
458  ArithBuilder ab(b, loc);
459  Value cond = ab.slt(lbs[0], ubs[0]);
460  for (unsigned i = 1; i < numProcessed; ++i)
461  cond = ab._and(cond, ab.slt(lbs[i], ubs[i]));
462  ivStorage.append(lbs.begin(), std::next(lbs.begin(), numProcessed));
463  b.create<scf::IfOp>(loc, cond, [&](OpBuilder &b, Location loc) {
464  generateParallelLoopNest(b, loc, lbs.drop_front(numProcessed),
465  ubs.drop_front(numProcessed),
466  steps.drop_front(numProcessed),
467  iteratorTypes.drop_front(numProcessed),
468  remainderProcInfo, bodyBuilderFn, ivStorage);
469  b.create<scf::YieldOp>(loc, ValueRange{});
470  });
471  return;
472  }
473  case DistributionMethod::CyclicNumProcsEqNumIters:
474  // No check/loops needed here. Set the `%iv` to be the `%lb` and proceed
475  // with inner loop generation.
476  ivStorage.append(lbs.begin(), std::next(lbs.begin(), numProcessed));
478  b, loc, lbs.drop_front(numProcessed), ubs.drop_front(numProcessed),
479  steps.drop_front(numProcessed), iteratorTypes.drop_front(numProcessed),
480  remainderProcInfo, bodyBuilderFn, ivStorage);
481  return;
482  }
483 }
484 
485 /// Specialization for generating a mix of parallel and sequential scf loops.
486 template <>
488  OpBuilder &b, Location loc, ArrayRef<Range> loopRanges, LinalgOp linalgOp,
489  ArrayRef<utils::IteratorType> iteratorTypes,
491  ValueRange)>
492  bodyBuilderFn,
493  ArrayRef<linalg::ProcInfo> procInfo) {
494  SmallVector<Value> iterArgInitValues;
495  if (!linalgOp.hasPureBufferSemantics())
496  llvm::append_range(iterArgInitValues, linalgOp.getDpsInits());
497  assert(iterArgInitValues.empty() && "unexpected ParallelOp init values");
498  // This function may be passed more iterator types than ranges.
499  assert(iteratorTypes.size() >= loopRanges.size() &&
500  "expected iterator type for all ranges");
501  assert((procInfo.empty() || (procInfo.size() == loopRanges.size())) &&
502  "expected proc information for all loops when present");
503  iteratorTypes = iteratorTypes.take_front(loopRanges.size());
504  SmallVector<Value, 8> lbsStorage, ubsStorage, stepsStorage, ivs;
505  unsigned numLoops = iteratorTypes.size();
506  ivs.reserve(numLoops);
507  lbsStorage.reserve(numLoops);
508  ubsStorage.reserve(numLoops);
509  stepsStorage.reserve(numLoops);
510 
511  // Get the loop lb, ub, and step.
512  unpackRanges(b, loc, loopRanges, lbsStorage, ubsStorage, stepsStorage);
513 
514  // Modify the lb, ub, and step based on the distribution options.
515  for (const auto &it : llvm::enumerate(procInfo)) {
516  if (it.value().distributionMethod != linalg::DistributionMethod::None) {
518  b, loc, it.value().procId, it.value().nprocs, lbsStorage[it.index()],
519  ubsStorage[it.index()], stepsStorage[it.index()]);
520  }
521  }
522  ValueRange lbs(lbsStorage), ubs(ubsStorage), steps(stepsStorage);
524  b, loc, lbs, ubs, steps, iteratorTypes, procInfo,
525  [&](OpBuilder &b, Location loc, ValueRange ivs) {
526  bodyBuilderFn(b, loc, ivs, linalgOp->getOperands());
527  },
528  ivs);
529 
530  assert(ivs.size() == iteratorTypes.size() && "did not generate enough loops");
531 }
532 
534  Value valueToTile,
535  const SliceParameters &sliceParams) {
536  auto shapedType = dyn_cast<ShapedType>(valueToTile.getType());
537  auto *sliceOp = TypeSwitch<ShapedType, Operation *>(shapedType)
538  .Case([&](MemRefType) {
539  return builder.create<memref::SubViewOp>(
540  loc, valueToTile, sliceParams.offsets,
541  sliceParams.sizes, sliceParams.strides);
542  })
543  .Case([&](RankedTensorType) {
544  return builder.create<tensor::ExtractSliceOp>(
545  loc, valueToTile, sliceParams.offsets,
546  sliceParams.sizes, sliceParams.strides);
547  })
548  .Default([](ShapedType) -> Operation * {
549  llvm_unreachable("Unexpected shaped type");
550  });
551  return sliceOp;
552 }
553 
554 Operation *makeTiledShape(OpBuilder &builder, Location loc, Value valueToTile,
555  ArrayRef<OpFoldResult> tileSizes, AffineMap map,
558  ArrayRef<OpFoldResult> subShapeSizes,
559  bool omitPartialTileCheck) {
560  SliceParameters sliceParams =
561  computeSliceParameters(builder, loc, valueToTile, tileSizes, map, lbs,
562  ubs, subShapeSizes, omitPartialTileCheck);
563  return materializeTiledShape(builder, loc, valueToTile, sliceParams);
564 }
565 
567 computeSliceParameters(OpBuilder &builder, Location loc, Value valueToTile,
568  ArrayRef<OpFoldResult> tileSizes, AffineMap map,
570  ArrayRef<OpFoldResult> subShapeSizes,
571  bool omitPartialTileCheck) {
572  auto shapedType = dyn_cast<ShapedType>(valueToTile.getType());
573  assert(shapedType && "only shaped types can be tiled");
574  ArrayRef<int64_t> shape = shapedType.getShape();
575  int64_t rank = shapedType.getRank();
576 
577  // Compute offsets/sizes/strides for the tile.
578  SliceParameters sliceParams;
579  sliceParams.offsets.reserve(rank);
580  sliceParams.sizes.reserve(rank);
581  sliceParams.strides.reserve(rank);
582  for (unsigned r = 0; r < rank; ++r) {
583  LLVM_DEBUG(llvm::dbgs() << "computeSliceParameters: for dim#" << r);
584  if (!isTiled(map.getSubMap({r}), tileSizes)) {
585  sliceParams.offsets.push_back(builder.getIndexAttr(0));
586  OpFoldResult dim = createFoldedDimOp(builder, loc, valueToTile, r);
587  sliceParams.sizes.push_back(dim);
588  sliceParams.strides.push_back(builder.getIndexAttr(1));
589  LLVM_DEBUG(llvm::dbgs() << ": not tiled: use size: " << dim << "\n");
590  continue;
591  }
592  LLVM_DEBUG(llvm::dbgs() << ": tiled: figure out subsize...\n");
593 
594  // Tiling creates a new slice at the proper index, the slice step is 1
595  // (i.e. the op does not subsample, stepping occurs in the loop).
596  auto m = map.getSubMap({r});
597  LLVM_DEBUG(llvm::dbgs() << "computeSliceParameters: submap: " << m << "\n");
598  IRRewriter rewriter(builder);
599  OpFoldResult offset = makeComposedFoldedAffineApply(rewriter, loc, m, lbs);
600  sliceParams.offsets.push_back(offset);
601  OpFoldResult closedIntSize =
602  makeComposedFoldedAffineApply(rewriter, loc, m, subShapeSizes);
603  // Resulting size needs to be made half open interval again.
604  AffineExpr s0 = getAffineSymbolExpr(0, builder.getContext());
605  OpFoldResult size =
606  makeComposedFoldedAffineApply(rewriter, loc, s0 + 1, closedIntSize);
607  LLVM_DEBUG(llvm::dbgs()
608  << "computeSliceParameters: raw size: " << size << "\n");
609  LLVM_DEBUG(llvm::dbgs()
610  << "computeSliceParameters: new offset: " << offset << "\n");
611  sliceParams.strides.push_back(builder.getIndexAttr(1));
612 
613  if (omitPartialTileCheck) {
614  // We statically know that the partial/boundary tile condition is
615  // unnecessary.
616  LLVM_DEBUG(llvm::dbgs() << "makeTiledShape: new size: " << size << "\n");
617  sliceParams.sizes.push_back(size);
618  continue;
619  }
620 
621  // The size of the subview / extract_slice should be trimmed to avoid
622  // out-of-bounds accesses, unless:
623  // a. We statically know the subshape size divides the shape size evenly.
624  // b. The subshape size is 1. According to the way the loops are set up,
625  // tensors with "0" dimensions would never be constructed.
626  int64_t shapeSize = shape[r];
627  std::optional<int64_t> sizeCst = getConstantIntValue(size);
628  auto hasTileSizeOne = sizeCst && *sizeCst == 1;
629  auto dividesEvenly = sizeCst && !ShapedType::isDynamic(shapeSize) &&
630  ((shapeSize % *sizeCst) == 0);
631  if (!hasTileSizeOne && !dividesEvenly) {
632  LLVM_DEBUG(llvm::dbgs() << "makeTiledShape: shapeSize=" << shapeSize
633  << ", size: " << size
634  << ": make sure in bound with affine.min\n");
635 
636  AffineExpr dim0, dim1, dim2;
637  MLIRContext *context = builder.getContext();
638  bindDims(context, dim0, dim1, dim2);
639 
640  // Get the dimension size for this dimension. We need to first calculate
641  // the max index and then plus one. This is important because for
642  // convolution ops, we have its input window dimension's affine map of the
643  // form `(d0 * s0 + d1)`, where `d0`/`d1 is an output/filter window
644  // dimension and `s0` is stride. Directly use the dimension size of
645  // output/filer window dimensions will cause incorrect calculation.
647  {ArrayRef<AffineExpr>{dim0 - 1}}, context)
648  .front();
650  {ArrayRef<AffineExpr>{dim0 + 1}}, context)
651  .front();
652  SmallVector<OpFoldResult> maxIndices =
653  llvm::to_vector(llvm::map_range(ubs, [&](OpFoldResult ub) {
654  return makeComposedFoldedAffineApply(rewriter, loc, minusOneMap,
655  {ub});
656  }));
657  OpFoldResult maxIndex =
658  makeComposedFoldedAffineApply(rewriter, loc, m, maxIndices);
659  OpFoldResult d =
660  makeComposedFoldedAffineApply(rewriter, loc, plusOneMap, {maxIndex});
661 
662  // Compute min(dim - offset, size) to avoid out-of-bounds accesses.
664  {ArrayRef<AffineExpr>{dim1 - dim2, dim0}}, context)
665  .front();
666  size =
667  makeComposedFoldedAffineMin(rewriter, loc, minMap, {size, d, offset});
668  }
669  LLVM_DEBUG(llvm::dbgs() << "makeTiledShape: new size: " << size << "\n");
670  sliceParams.sizes.push_back(size);
671  }
672  return sliceParams;
673 }
674 
677  ArrayRef<OpFoldResult> tileSizes) {
679  for (unsigned idx = 0, idxIvs = 0, e = tileSizes.size(); idx < e; ++idx) {
680  LLVM_DEBUG(llvm::dbgs() << "makeTiledShapes: for loop#" << idx << "\n");
681  bool isTiled = !isZeroIndex(tileSizes[idx]);
682  offsets.push_back(isTiled ? ivs[idxIvs++] : b.getIndexAttr(0));
683  LLVM_DEBUG(llvm::dbgs()
684  << "computeTileOffsets: " << offsets.back() << "\n");
685  }
686  return offsets;
687 }
688 
690  ArrayRef<OpFoldResult> tileSizes,
691  ArrayRef<OpFoldResult> sizeBounds) {
693  for (unsigned idx = 0, e = tileSizes.size(); idx < e; ++idx) {
694  bool isTiled = !isZeroIndex(tileSizes[idx]);
695  // Before composing, we need to make range a closed interval.
696  OpFoldResult size = isTiled ? tileSizes[idx] : sizeBounds[idx];
698  IRRewriter rewriter(b);
699  sizes.push_back(makeComposedFoldedAffineApply(rewriter, loc, d0 - 1, size));
700  LLVM_DEBUG(llvm::dbgs() << "computeTileSizes: " << sizes.back() << "\n");
701  }
702  return sizes;
703 }
704 
706  if (op.hasPureBufferSemantics())
707  return {};
708  return llvm::to_vector(
709  llvm::map_range(op.getDpsInitsMutable(), [&](OpOperand &opOperand) {
710  return operands[opOperand.getOperandNumber()].getType();
711  }));
712 }
713 
715  LinalgOp op, ValueRange operands,
716  ValueRange results) {
717  if (op.hasPureBufferSemantics())
718  return {};
719  SmallVector<Value> tensorResults;
720  tensorResults.reserve(results.size());
721  // Insert a insert_slice for each output tensor.
722  unsigned resultIdx = 0;
723  for (OpOperand &opOperand : op.getDpsInitsMutable()) {
724  // TODO: use an interface/adaptor to avoid leaking position in
725  // `tiledOperands`.
726  Value outputTensor = operands[opOperand.getOperandNumber()];
727  if (auto sliceOp = outputTensor.getDefiningOp<tensor::ExtractSliceOp>()) {
728  Value inserted = builder.create<tensor::InsertSliceOp>(
729  loc, sliceOp.getSource().getType(), results[resultIdx],
730  sliceOp.getSource(), sliceOp.getOffsets(), sliceOp.getSizes(),
731  sliceOp.getStrides(), sliceOp.getStaticOffsets(),
732  sliceOp.getStaticSizes(), sliceOp.getStaticStrides());
733  tensorResults.push_back(inserted);
734  } else {
735  tensorResults.push_back(results[resultIdx]);
736  }
737  ++resultIdx;
738  }
739  return tensorResults;
740 }
741 
743 computeAllSliceParameters(OpBuilder &builder, Location loc, LinalgOp linalgOp,
744  ValueRange valuesToTile, ArrayRef<OpFoldResult> ivs,
745  ArrayRef<OpFoldResult> tileSizes,
746  ArrayRef<OpFoldResult> sizeBounds,
747  bool omitPartialTileCheck) {
748  assert(ivs.size() == static_cast<size_t>(llvm::count_if(
749  llvm::make_range(tileSizes.begin(), tileSizes.end()),
750  [](OpFoldResult v) { return !isZeroIndex(v); })) &&
751  "expected as many ivs as non-zero sizes");
752 
753  // Construct (potentially temporary) mins and maxes on which to apply maps
754  // that define tile subshapes.
756  computeTileOffsets(builder, loc, ivs, tileSizes);
757  SmallVector<OpFoldResult> subShapeSizes =
758  computeTileSizes(builder, loc, tileSizes, sizeBounds);
759 
760  assert(static_cast<int64_t>(valuesToTile.size()) <=
761  linalgOp->getNumOperands() &&
762  "more value to tile than operands.");
764  allSliceParams.reserve(valuesToTile.size());
765  for (auto [opOperand, val] :
766  llvm::zip(linalgOp->getOpOperands(), valuesToTile)) {
767  Value shapedOp = val;
768  LLVM_DEBUG(llvm::dbgs() << "makeTiledShapes: for operand " << shapedOp);
769  AffineMap map = linalgOp.getMatchingIndexingMap(&opOperand);
770  // Use `opOperand` as is if it is not tiled and not an output tensor. Having
771  // an extract/insert slice pair for all output tensors simplifies follow up
772  // transformations such as padding and bufferization since the
773  // extract/insert slice pairs make the accessed iteration argument
774  // subdomains explicit.
775 
776  Type operandType = opOperand.get().getType();
777  if (!isTiled(map, tileSizes) && !(isa<RankedTensorType>(operandType) &&
778  linalgOp.isDpsInit(&opOperand))) {
779  allSliceParams.push_back(std::nullopt);
780  LLVM_DEBUG(llvm::dbgs()
781  << ": not tiled: use shape: " << operandType << "\n");
782  continue;
783  }
784  LLVM_DEBUG(llvm::dbgs() << ": tiled: figure out subshape...\n");
785 
786  allSliceParams.push_back(computeSliceParameters(
787  builder, loc, shapedOp, tileSizes, map, lbs, sizeBounds, subShapeSizes,
788  omitPartialTileCheck));
789  }
790 
791  return allSliceParams;
792 }
793 
795  LinalgOp linalgOp, ValueRange valuesToTile,
797  ArrayRef<OpFoldResult> tileSizes,
798  ArrayRef<OpFoldResult> sizeBounds,
799  bool omitPartialTileCheck) {
800  SmallVector<std::optional<SliceParameters>> allSliceParameter =
801  computeAllSliceParameters(builder, loc, linalgOp, valuesToTile, ivs,
802  tileSizes, sizeBounds, omitPartialTileCheck);
803  SmallVector<Value> tiledShapes;
804  for (auto item : llvm::zip(valuesToTile, allSliceParameter)) {
805  Value valueToTile = std::get<0>(item);
806  std::optional<SliceParameters> sliceParams = std::get<1>(item);
807  tiledShapes.push_back(
808  sliceParams.has_value()
809  ? materializeTiledShape(builder, loc, valueToTile, *sliceParams)
810  ->getResult(0)
811  : valueToTile);
812  }
813  return tiledShapes;
814 }
815 
816 void offsetIndices(OpBuilder &b, LinalgOp linalgOp,
817  ArrayRef<OpFoldResult> offsets) {
818  IRRewriter rewriter(b);
819  offsetIndices(rewriter, linalgOp, offsets);
820 }
821 
822 void offsetIndices(RewriterBase &b, LinalgOp linalgOp,
823  ArrayRef<OpFoldResult> offsets) {
824  if (!linalgOp.hasIndexSemantics())
825  return;
826 
827  for (IndexOp indexOp : linalgOp.getBlock()->getOps<IndexOp>()) {
828  if (indexOp.getDim() >= offsets.size() || !offsets[indexOp.getDim()])
829  continue;
830  OpBuilder::InsertionGuard guard(b);
831  b.setInsertionPointAfter(indexOp);
832  AffineExpr index, offset;
833  bindDims(b.getContext(), index, offset);
835  b, indexOp.getLoc(), index + offset,
836  {getAsOpFoldResult(indexOp.getResult()), offsets[indexOp.getDim()]});
837  Value materialized =
838  getValueOrCreateConstantIndexOp(b, indexOp.getLoc(), applied);
839  b.replaceUsesWithIf(indexOp, materialized, [&](OpOperand &use) {
840  return use.getOwner() != materialized.getDefiningOp();
841  });
842  }
843 }
844 
845 /// Get the reassociation maps to fold the result of a extract_slice (or source
846 /// of a insert_slice) operation with given offsets, and sizes to its
847 /// rank-reduced version. This is only done for the cases where the size is 1
848 /// and offset is 0. Strictly speaking the offset 0 is not required in general,
849 /// but non-zero offsets are not handled by SPIR-V backend at this point (and
850 /// potentially cannot be handled).
851 std::optional<SmallVector<ReassociationIndices>>
853  SmallVector<ReassociationIndices> reassociation;
855  for (const auto &it : llvm::enumerate(mixedSizes)) {
856  auto dim = it.index();
857  auto size = it.value();
858  curr.push_back(dim);
859  auto attr = llvm::dyn_cast_if_present<Attribute>(size);
860  if (attr && cast<IntegerAttr>(attr).getInt() == 1)
861  continue;
862  reassociation.emplace_back(ReassociationIndices{});
863  std::swap(reassociation.back(), curr);
864  }
865  // When the reassociations are not empty, then fold the remaining
866  // unit-dimensions into the last dimension. If the reassociations so far is
867  // empty, then leave it emtpy. This will fold everything to a rank-0 tensor.
868  if (!curr.empty() && !reassociation.empty())
869  reassociation.back().append(curr.begin(), curr.end());
870  return reassociation;
871 }
872 
873 } // namespace linalg
874 } // namespace mlir
static bool isTiled(AffineExpr expr, ArrayRef< OpFoldResult > tileSizes)
Definition: Utils.cpp:77
static void unpackRanges(OpBuilder &builder, Location loc, ArrayRef< Range > ranges, SmallVectorImpl< Value > &lbs, SmallVectorImpl< Value > &ubs, SmallVectorImpl< Value > &steps)
Given a list of subview ranges, extract individual values for lower, upper bounds and steps and put t...
Definition: Utils.cpp:129
static void visit(Operation *op, DenseSet< Operation * > &visited)
Visits all the pdl.operand(s), pdl.result(s), and pdl.operation(s) connected to the given operation.
Definition: PDL.cpp:63
DiagnosedSilenceableFailure doit(RewriterBase &rewriter, OpTy target, transform::ApplyToEachResultList &results, transform::TransformState &state)
@ None
Affine binary operation expression.
Definition: AffineExpr.h:227
AffineExpr getLHS() const
Definition: AffineExpr.cpp:340
AffineExpr getRHS() const
Definition: AffineExpr.cpp:343
A dimensional identifier appearing in an affine expression.
Definition: AffineExpr.h:236
unsigned getPosition() const
Definition: AffineExpr.cpp:348
See documentation for AffineExprVisitorBase.
Base type for affine expression.
Definition: AffineExpr.h:68
AffineExprKind getKind() const
Return the classification for this type.
Definition: AffineExpr.cpp:35
A multi-dimensional affine map Affine map's are immutable like Type's, and they are uniqued.
Definition: AffineMap.h:46
static AffineMap getMultiDimIdentityMap(unsigned numDims, MLIRContext *context)
Returns an AffineMap with 'numDims' identity result dim exprs.
Definition: AffineMap.cpp:334
unsigned getNumResults() const
Definition: AffineMap.cpp:402
AffineExpr getResult(unsigned idx) const
Definition: AffineMap.cpp:411
AffineMap getSubMap(ArrayRef< unsigned > resultPos) const
Returns the map consisting of the resultPos subset.
Definition: AffineMap.cpp:654
static SmallVector< AffineMap, 4 > inferFromExprList(ArrayRef< ArrayRef< AffineExpr >> exprsList, MLIRContext *context)
Returns a vector of AffineMaps; each with as many results as exprs.size(), as many dims as the larges...
Definition: AffineMap.cpp:312
Attributes are known-constant values of operations.
Definition: Attributes.h:25
Block represents an ordered list of Operations.
Definition: Block.h:33
BlockArgument getArgument(unsigned i)
Definition: Block.h:129
unsigned getNumArguments()
Definition: Block.h:128
OpListType & getOperations()
Definition: Block.h:137
Operation & front()
Definition: Block.h:153
iterator_range< iterator > without_terminator()
Return an iterator range over the operation within this block excluding the terminator operation at t...
Definition: Block.h:209
IntegerAttr getIndexAttr(int64_t value)
Definition: Builders.cpp:148
MLIRContext * getContext() const
Definition: Builders.h:56
This class coordinates rewriting a piece of IR outside of a pattern rewrite, providing a way to keep ...
Definition: PatternMatch.h:772
This class defines the main interface for locations in MLIR and acts as a non-nullable wrapper around...
Definition: Location.h:66
MLIRContext is the top-level object for a collection of MLIR operations.
Definition: MLIRContext.h:60
RAII guard to reset the insertion point of the builder when destroyed.
Definition: Builders.h:357
This class helps build Operations.
Definition: Builders.h:216
Operation * create(const OperationState &state)
Creates an operation given the fields represented as an OperationState.
Definition: Builders.cpp:497
void setInsertionPointAfter(Operation *op)
Sets the insertion point to the node after the specified operation, which will cause subsequent inser...
Definition: Builders.h:421
This class represents a single result from folding an operation.
Definition: OpDefinition.h:268
This class represents an operand of an operation.
Definition: Value.h:267
This is a value defined by a result of an operation.
Definition: Value.h:457
unsigned getResultNumber() const
Returns the number of this result.
Definition: Value.h:469
Operation is the basic unit of execution within MLIR.
Definition: Operation.h:88
This class contains a list of basic blocks and a link to the parent operation it is attached to.
Definition: Region.h:26
This class coordinates the application of a rewrite on a set of IR, providing a way for clients to tr...
Definition: PatternMatch.h:400
void replaceUsesWithIf(Value from, Value to, function_ref< bool(OpOperand &)> functor, bool *allUsesReplaced=nullptr)
Find uses of from and replace them with to if the functor returns true.
Instances of the Type class are uniqued, have an immutable identifier and an optional mutable compone...
Definition: Types.h:74
bool isSignlessIntOrFloat() const
Return true of this is a signless integer or a float type.
Definition: Types.cpp:119
This class provides an abstraction over the different types of ranges over Values.
Definition: ValueRange.h:381
This class represents an instance of an SSA value in the MLIR system, representing a computable value...
Definition: Value.h:96
Type getType() const
Return the type of this value.
Definition: Value.h:129
Operation * getDefiningOp() const
If this value is the result of an operation, return the operation that defines it.
Definition: Value.cpp:20
Operation * getOwner() const
Return the owner of this operand.
Definition: UseDefLists.h:38
bool hasElementwiseMappableTraits(Operation *op)
Together, Elementwise, Scalarizable, Vectorizable, and Tensorizable provide an easy way for scalar op...
Definition: Operation.cpp:1393
void buildAffineLoopNest(OpBuilder &builder, Location loc, ArrayRef< int64_t > lbs, ArrayRef< int64_t > ubs, ArrayRef< int64_t > steps, function_ref< void(OpBuilder &, Location, ValueRange)> bodyBuilderFn=nullptr)
Builds a perfect nest of affine.for loops, i.e., each loop except the innermost one contains only ano...
Definition: AffineOps.cpp:2675
AffineApplyOp makeComposedAffineApply(OpBuilder &b, Location loc, AffineMap map, ArrayRef< OpFoldResult > operands)
Returns a composed AffineApplyOp by composing map and operands with other AffineApplyOps supplying th...
Definition: AffineOps.cpp:1144
OpFoldResult makeComposedFoldedAffineMin(OpBuilder &b, Location loc, AffineMap map, ArrayRef< OpFoldResult > operands)
Constructs an AffineMinOp that computes a minimum across the results of applying map to operands,...
Definition: AffineOps.cpp:1300
OpFoldResult makeComposedFoldedAffineApply(OpBuilder &b, Location loc, AffineMap map, ArrayRef< OpFoldResult > operands)
Constructs an AffineApplyOp that applies map to operands after composing the map with the maps of any...
Definition: AffineOps.cpp:1194
void mapLoopToProcessorIds(scf::ForOp forOp, ArrayRef< Value > processorId, ArrayRef< Value > numProcessors)
Maps forOp for execution on a parallel grid of virtual processorIds of size given by numProcessors.
Definition: LoopUtils.cpp:1725
constexpr void enumerate(std::tuple< Tys... > &tuple, CallbackT &&callback)
Definition: Matchers.h:344
SmallVector< Value > makeTiledShapes(OpBuilder &builder, Location loc, LinalgOp linalgOp, ValueRange valuesToTile, ArrayRef< OpFoldResult > ivs, ArrayRef< OpFoldResult > tileSizes, ArrayRef< OpFoldResult > sizeBounds, bool omitPartialTileCheck)
Creates extract_slice/subview ops for all valuesToTile of the given linalgOp with builder,...
Definition: Utils.cpp:794
bool allIndexingsAreProjectedPermutation(LinalgOp op)
Check if all indexing maps are projected permutations.
Definition: Utils.cpp:149
bool isParallelIterator(utils::IteratorType iteratorType)
Check if iterator type has "parallel" semantics.
Definition: Utils.cpp:184
SmallVector< OpFoldResult > computeTileSizes(OpBuilder &b, Location loc, ArrayRef< OpFoldResult > tileSizes, ArrayRef< OpFoldResult > sizeBounds)
Computes tile sizes, given a list of tileSizes and dimension sizes (sizeBounds).
Definition: Utils.cpp:689
GenericOp makeMemRefCopyOp(OpBuilder &b, Location loc, Value from, Value to)
Returns GenericOp that copies an n-D memref.
Definition: Utils.cpp:252
static void generateParallelLoopNest(OpBuilder &b, Location loc, ValueRange lbs, ValueRange ubs, ValueRange steps, ArrayRef< utils::IteratorType > iteratorTypes, ArrayRef< linalg::ProcInfo > procInfo, function_ref< void(OpBuilder &, Location, ValueRange)> bodyBuilderFn, SmallVectorImpl< Value > &ivStorage)
Generates a loop nest consisting of scf.parallel and scf.for, depending on the iteratorTypes.
Definition: Utils.cpp:372
SmallVector< OpFoldResult > computeTileOffsets(OpBuilder &b, Location loc, ArrayRef< OpFoldResult > ivs, ArrayRef< OpFoldResult > tileSizes)
Computes tile offsets, given a list of loop ivs and tileSizes.
Definition: Utils.cpp:675
bool isReductionIterator(utils::IteratorType iteratorType)
Check if iterator type has "reduction" semantics.
Definition: Utils.cpp:188
bool hasOnlyScalarElementwiseOp(Region &r)
Detect whether r has only ConstantOp, ElementwiseMappable and YieldOp.
Definition: Utils.cpp:155
static Operation * materializeTiledShape(OpBuilder &builder, Location loc, Value valueToTile, const SliceParameters &sliceParams)
Definition: Utils.cpp:533
std::optional< SmallVector< ReassociationIndices > > getReassociationMapForFoldingUnitDims(ArrayRef< OpFoldResult > mixedSizes)
Get the reassociation maps to fold the result of a extract_slice (or source of a insert_slice) operat...
Definition: Utils.cpp:852
OpFoldResult createFoldedDimOp(OpBuilder &b, Location loc, Value val, int64_t dim)
Create one memref::DimOp or tensor::DimOp depending on the type of val.
Definition: LinalgOps.cpp:105
DistributionMethod
Scheme used to distribute loops to processors.
Definition: Utils.h:238
SmallVector< Value > insertSlicesBack(OpBuilder &builder, Location loc, LinalgOp op, ValueRange operands, ValueRange results)
Creates insert_slice ops that insert results back into larger tensors they were originally extracted ...
Definition: Utils.cpp:714
bool isElementwise(LinalgOp op)
Check if a LinalgOp is an element-wise operation.
Definition: Utils.cpp:169
void offsetIndices(OpBuilder &b, LinalgOp linalgOp, ArrayRef< OpFoldResult > offests)
Add the specified offsets to any linalg.index ops contained in the given linalgOp.
Definition: Utils.cpp:816
SmallVector< std::optional< SliceParameters > > computeAllSliceParameters(OpBuilder &builder, Location loc, LinalgOp linalgOp, ValueRange valuesToTile, ArrayRef< OpFoldResult > ivs, ArrayRef< OpFoldResult > tileSizes, ArrayRef< OpFoldResult > sizeBounds, bool omitPartialTileCheck)
Computes SliceParamaters for all valuesToTile of the given linalgOp, assuming linalgOp is being fused...
Definition: Utils.cpp:743
Operation * makeTiledShape(OpBuilder &builder, Location loc, Value valueToTile, ArrayRef< OpFoldResult > tileSizes, AffineMap map, ArrayRef< OpFoldResult > lbs, ArrayRef< OpFoldResult > ubs, ArrayRef< OpFoldResult > subShapeSizes, bool omitPartialTileCheck)
Creates an extract_slice/subview op for a single valueToTile with builder.
Definition: Utils.cpp:554
Value makeComposedPadHighOp(OpBuilder &b, Location loc, RankedTensorType type, Value source, Value pad, bool nofold)
Create a tensor::PadOp that pads source to the size of the statically sized type whose static sizes a...
Definition: Utils.cpp:192
void updateBoundsForCyclicDistribution(OpBuilder &builder, Location loc, Value procId, Value nprocs, Value &lb, Value &ub, Value &step)
Update the lb, ub and step to get per processor lb, ub and step.
Definition: Utils.cpp:351
SmallVector< Type > getTensorOutputTypes(LinalgOp op, ValueRange operands)
Returns the list of tensor output types produced when the given structured operation op is applied to...
Definition: Utils.cpp:705
SliceParameters computeSliceParameters(OpBuilder &builder, Location loc, Value valueToTile, ArrayRef< OpFoldResult > tileSizes, AffineMap map, ArrayRef< OpFoldResult > lbs, ArrayRef< OpFoldResult > ubs, ArrayRef< OpFoldResult > subShapeSizes, bool omitPartialTileCheck)
Computes SliceParameters for a single valueToTile assuming that its user is being tiled with the give...
Definition: Utils.cpp:567
auto m_Val(Value v)
Definition: Matchers.h:539
LoopNest buildLoopNest(OpBuilder &builder, Location loc, ValueRange lbs, ValueRange ubs, ValueRange steps, ValueRange iterArgs, function_ref< ValueVector(OpBuilder &, Location, ValueRange, ValueRange)> bodyBuilder=nullptr)
Creates a perfect nest of "for" loops, i.e.
Definition: SCF.cpp:687
SmallVector< Value > ValueVector
An owning vector of values, handy to return from functions.
Definition: SCF.h:70
PadOp createPadHighOp(RankedTensorType resType, Value source, Value pad, bool nofold, Location loc, OpBuilder &builder, SmallVector< Value > dynOutDim={})
Definition: Utils.cpp:25
Include the generated interface declarations.
bool matchPattern(Value value, const Pattern &pattern)
Entry point for matching a pattern over a Value.
Definition: Matchers.h:490
bool isZeroIndex(OpFoldResult v)
Return true if v is an IntegerAttr with value 0 of a ConstantIndexOp with attribute with value 0.
std::optional< int64_t > getConstantIntValue(OpFoldResult ofr)
If ofr is a constant integer or an IntegerAttr, return the integer.
void bindDims(MLIRContext *ctx, AffineExprTy &...exprs)
Bind a list of AffineExpr references to DimExpr at positions: [0 .
Definition: AffineExpr.h:348
@ Mul
RHS of mul is always a constant or a symbolic expression.
Value getValueOrCreateConstantIndexOp(OpBuilder &b, Location loc, OpFoldResult ofr)
Converts an OpFoldResult to a Value.
Definition: Utils.cpp:112
detail::constant_op_matcher m_Constant()
Matches a constant foldable operation.
Definition: Matchers.h:369
AffineExpr getAffineDimExpr(unsigned position, MLIRContext *context)
These free functions allow clients of the API to not use classes in detail.
Definition: AffineExpr.cpp:617
AffineExpr getAffineSymbolExpr(unsigned position, MLIRContext *context)
Definition: AffineExpr.cpp:627
Helper struct to build simple arithmetic quantities with minimal type inference support.
Definition: Utils.h:103
Value _and(Value lhs, Value rhs)
Definition: Utils.cpp:312
Value slt(Value lhs, Value rhs)
Definition: Utils.cpp:335
Represents a range (offset, size, and stride) where each element of the triple may be dynamic or stat...
Utility class used to generate nested loops with ranges described by loopRanges and loop type describ...
Definition: Utils.h:352
Callback function type used to get processor ID, and number of processors used for distribution for a...
Definition: Utils.h:288
DistributionMethod distributionMethod
Definition: Utils.h:291
A struct containg offsets-sizes-strides arguments of the tiled shape.
Definition: Utils.h:134
SmallVector< OpFoldResult > strides
Definition: Utils.h:137
SmallVector< OpFoldResult > sizes
Definition: Utils.h:136
SmallVector< OpFoldResult > offsets
Definition: Utils.h:135
LoopVector loops
Definition: SCF.h:73