MLIR  21.0.0git
Transforms.h
Go to the documentation of this file.
1 //===- Transforms.h - Linalg transformations as patterns --------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #ifndef MLIR_DIALECT_LINALG_TRANSFORMS_TRANSFORMS_H
10 #define MLIR_DIALECT_LINALG_TRANSFORMS_TRANSFORMS_H
11 
12 #include <utility>
13 
23 #include "mlir/IR/PatternMatch.h"
26 #include "llvm/ADT/SmallBitVector.h"
27 #include "llvm/ADT/SmallSet.h"
28 
29 namespace mlir {
30 namespace bufferization {
31 class AllocTensorOp;
32 class OneShotAnalysisState;
33 class BufferizationState;
34 } // namespace bufferization
35 
36 namespace linalg {
37 
38 class LinalgOp;
39 
40 //===----------------------------------------------------------------------===//
41 // Utils.
42 //===----------------------------------------------------------------------===//
43 
44 /// Return vector::CombiningKind for the given op.
45 std::optional<vector::CombiningKind> getCombinerOpKind(Operation *combinerOp);
46 
47 //===----------------------------------------------------------------------===//
48 // Bufferization-related transforms.
49 //===----------------------------------------------------------------------===//
50 
52  enum class AllocOp { MemrefAlloc = 0, MemrefAlloca = 1 };
54 
55  enum class MemcpyOp {
57  MemrefCopy = 1,
58  LinalgCopy = 2
59  };
61 
62  /// If set to "true", only the destination tensor operands are bufferized to
63  /// a new allocation (and wrapped in "bufferization.to_tensor"), but not the
64  /// targeted op itself.
66 
67  /// If set to "true", a `memref.dealloc` operation will be emitted for each
68  /// allocated buffer. Otherwise, the memory is leaked, which is useful if
69  /// the buffer deallocation pipeline should be run after bufferization is
70  /// done.
71  bool emitDealloc = false;
72 };
73 
74 /// Materialize a buffer allocation for the given tensor.pad op and lower the
75 /// op to linalg.fill/linalg.generic + bufferization.materialize_in_destination.
76 /// E.g.:
77 ///
78 /// %0 = tensor.pad low[%l] high[%h] %t ...
79 ///
80 /// is lowered to:
81 ///
82 /// %alloc = memref.alloc
83 /// linalg.fill ... outs(%alloc)
84 /// %subview = memref.subview %alloc [%l] [...] [1]
85 /// bufferization.materialize_in_destination %t in %subview
86 /// %0 = bufferization.to_tensor %alloc restrict writable
87 ///
88 /// In addition to rewriting the IR as shown above, this function returns the
89 /// newly allocated buffer. The `insertionPoint` parameter can be used to
90 /// specify a custom insertion point for the buffer allocation.
93  tensor::PadOp padOp, Attribute memorySpace = {},
94  Operation *insertionPoint = nullptr);
95 
96 /// Materialize a buffer allocation for the given vector.mask op and bufferize
97 /// the op, including its region. E.g.:
98 ///
99 /// %0 = vector.mask {
100 /// vector.transfer_write %v, %t : vector<16xf32>, tensor<?xf32>
101 /// } : vector<16xi1> -> tensor<?xf32>
102 ///
103 /// is lowered to:
104 ///
105 /// %alloc = memref.alloc
106 /// bufferization.materialize_in_destination %t in %subview
107 /// vector.mask {
108 /// vector.transfer_write %arg0, %alloc : vector<16xf32>, memref<?xf32>
109 /// } : vector<16xi1>
110 /// %0 = bufferization.to_tensor %alloc restrict writable
111 ///
112 /// In addition to rewriting the IR as shown above, this function returns the
113 /// newly allocated buffer. The `insertionPoint` parameter can be used to
114 /// specify a custom insertion point for the buffer allocation.
116  const BufferizeToAllocationOptions &options,
117  vector::MaskOp maskOp, Attribute memorySpace = {},
118  Operation *insertionPoint = nullptr);
119 
120 /// Materialize a buffer allocation for the given bufferization.alloc_tensor op
121 /// and lower the op to memref.alloc + memref.tensor_store.
122 ///
123 /// In addition to rewriting the IR, this function returns the newly allocated
124 /// buffer. The `insertionPoint` parameter can be used to specify a custom
125 /// insertion point for the buffer allocation.
126 Value bufferizeToAllocation(RewriterBase &rewriter,
127  const BufferizeToAllocationOptions &options,
128  bufferization::AllocTensorOp allocTensorOp,
129  Attribute memorySpace = {},
130  Operation *insertionPoint = nullptr);
131 
132 /// Bufferize the given op with tensor semantics and materialize the result in
133 /// a newly allocated buffer.
134 ///
135 /// Only bufferizable ops that bufferize to a memory write or have an
136 /// aliasing OpOperand (and do not themselves bufferize to an allocation) are
137 /// supported. They are bufferized using their BufferizableOpInterface
138 /// implementation.
139 ///
140 /// Selected ops that bufferize to an allocation (or need special handling) are
141 /// also supported:
142 /// - tensor.pad
143 /// - vector.mask
144 ///
145 /// This function returns the newly allocated buffer. The `insertionPoint`
146 /// parameter can be used to specify a custom insertion point for the buffer
147 /// allocation.
148 Value bufferizeToAllocation(RewriterBase &rewriter,
149  const BufferizeToAllocationOptions &options,
150  Operation *op, Attribute memorySpace = {},
151  Operation *insertionPoint = nullptr);
152 
153 /// Try to eliminate tensor::EmptyOps inside `op` that are anchored on a
154 /// LinalgOp. This transforms looks for LinalgOps that have an unused output
155 /// operand and an input operand that is rooted in a tensor::EmptyOp. The
156 /// tensor::EmptyOp uses are replaced with the output operand and the two
157 /// operands of the LinalgOp are swapped.
158 ///
159 /// Example:
160 /// %0 = tensor.empty()
161 /// %1 = linalg.matmul ins(...) outs(%0)
162 /// %2 = linalg.generic ins(%1) outs(%dest) {
163 /// ^bb0(%in: f32, %out: f32):
164 /// // out not used
165 /// }
166 ///
167 /// The IR is transformed as follows:
168 /// %0 = tensor.empty()
169 /// %1 = linalg.matmul ins(...) outs(%dest)
170 /// %2 = linalg.generic ins(%0) outs(%1) {
171 /// ^bb0(%in: f32, %out: f32):
172 /// // Use %out instead of %in
173 /// }
174 ///
175 /// The "ins" operand has no uses inside the body of the LinalgOp and can be
176 /// folded away with existing cleanup patterns. Afterwards, the tensor::EmptyOp
177 /// can also fold away.
179  RewriterBase &rewriter, Operation *op,
180  bufferization::OneShotAnalysisState &state);
181 
182 //===----------------------------------------------------------------------===//
183 // Structs that configure the behavior of various transformations.
184 //===----------------------------------------------------------------------===//
185 
187  std::function<SmallVector<Value, 4>(OpBuilder &, Operation *)>;
188 
190  /// Computation function that returns the tile sizes for each operation.
191  /// Delayed construction of constant tile sizes should occur to interoperate
192  /// with folding.
194 
197  tileSizeComputationFunction = std::move(fun);
198  return *this;
199  }
200  /// Set the `tileSizeComputationFunction` to return the values `ts`. The
201  /// values must not fold away when tiling. Otherwise, use a more robust
202  /// `tileSizeComputationFunction`.
204  tileSizeComputationFunction = [=](OpBuilder &, Operation *) { return ts; };
205  return *this;
206  }
207  /// Convenience function to set the `tileSizeComputationFunction` to a
208  /// function that computes tile sizes at the point they are needed. Allows
209  /// proper interaction with folding.
211 
212  /// Tile all dynamic dimensions by 1. I.e., scalarize those dimensions.
213  /// Note: `scalarizeDynamicDims` and `setTileSizes` cannot be used together.
215 
216  /// The interchange vector to reorder the tiled loops.
218 
220  interchangeVector.assign(interchange.begin(), interchange.end());
221  return *this;
222  }
223 
224  /// The type of tile loops to generate.
226 
228  loopType = lt;
229  return *this;
230  }
231 
232  /// When specified, specifies distribution of generated tile loops to
233  /// processors.
234  std::optional<LinalgLoopDistributionOptions> distribution;
235 
238  distribution = std::move(distributionOptions);
239  return *this;
240  }
241 
242  /// Specification markers of how to distribute the `linalg.tiled_loop`.
244 
246  distributionTypes.assign(types.begin(), types.end());
247  return *this;
248  }
249 
250  /// Peel the specified loops.
252 
254  peeledLoops.clear();
255  peeledLoops.append(loops.begin(), loops.end());
256  return *this;
257  }
258 };
259 
261  /// Tile sizes used to tile the root operation.
264  tileSizes.assign(ts.begin(), ts.end());
265  return *this;
266  }
267  /// Tile interchange used to permute the tile loops.
269  /// When specified, specifies distribution of generated tile loops to
270  /// processors.
271  std::optional<LinalgLoopDistributionOptions> tileDistribution;
274  tileDistribution = std::move(distributionOptions);
275  return *this;
276  }
277 };
278 
280  /// A padding value for every operand.
283  paddingValues.assign(pv.begin(), pv.end());
284  return *this;
285  }
286  /// A list of iterator dimensions to pad.
289  paddingDimensions.assign(pd.begin(), pd.end());
290  return *this;
291  }
292  /// A list of multiples to which each padding dimension should be padded to.
293  std::optional<SmallVector<int64_t>> padToMultipleOf;
295  padToMultipleOf.emplace(m.begin(), m.end());
296  return *this;
297  }
298  /// A flag for every operand to mark the PadOp as nofold which enables
299  /// packing for statically shaped operands.
302  nofoldFlags.assign(pp.begin(), pp.end());
303  return *this;
304  }
305  /// A number of loops to hoist the PadOp out for every operand.
308  hoistPaddings.assign(hp.begin(), hp.end());
309  return *this;
310  }
311  /// A permutation vector for every operand used to transpose the packed
312  /// PadOp results.
316  transposePaddings.assign(tp.begin(), tp.end());
317  return *this;
318  }
319  enum class CopyBackOp : int8_t {
320  None = 0,
322  LinalgCopy = 2
323  };
324  /// The op to be used for copying the padded result to the original
325  /// destination tensor.
328  copyBackOp = op;
329  return *this;
330  }
331 };
332 
333 /// Callback function type used to perform the allocation for the promoted
334 /// `subView`. In `boundingSubViewsize` a best attempt is made to find the
335 /// smallest constant value for the size of the buffer needed for each
336 /// dimension. If that is not possible, contains the dynamic size of the
337 /// subview. The call back should return the buffer to use.
338 using AllocBufferCallbackFn = std::function<std::optional<Value>(
339  OpBuilder &b, memref::SubViewOp subView,
340  ArrayRef<Value> boundingSubViewSize, DataLayout &layout)>;
341 
342 /// Callback function type used to deallocate the buffers used to hold the
343 /// promoted subview.
345  std::function<LogicalResult(OpBuilder &b, Value buffer)>;
346 
347 /// Callback function type used to insert copy from original subview to
348 /// subview of the promoted region for the read operands/subview of promoted
349 /// region to original subview for the results. The copy has to happen from
350 /// `src` to `dst`.
352  std::function<LogicalResult(OpBuilder &b, Value src, Value dst)>;
353 
355  /// Indices of subViews to promote. If `std::nullopt`, try to promote all
356  /// operands.
357  std::optional<DenseSet<unsigned>> operandsToPromote;
360  operandsToPromote->insert_range(operands);
361  return *this;
362  }
363  /// If ith element of `useFullTiles` is true the full view should be used
364  /// for the promoted buffer of the ith operand in `operandsToPromote`.
365  /// Otherwise the partial view will be used. The decision is defaulted to
366  /// `useFullTileBuffersDefault` when `useFullTileBuffers` is std::nullopt and
367  /// for operands missing from `useFullTileBuffers`.
368  std::optional<llvm::SmallBitVector> useFullTileBuffers;
370  unsigned size = useFullTiles.size();
371  llvm::SmallBitVector tmp(size, false);
372  for (unsigned i = 0; i < size; ++i)
373  tmp[i] = useFullTiles[i];
374  useFullTileBuffers = tmp;
375  return *this;
376  }
377  /// If true all operands unspecified by `useFullTileBuffers` will use the
378  /// full view, otherwise the partial view.
382  return *this;
383  }
384  /// Alignment of promoted buffer. If `std::nullopt` do not specify alignment.
385  std::optional<unsigned> alignment;
387  alignment = align;
388  return *this;
389  }
390  /// Memory space of promoted buffer. If `std::nullopt` do not specify memory
391  /// space.
392  std::optional<Attribute> memorySpace;
394  memorySpace = memorySpc;
395  return *this;
396  }
397  /// Use alloca with the default allocation scheme.
398  bool useAlloca = false;
400  useAlloca = use;
401  return *this;
402  }
403  /// Callback function to do the allocation of the promoted buffer. If
404  /// std::nullopt, then the default allocation scheme of allocating a
405  /// memref<?xi8> buffer followed by a view operation is used.
406  std::optional<AllocBufferCallbackFn> allocationFn;
407  std::optional<DeallocBufferCallbackFn> deallocationFn;
410  DeallocBufferCallbackFn const &deallocFn) {
411  allocationFn = allocFn;
412  deallocationFn = deallocFn;
413  return *this;
414  }
415  /// Callback function to do the copy of data to and from the promoted
416  /// subview. If std::nullopt then a memref.copy is used.
417  std::optional<CopyCallbackFn> copyInFn;
418  std::optional<CopyCallbackFn> copyOutFn;
420  CopyCallbackFn const &copyOut) {
421  copyInFn = copyIn;
422  copyOutFn = copyOut;
423  return *this;
424  }
425 };
426 
427 /// Split Reduction options.
429  // Ratio used to split the reduction dimension. If the ratio is <= 1,
430  // nothing will be done.
431  int64_t ratio = 0;
432  // Index where the extra dimension is added to the intermediate tensor
433  // shape.
434  unsigned index = 0;
435  // If the inner dimension after splitting is parallel or reduction.
436  bool innerParallel = false;
437 };
438 
439 /// Function signature to control reduction splitting. This returns
440 /// `SplitReductionOptions`.
441 // TODO: don't use unsigned unless doing bit manipulation.
443  std::function<SplitReductionOptions(LinalgOp op)>;
444 
445 //===----------------------------------------------------------------------===//
446 // Preconditions that ensure the corresponding transformation succeeds and can
447 // be applied as a rewrite pattern.
448 //===----------------------------------------------------------------------===//
449 
450 /// Return true if two `linalg.generic` operations with producer/consumer
451 /// relationship through `fusedOperand` can be fused using elementwise op
452 /// fusion.
453 bool areElementwiseOpsFusable(OpOperand *fusedOperand);
454 
455 /// Promote memref.subviews feeding linalg-on-buffers operations.
456 LogicalResult promoteSubviewsPrecondition(Operation *op,
458 
459 /// Return success if the operation can be vectorized.
460 LogicalResult vectorizeOpPrecondition(Operation *op,
461  ArrayRef<int64_t> inputVectorSizes = {},
462  ArrayRef<bool> inputScalableVecDims = {},
463  bool vectorizeNDExtract = false,
464  bool flatten1DDepthwiseConv = false);
465 
466 //===----------------------------------------------------------------------===//
467 // Transformations exposed as functional-style API calls.
468 //===----------------------------------------------------------------------===//
469 
471 
472 /// Transformation to drop unit-extent dimensions from `linalg.generic`
473 /// operations.
476 
479 
480  using ControlFnTy = std::function<SmallVector<unsigned>(Operation *)>;
482  if (auto genericOp = dyn_cast_or_null<GenericOp>(op)) {
483  return llvm::to_vector(llvm::seq<unsigned>(0, genericOp.getNumLoops()));
484  }
485  if (auto padOp = dyn_cast_or_null<tensor::PadOp>(op)) {
486  return llvm::to_vector(
487  llvm::seq<unsigned>(0, padOp.getSourceType().getRank()));
488  }
489  return SmallVector<unsigned>{};
490  };
491 };
493  linalg::GenericOp resultOp;
495 };
496 FailureOr<DropUnitDimsResult> dropUnitDims(RewriterBase &rewriter,
497  GenericOp genericOp,
499 
500 /// Fuse two `linalg.generic` operations that have a producer-consumer
501 /// relationship captured through `fusedOperand`. The method expects
502 /// that `areElementwiseOpsFusable` returns true for the given `fusedOperand`.
506 };
507 FailureOr<ElementwiseOpFusionResult>
508 fuseElementwiseOps(RewriterBase &rewriter, OpOperand *fusedOperand);
509 
510 /// Returns a set of indices of the producer's results which would
511 /// be preserved after the fusion.
512 /// * There is a chance that the implementation of the transformation does not
513 /// agree with the result of this method. This function gives a prediction based
514 /// on an optimized fusion.
515 llvm::SmallDenseSet<int> getPreservedProducerResults(GenericOp producer,
516  GenericOp consumer,
517  OpOperand *fusedOperand);
518 
519 /// Try to peel and canonicalize loop `op` and return the new result.
520 /// Also applies affine_min/max bounds simplification on the fly where relevant.
521 // TODO: Add support for scf.parallel and affine.for loops.
523 
524 /// Peel 'loops' and applies affine_min/max bounds simplification on the fly
525 /// where relevant.
526 void peelLoops(RewriterBase &rewriter, ArrayRef<scf::ForOp> loops);
527 
528 /// Pad the iterator dimensions `paddingDimensions` of all `opToPad` operands
529 /// to a static bounding box. The original `opToPad` is cloned and operates on
530 /// the padded tensors.
531 ///
532 /// * "options.padToMultipleOf" indicates that each padding dimension should be
533 /// padded to the specified multiple.
534 /// * Use "options.paddingValues" and "options.nofoldFlags" to set padding
535 /// value and nofold attribute of the created tensor::PadOps, respectively.
536 /// * The unpadded results (extracted slice of the cloned operation) are
537 /// returned via `replacements`.
538 /// * The tensor::PadOps are returned via `padOps`.
539 /// * "options.copyBackOp" specifies the op type for copying back the unpadded
540 /// result to the original destination tensor.
541 LogicalResult rewriteAsPaddedOp(RewriterBase &rewriter, LinalgOp opToPad,
543  LinalgOp &paddedOp,
544  SmallVector<Value> &replacements,
546 
547 namespace detail {
548 
549 /// Helper struct to hold the results of building a packing loop nest.
553  TransposeOp maybeTransposeOp;
554  tensor::PadOp hoistedPadOp;
555 };
556 
557 /// Build the packing loop nest required to hoist `opToHoist` above
558 /// `outermostEnclosingForOp`.
559 /// The loop nest is built just before `outermostEnclosingForOp`.
560 FailureOr<PackingResult>
561 buildPackingLoopNest(RewriterBase &rewriter, tensor::PadOp opToHoist,
562  scf::ForOp outermostEnclosingForOp,
563  ArrayRef<int64_t> transposeVector);
564 
565 } // namespace detail
566 
567 /// Mechanically hoist padding operations on tensors by `numLoops` into a new,
568 /// generally larger tensor. This achieves packing of multiple padding ops into
569 /// a larger tensor. On success, `opToHoist` is replaced by the cloned version
570 /// in the packing loop so the caller can continue reasoning about the padding
571 /// operation. If `transposeVector` is non-empty, hoist padding introduces a
572 /// TransposeOp to transpose the padded tensor before inserting it into the
573 /// packed tensor. A `transposeVector` can change the storage order of the
574 /// padded tensor but does not change the order of the pack or compute loops.
575 ///
576 /// TODO: In the future, we should consider rewriting as a linalg.pack after
577 /// hoisting since this abstraction is now available.
578 ///
579 /// Example in pseudo-mlir:
580 /// =======================
581 ///
582 /// If hoistPaddingOnTensors is called with `nLoops` = 2 on the following IR.
583 /// ```
584 /// scf.for (%i, %j, %k)
585 /// %st0 = tensor.extract_slice f(%i, %k) : ... to tensor<?x?xf32>
586 /// %0 = tensor.pad %st0 low[0, 0] high[...] {
587 /// ^bb0( ... ):
588 /// linalg.yield %pad
589 /// } : tensor<?x?xf32> to tensor<4x8xf32>
590 /// compute(%0)
591 /// ```
592 ///
593 /// IR resembling the following is produced:
594 ///
595 /// ```
596 /// scf.for (%i) {
597 /// %packed_init = tensor.empty range(%j) : tensor<?x4x8xf32>
598 /// %packed = scf.for (%k) iter_args(%p : %packed_init) {
599 /// %st0 = tensor.extract_slice f(%i, %k) : ... to tensor<?x?xf32>
600 /// %0 = tensor.pad %st0 low[0, 0] high[...] {
601 /// ^bb0( ... ):
602 /// linalg.yield %pad
603 /// } : tensor<?x?xf32> to tensor<4x8xf32>
604 /// %1 = tensor.insert_slice %0 ...
605 /// : tensor<4x8xf32> to tensor<?x4x8xf32>
606 /// scf.yield %1: tensor<?x4x8xf32>
607 /// } -> tensor<?x4x8xf32>
608 /// scf.for (%j, %k) {
609 /// %st0 = tensor.extract_slice %packed [%k, 0, 0][1, 4, 8][1, 1, 1] :
610 /// tensor<?x4x8xf32> to tensor<4x8xf32>
611 /// compute(%st0)
612 /// }
613 /// }
614 /// ```
615 FailureOr<Value>
616 hoistPaddingOnTensors(RewriterBase &rewriter, tensor::PadOp opToHoist,
617  int64_t numLoops, ArrayRef<int64_t> transposeVector,
618  tensor::PadOp &hoistedOp,
619  SmallVectorImpl<TransposeOp> &transposeOps);
620 /// Calls into `hoistPaddingOnTensors` with a local IRRewriter.
621 FailureOr<Value>
622 hoistPaddingOnTensors(tensor::PadOp opToHoist, int64_t numLoops,
623  ArrayRef<int64_t> transposeVector,
624  tensor::PadOp &hoistedOp,
625  SmallVectorImpl<TransposeOp> &transposeOps);
626 
627 /// Apply padding and hoisting to `linalgOp` according to the configuration
628 /// specified in `options`.
629 FailureOr<LinalgOp> padAndHoistLinalgOp(RewriterBase &rewriter,
630  LinalgOp linalgOp,
632 
633 /// Split the given `op` into two parts along the given iteration space
634 /// `dimension` at the specified `splitPoint`, and return the two parts.
635 /// If the second part is statically known to be empty, do not create it
636 /// and return nullptr instead. Error state is signalled by returning
637 /// a pair of nullptrs.
638 ///
639 /// For example, the following op:
640 ///
641 /// linalg.matmul ins(%0, %1 : tensor<128x32xf32>, tensor<32x64xf32>)
642 /// outs(%2 : tensor<128x64xf32>)
643 ///
644 /// split along the first dimension at position 42 will result in:
645 ///
646 /// %3 = tensor.extract_slice %0[0, 0][42, 32][1, 1]
647 /// %4 = tensor.extract_slice %2[0, 0][42, 64][1, 1]
648 /// %5 = linalg.matmul ins(%3, %1 : tensor<42x32xf32>, tensor<32x64xf32>)
649 /// outs(%5 : tensor<42x64xf32>)
650 /// %6 = tensor.insert_slice %5 into %2[0, 0][42, 64][1, 1]
651 ///
652 /// %7 = tensor.extract_slice %0[42, 0][86, 32][1, 1]
653 /// %8 = tensor.extract_slice %6[42, 0][86, 64][1, 1]
654 /// %9 = linalg.matmul ins(%7, %1 : tensor<86x32xf32>, tensor<32x64xf32>)
655 /// outs(%8 : tensor<86x64xf32>)
656 /// tensor.insert_slice %5 into %6[42, 0][86, 64][1, 1]
657 ///
658 /// Note that there is no simplification other than constant propagation applied
659 /// to slice extraction and insertion.
660 std::pair<TilingInterface, TilingInterface> splitOp(RewriterBase &rewriter,
661  TilingInterface op,
662  unsigned dimension,
663  OpFoldResult splitPoint);
664 
665 /// Perform standalone tiling of a single LinalgOp by `tileSizes`.
666 /// and permute the loop nest according to `interchangeVector`
667 /// The permutation is expressed as a list of integers that specify
668 /// the new ordering of the loop nest. The length of `interchangeVector`
669 /// must be equal to the length of `tileSizes`.
670 /// An empty vector is interpreted as the identity permutation and the
671 /// transformation returns early.
672 ///
673 /// Return a struct containing the tiled loops in the specified order
674 /// and the cloned op if successful, std::nullopt otherwise.
675 ///
676 /// E.g. the permutation `(i,j,k) -> (j,k,i)` is expressed by
677 /// `interchangeVector = [1,2,0]`. All values in `interchangeVector` must be
678 /// integers, in the range 0..`tileSizes.size()` without duplications
679 /// (i.e. `[1,1,2]` is an invalid permutation).
681  LinalgOp op;
684 };
685 FailureOr<TiledLinalgOp> tileLinalgOp(RewriterBase &b, LinalgOp op,
687 
688 /// Interchange the `iterator_types` and `iterator_maps` dimensions and adapts
689 /// the index accesses of `op`. This is an in-place transformation controlled
690 /// by `interchangeVector`. An empty vector is interpreted as the identity
691 /// permutation and the transformation returns early.
692 ///
693 /// E.g. the permutation `(i,j,k) -> (j,k,i)` is expressed with
694 /// `interchangeVector = [1,2,0]`. All values in `interchangeVector` must be
695 /// integers, in the range 0..`op.rank` without duplications
696 /// (i.e. `[1,1,2]` is an invalid permutation).
697 ///
698 /// Return failure if the permutation is not valid.
699 FailureOr<GenericOp> interchangeGenericOp(RewriterBase &rewriter,
700  GenericOp genericOp,
701  ArrayRef<unsigned> interchangeVector);
702 
703 /// Create a GenericOp from the given named operation `linalgOp` and replace
704 /// the given `linalgOp`.
705 /// Return failure if `linalgOp` is a GenericOp or misses a region builder.
706 FailureOr<GenericOp> generalizeNamedOp(RewriterBase &rewriter,
707  LinalgOp linalgOp);
708 
709 /// Create a namedOp from the given GenericOp and replace the GenericOp.
710 /// Currently we can specialize only trivial linalg copy operations.
711 FailureOr<LinalgOp> specializeGenericOp(RewriterBase &rewriter,
712  GenericOp genericOp);
713 
714 /// Create a new buffer using the `allocationFn` provided. The size of this
715 /// buffer is the smallest constant bounding size along each dimension that
716 /// can be computed for the size of the result of `subView`. Returns the
717 /// allocated buffer as `fullLocalView` and the view that matches the size of
718 /// the result of subview operation as `partialLocalView`.
722 };
723 FailureOr<PromotionInfo>
724 promoteSubviewAsNewBuffer(OpBuilder &b, Location loc, memref::SubViewOp subView,
725  const AllocBufferCallbackFn &allocationFn,
726  DataLayout &layout);
727 
728 /// Promote the `subViews` into a new buffer allocated at the insertion point
729 /// `b`. Promotion occurs in 3 steps:
730 /// 1. Create a new buffer for a full tile (i.e. not clipped at the
731 /// boundary).
732 /// 2. Take a full view on the buffer.
733 /// 3. Take a partial slice of the full view in step 2. and copy into it.
734 ///
735 /// Return the modified linalg op (the modification happens in place) as well
736 /// as all the copy ops created.
737 FailureOr<LinalgOp> promoteSubViews(OpBuilder &b, LinalgOp op,
739 
740 /// Allocate the subview in the GPU workgroup memory.
741 std::optional<Value> allocateWorkgroupMemory(OpBuilder &builder,
742  memref::SubViewOp subview,
743  ArrayRef<Value> sizeBounds,
744  DataLayout &);
745 
746 /// In case of GPU group memory there is no need to deallocate.
747 LogicalResult deallocateWorkgroupMemory(OpBuilder &, Value /*buffer*/);
748 
749 /// Create Memref copy operations and add gpu barrier guards before and after
750 /// the copy operation to ensure data integrity.
751 LogicalResult copyToWorkgroupMemory(OpBuilder &b, Value src, Value dst);
752 
753 /// Allocate the subview in the GPU private memory.
754 std::optional<Value> allocateGPUPrivateMemory(OpBuilder &builder,
755  memref::SubViewOp subview,
756  ArrayRef<Value> sizeBounds,
757  DataLayout &);
758 
759 /// Normal copy to between src and dst.
760 LogicalResult copyToGPUPrivateMemory(OpBuilder &b, Value src, Value dst);
761 
762 /// In case of GPU private memory there is no need to deallocate since the
763 /// memory is freed when going outside of the scope.
764 LogicalResult deallocateGPUPrivateMemory(OpBuilder &, Value /*buffer*/);
765 
766 /// Return true if there's dedicated logic in the Linalg Vectorizer to
767 /// vectorize this Op, false otherwise.
768 ///
769 /// Note that this helper merely implements a very high level check and that the
770 /// vectorizer also requires various additional pre-conditions to be met for it
771 /// to work (these are checked by the vectorizer itself).
773 
774 /// Emit a suitable vector form for an operation. If provided,
775 /// `inputVectorSizes` are used to vectorize this operation. `inputVectorSizes`
776 /// must match the rank of the iteration space of the operation and the sizes
777 /// must be smaller or equal than their counterpart interation space sizes, if
778 /// static. `inputVectorShapes` also allows the vectorization of operations with
779 /// dynamic shapes.
780 LogicalResult vectorize(RewriterBase &rewriter, Operation *op,
781  ArrayRef<int64_t> inputVectorSizes = {},
782  ArrayRef<bool> inputScalableVecDims = {},
783  bool vectorizeNDExtract = false,
784  bool flatten1DDepthwiseConv = false);
785 
786 /// Emit a suitable vector form for a Copy op with fully static shape.
787 LogicalResult vectorizeCopy(RewriterBase &builder, memref::CopyOp copyOp);
788 
789 /// Emit a loop nest of `scf.for` with the proper body for `linalgOp`.
790 FailureOr<LinalgLoops> linalgOpToLoops(RewriterBase &rewriter,
791  LinalgOp linalgOp);
792 
793 /// Emit a loop nest of `scf.parallel` with the proper body for `linalgOp`.
794 FailureOr<LinalgLoops> linalgOpToParallelLoops(RewriterBase &rewriter,
795  LinalgOp linalgOp);
796 
797 /// Emit a loop nest of `affine.for` with the proper body for `linalgOp`.
798 FailureOr<LinalgLoops> linalgOpToAffineLoops(RewriterBase &rewriter,
799  LinalgOp linalgOp);
800 
801 /// Creates a number of ranges equal to the number of non-zero in `tileSizes`.
802 /// One for each loop of the LinalgOp that is tiled. The `tileSizes` argument
803 /// has one entry per surrounding loop. It uses zero as the convention that a
804 /// particular loop is not tiled. This convention simplifies implementations
805 /// by avoiding affine map manipulations. The returned ranges correspond to
806 /// the loop ranges, in the proper order, that are tiled and for which new
807 /// loops will be created. Also the function returns a map from loop indices
808 /// of the LinalgOp to the corresponding non-empty range indices of newly
809 /// created loops.
811 std::tuple<SmallVector<Range, 4>, LoopIndexToRangeIndexMap>
813  ArrayRef<OpFoldResult> allShapeSizes,
814  ArrayRef<OpFoldResult> allTileSizes);
815 
816 namespace detail {
817 template <typename T>
819  /// Tile sizes.
821  /// Number of tiles associated with each size.
823 };
824 
825 template <typename T>
827  /// Tile sizes.
829  /// Number of tiles associated with each size.
831 };
832 
833 } // namespace detail
834 
835 /// A description of a multi-size tiling comprising tile sizes and numbers of
836 /// tiles, expressed as Values which may or may not be constant. Multi-size
837 /// currently means two-size.
839  : public detail::MultiSizeSpecificationBase<Value> {};
841  : public detail::MultiSizeSpecificationBase<int64_t> {};
842 
846  : public detail::ContinuousTileSizeSpecificationBase<int64_t> {};
847 
848 /// Emits the IR computing the multi-sized tiling specification with two tile
849 /// sizes not exceeding `targetSize`, each divisible by `sizeDivisor`, such
850 /// that there exist numbers of tiles with these sizes that fully cover the
851 /// given iteration space `dimension` of the structured `op`.
852 ///
853 /// The computation is as follows:
854 ///
855 /// b = originalTripCount floordiv sizeDivisor
856 /// t = (targetSize + sizeDivisor - 1) floordiv sizeDivisor
857 /// d = (b + t - 1) floordiv t
858 /// s = (b floordiv d) * sizeDivisor
859 /// v = b % d
860 /// u = d - v
861 ///
862 /// where the tile sizes are `s` and `s` + `sizeDivisor`, and the numbers of
863 /// the corresponding tiles are `u` and `v`, respectively. Alternatively,
864 ///
865 /// s * u + (s + sizeDivisor) * v == original size,
866 /// where s mod sizeDivisor = 0.
867 ///
868 /// Expects all values to be positive. In some cases with the target tile size
869 /// sufficiently close to the dimension shape and non-unit divisor, it is
870 /// impossible to compute such sizes. If `emitAssertion` is set, also emit the
871 /// assertion that size computation succeeded.
872 ///
873 /// Returns the specification consisting of both tile values and the number of
874 /// tiles of each size.
875 FailureOr<MultiSizeSpecification>
876 computeMultiTileSizes(OpBuilder &builder, LinalgOp op, unsigned dimension,
877  OpFoldResult targetSize, OpFoldResult divisor,
878  bool emitAssertions = true);
879 FailureOr<StaticMultiSizeSpecification>
880 computeStaticMultiTileSizes(LinalgOp op, unsigned dimension, int64_t targetSize,
881  int64_t divisor);
882 
883 FailureOr<StaticContinuousTileSizeSpecification>
884 computeStaticContinuousTileSizes(LinalgOp op, unsigned dimension,
885  unsigned targetSize);
886 FailureOr<ContinuousTileSizeSpecification>
887 computeContinuousTileSizes(OpBuilder &builder, TilingInterface op,
888  unsigned dimension, OpFoldResult targetSize,
889  bool emitAssertions);
890 
891 /// Transformation information returned after reduction tiling.
893  /// The partial reduction tiled op generated.
895  /// The final reduction operation merging all the partial reductions.
897  /// Initial values used for partial reductions.
899  /// The `scf.forall` operation that iterate over the tiles.
900  scf::ForallOp loops;
901 };
902 
903 /// Method to tile a reduction to parallel iterations computing partial
904 /// reductions. After the loop all the partial reduction are merged into a final
905 /// reduction. For example for the following sequence
906 ///
907 /// ```mlir
908 /// %0 = linalg.generic %in ["parallel", "reduction"]
909 /// : tensor<7x9xf32> -> tensor<7xf32>
910 /// ```
911 ///
912 /// into:
913 ///
914 /// ```mlir
915 /// %0 = linalg.fill ... : tensor<7x4xf32>
916 /// %1 = scf.forall (%iv) in (%c4) shared_outs(%arg0 = %0)
917 /// -> (tensor<7x4xf32>) {
918 /// %2 = tensor.extract_slice %arg3 : tensor<7x4xf32> to tensor<7xf32>
919 /// %3 = tensor.extract_slice %in : tensor<7x9xf32> -> tensor<7x?xf32>
920 /// %4 = linalg.generic %2, %3 ["parallel", "reduction"]
921 /// : tensor<7x?xf32> -> tensor<7xf32>
922 /// %5 = tensor.insert_slice %3, %arg0[0, %iv] : tensor<7x4xf32>
923 /// }
924 /// %6 = linalg.generic %1 ["parallel", "reduction"]
925 /// : tensor<7x4xf32> -> tensor<7xf32>
926 /// ```
927 FailureOr<ForallReductionTilingResult>
928 tileReductionUsingForall(RewriterBase &b, PartialReductionOpInterface op,
929  ArrayRef<OpFoldResult> numThreads,
930  ArrayRef<OpFoldResult> tileSizes = {},
931  std::optional<ArrayAttr> mapping = std::nullopt);
932 
933 /// All indices returned by IndexOp should be invariant with respect to
934 /// tiling. Therefore, if an operation is tiled, we have to transform the
935 /// indices accordingly, i.e. offset them by the values of the corresponding
936 /// induction variables that are captured implicitly in the body of the op.
937 ///
938 /// Example. `linalg.generic` before tiling:
939 ///
940 /// #id_2d = (i, j) -> (i, j)
941 /// #pointwise_2d_trait = {
942 /// indexing_maps = [#id_2d, #id_2d],
943 /// iterator_types = ["parallel", "parallel"]
944 /// }
945 /// linalg.generic #pointwise_2d_trait %operand, %result {
946 /// ^bb0(%operand_in: f32, %result_in: f32):
947 /// %i = linalg.index 0 : index
948 /// %j = linalg.index 1 : index
949 /// <some operations that use %i, %j>
950 /// }: memref<50x100xf32>, memref<50x100xf32>
951 ///
952 /// After tiling pass with tiles sizes 10 and 25:
953 ///
954 /// #strided = (i, j)[s0, s1, s2] -> (i * s1 + s0 + j * s2)
955 ///
956 /// %c1 = arith.constant 1 : index
957 /// %c0 = arith.constant 0 : index
958 /// %c25 = arith.constant 25 : index
959 /// %c10 = arith.constant 10 : index
960 /// operand_dim_0 = dim %operand, 0 : memref<50x100xf32>
961 /// operand_dim_1 = dim %operand, 1 : memref<50x100xf32>
962 /// scf.for %k = %c0 to operand_dim_0 step %c10 {
963 /// scf.for %l = %c0 to operand_dim_1 step %c25 {
964 /// %4 = memref.subview %operand[%k, %l][%c10, %c25][%c1, %c1]
965 /// : memref<50x100xf32> to memref<?x?xf32, #strided>
966 /// %5 = memref.subview %result[%k, %l][%c10, %c25][%c1, %c1]
967 /// : memref<50x100xf32> to memref<?x?xf32, #strided>
968 /// linalg.generic pointwise_2d_trait %4, %5 {
969 /// ^bb0(%operand_in: f32, %result_in: f32):
970 /// %i = linalg.index 0 : index
971 /// %j = linalg.index 1 : index
972 /// // Indices `k` and `l` are implicitly captured in the body.
973 /// %transformed_i = arith.addi %i, %k : index // index `i` is offset by
974 /// %k %transformed_j = arith.addi %j, %l : index // index `j` is offset
975 /// by %l
976 /// // Every use of %i, %j is replaced with %transformed_i,
977 /// %transformed_j <some operations that use %transformed_i,
978 /// %transformed_j>
979 /// }: memref<?x?xf32, #strided>, memref<?x?xf32, #strided>
980 /// }
981 /// }
982 ///
983 /// TODO: Investigate whether mixing implicit and explicit indices
984 /// does not lead to losing information.
985 void transformIndexOps(RewriterBase &b, LinalgOp op,
987  const LoopIndexToRangeIndexMap &loopIndexToRangeIndex);
988 
989 /// Apply transformation to split the single linalg op reduction into a
990 /// parallel and reduction dimension. Then create a new linalg.generic op
991 /// doing the rest of the reduction. Return the new linalg op with an extra
992 /// parallel dimension or failure if the transformation didn't happen.
993 ///
994 /// Example:
995 /// ```
996 /// %r = linalg.generic {indexing_maps = [affine_map<(d0) -> (d0)>,
997 /// affine_map<(d0) -> ()>],
998 /// iterator_types = ["reduction"]}
999 /// ins(%in : tensor<32xf32>)
1000 /// outs(%out : tensor<f32>) {
1001 /// ^bb0(%arg1: f32, %arg2: f32):
1002 /// %y = arith.addf %arg1, %arg2 : f32
1003 /// linalg.yield %y : f32
1004 /// } -> tensor<f32>
1005 /// ```
1006 /// To:
1007 /// ```
1008 /// %cst = arith.constant 0.000000e+00 : f32
1009 /// %0 = tensor.expand_shape %in [[0, 1]]: tensor<32xf32> into tensor<4x8xf32>
1010 /// %1 = tensor.empty [4] : tensor<4xf32>
1011 /// %2 = linalg.fill ins(%cst : f32)
1012 /// outs(%1 : tensor<4xf32>) -> tensor<4xf32>
1013 /// %3 = linalg.generic {indexing_maps = [affine_map<(d0, d1) -> (d0, d1)>,
1014 /// affine_map<(d0, d1) -> (d0)>],
1015 /// iterator_types = ["parallel", "reduction"]}
1016 /// ins(%0 : tensor<4x8xf32>) outs(%2 : tensor<4xf32>) {
1017 /// ^bb0(%arg3: f32, %arg5: f32):
1018 /// %5 = arith.addf %arg3, %arg4 : f32
1019 /// linalg.yield %5 : f32
1020 /// } -> tensor<4xf32>
1021 /// %r = linalg.generic {indexing_maps = [affine_map<(d0) -> (d0)>,
1022 /// affine_map<(d0) -> ()>],
1023 /// iterator_types = ["reduction"]}
1024 /// ins(%3 : tensor<4xf32>) outs(%out : tensor<f32>) {
1025 /// ^bb0(%arg3: f32, %arg4: f32):
1026 /// %5 = arith.addf %arg3, %arg4 : f32
1027 /// linalg.yield %5 : f32
1028 /// } -> tensor<f32>
1029 /// ```
1032  FillOp fillOp;
1033  LinalgOp splitLinalgOp;
1035 };
1036 FailureOr<SplitReductionResult>
1037 splitReduction(RewriterBase &b, LinalgOp op,
1038  const ControlSplitReductionFn &controlSplitReductionFn,
1039  bool useAlloc = false);
1040 
1041 /// Scaling-based implementation of the split reduction transformation.
1042 /// Instead of introducing an ExpandShapeOp, this rewrites a reduction
1043 /// dimension `k` into `k * scale + kk`.
1044 ///
1045 /// Example:
1046 /// ```
1047 /// %0 = linalg.matmul ins(%A, %B: tensor<16x256xf32>, tensor<256x32xf32>)
1048 /// outs(%C: tensor<16x32xf32>) -> tensor<16x32xf32>
1049 /// ```
1050 ///
1051 /// Is transformed to:
1052 ///
1053 /// ```
1054 /// #map0 = affine_map<(d0, d1, d2, d3) -> (d0, d2 * 4 + d3)>
1055 /// #map1 = affine_map<(d0, d1, d2, d3) -> (d2 * 4 + d3, d1)>
1056 /// #map2 = affine_map<(d0, d1, d2, d3) -> (d2, d3)>
1057 /// #map3 = affine_map<(d0, d1, d2, d3) -> (d0, d1, d2)>
1058 /// #map4 = affine_map<(d0, d1, d2) -> (d0, d1, d2)>
1059 /// #map5 = affine_map<(d0, d1, d2) -> (d0, d1)>
1060 /// %0 = tensor.empty [16, 32, 64] : tensor<16x32x64xf32>
1061 /// %cst = arith.constant 0.000000e+00 : f32
1062 /// %1 = linalg.fill ins(%cst : f32) outs(%0 : tensor<16x32x64xf32>) ->
1063 /// tensor<16x32x64xf32>
1064 /// %2 = tensor.empty [64, 4] : tensor<64x4xi1>
1065 ///
1066 /// %3 = linalg.generic {indexing_maps = [#map0, #map1, #map2, #map3],
1067 /// iterator_types = ["parallel", "parallel", "parallel", "reduction"]}
1068 /// ins(%A, %B, %2 : tensor<16x256xf32>, tensor<256x32xf32>,
1069 /// tensor<64x4xi1>)
1070 /// outs(%1 : tensor<16x32x64xf32>) {
1071 /// ^bb0(%arg3: f32, %arg4: f32, %arg5: i1, %arg6: f32):
1072 /// %5 = arith.mulf %arg3, %arg4 : f32
1073 /// %6 = arith.addf %arg6, %5 : f32
1074 /// linalg.yield %6 : f32
1075 /// } -> tensor<16x32x64xf32>
1076 ///
1077 /// %4 = linalg.generic {indexing_maps = [#map4, #map5],
1078 /// iterator_types = ["parallel", "parallel", "reduction"]}
1079 // ins(%3 : tensor<16x32x64xf32>)
1080 /// outs(%C : tensor<16x32xf32>) {
1081 /// ^bb0(%arg3: f32, %arg4: f32):
1082 /// %5 = arith.addf %arg3, %arg4 : f32
1083 /// linalg.yield %5 : f32
1084 /// } -> tensor<16x32xf32>
1085 ///
1086 /// return %4 : tensor<16x32xf32>
1087 /// ```
1088 FailureOr<SplitReductionResult>
1089 splitReductionByScaling(RewriterBase &b, LinalgOp op,
1090  const ControlSplitReductionFn &controlSplitReductionFn,
1091  bool useAlloc = false);
1092 
1093 /// Return `true` if a given sequence of dimensions are contiguous in the
1094 /// range of the specified indexing map.
1096 /// Return `true` if all sequences of dimensions specified in `dimSequences` are
1097 /// contiguous in all the ranges of the `maps`.
1099  ArrayRef<ReassociationIndices> dimSequences);
1100 
1103  LinalgOp collapsedOp;
1104 };
1105 
1106 /// Collapses dimensions of linalg.generic/linalg.copy operation. A precondition
1107 /// to calling this method is that for each list in `foldedIterationDim`, the
1108 /// sequence of dimensions is contiguous in domains of all `indexing_maps` of
1109 /// the `linalgOp`. This can be checked using `areDimSequencePreserved` method.
1110 /// When valid, the method also collapses the operands of the op. Returns
1111 /// replacement values of the results of the original `linalgOp` by inserting
1112 /// reshapes to get back values of compatible types.
1113 FailureOr<CollapseResult>
1114 collapseOpIterationDims(LinalgOp op,
1115  ArrayRef<ReassociationIndices> foldedIterationDims,
1116  RewriterBase &rewriter);
1117 
1119  tensor::PadOp padOp;
1120  tensor::ExpandShapeOp expandShapeOp;
1121  linalg::TransposeOp transposeOp;
1122 };
1123 
1124 /// Rewrite pack as pad + reshape + transpose.
1125 FailureOr<LowerPackResult> lowerPack(RewriterBase &rewriter,
1126  linalg::PackOp packOp,
1127  bool lowerPadLikeWithInsertSlice = true);
1128 
1130  tensor::EmptyOp emptyOp;
1131  linalg::TransposeOp transposeOp;
1132  tensor::CollapseShapeOp collapseShapeOp;
1133  tensor::ExtractSliceOp extractSliceOp;
1134 };
1135 
1136 /// Rewrite pack as empty + transpose + reshape + extract_slice.
1137 FailureOr<LowerUnPackOpResult>
1138 lowerUnPack(RewriterBase &rewriter, linalg::UnPackOp unPackOp,
1139  bool lowerUnpadLikeWithExtractSlice = true);
1140 
1141 /// Struct to hold the result of a `pack` call.
1142 struct PackResult {
1144  linalg::LinalgOp packedLinalgOp;
1146 };
1147 /// Implement packing of a single LinalgOp by `packedSizes`.
1148 /// There must be one packedSizes entry per `linalgOp` iterator.
1149 /// Return the packed Linalg op on success, failure otherwise.
1150 FailureOr<PackResult> pack(RewriterBase &rewriter, linalg::LinalgOp linalgOp,
1151  ArrayRef<OpFoldResult> packedSizes);
1152 
1153 /// Struct to hold the result of a `packTranspose` call.
1155  linalg::PackOp transposedPackOp;
1156  linalg::LinalgOp transposedLinalgOp;
1157  linalg::UnPackOp transposedUnPackOp;
1158 };
1159 /// Transpose a single PackOp -> LinalgOp -> UnPackOp chain and return the
1160 /// transposed PackOp -> LinalgOp -> UnPackOp chain after replacements.
1161 /// Return failure if either:
1162 /// 1. the `packOp` does not have the `linalgOp` as its unique use.
1163 /// 2. the `maybeUnPackOp`, if specified must be a consumer of the result tied
1164 /// to the unique `packOp` use.
1165 /// 3. `outerPerm` (resp. `innerPerm`) must be valid permutations of
1166 /// `packOp.getOuterDimsPerm` (resp. `packOp.getInnerDimsPerm`) or empty.
1167 FailureOr<PackTransposeResult>
1168 packTranspose(RewriterBase &rewriter, linalg::PackOp packOp,
1169  linalg::LinalgOp linalgOp, linalg::UnPackOp maybeUnPackOp,
1170  ArrayRef<int64_t> outerPerm, ArrayRef<int64_t> innerPerm);
1171 
1172 /// Pack a LinalgOp by greedily inferring matmul dimensions (m, n, k) where m
1173 /// and n are proper parallel dimensions and k is a proper reduction
1174 /// dimension. Packing occurs by rewriting the op as a linalg.generic and
1175 /// calling linalg::pack by `mnkPackedSizes`. The order of the packed
1176 /// dimensions is customizable: the `mnkOrder` is a permutation of {0, 1, 2}
1177 /// to reorder {m, n, k} into one of the 8 possible forms. The outer
1178 /// dimensions of the operands are not permuted at this time, this is left for
1179 /// future work.
1180 FailureOr<PackResult>
1181 packMatmulGreedily(RewriterBase &rewriter, LinalgOp linalgOp,
1182  ArrayRef<OpFoldResult> mnkPackedSizes,
1183  ArrayRef<int64_t> mnkPaddedSizesNextMultipleOf,
1184  ArrayRef<int64_t> mnkOrder);
1185 
1187  /// Minor block factors (mb, nb, kb) for packing relayout where mb, mn are
1188  /// the parallel dimensions and kb is the reduction dimension.
1190 
1191  /// If true, allows packing of dimensions that only partially fit into the
1192  /// block factors.
1193  bool allowPadding = true;
1194 
1195  /// Next multiples of the packing sizes.
1197 
1198  /// Permutation of matmul (M, N, K) dimensions order.
1200 
1201  /// Transpose LHS outer block layout [MB][KB] -> [KB][MB].
1203 
1204  /// Transpose LHS inner block layout [mb][kb] -> [kb][mb].
1206 
1207  /// Transpose RHS outer block layout [KB][NB] -> [NB][KB].
1209 
1210  /// Transpose RHS inner block layout [kb][nb] -> [nb][kb].
1212 };
1213 
1214 /// Function type which is used to control matmul packing.
1215 /// It is expected to return valid packing configuration for each operation.
1216 /// Lack of packing options indicates that no valid configuration could be
1217 /// assigned and the operation will not be packed.
1219  std::function<std::optional<BlockPackMatmulOptions>(linalg::LinalgOp)>;
1220 
1221 /// Pack a matmul operation into blocked 4D layout.
1222 ///
1223 /// Relayout a matmul operation into blocked layout with two levels of
1224 /// subdivision:
1225 /// - major 2D blocks - outer dimensions, consist of minor blocks
1226 /// - minor 2D blocks - inner dimensions, consist of scalar elements
1227 ///
1228 /// A 2D matmul MxNxK gets reshaped into blocked 4D representation
1229 /// as: [MB][NB][mb][nb] += [MB][KB][mb][kb] * [NB][KB][nb][kb]
1230 /// where the (MB, NB, KB) dimensions represent the major blocks,
1231 /// and the (mb, nb, kb) are the minor blocks of their respective
1232 /// original 2D dimensions (M, N, K).
1233 ///
1234 /// Depending on the initial operands' data layout and the specified
1235 /// packing options, the major blocks dimensions might get transposed
1236 /// e.g., [MB][KB] -> [KB][MB]. The minor blocks can also be transposed
1237 /// e.g., [mb][kb] -> [kb][mb].
1238 /// Any present batch dimensions remain unchanged.
1239 /// The final result is unpacked back to the original shape.
1240 ///
1241 /// Return failure if no valid packing options are provided.
1242 FailureOr<PackResult>
1243 blockPackMatmul(RewriterBase &rewriter, linalg::LinalgOp linalgOp,
1244  const ControlBlockPackMatmulFn &controlPackMatmul);
1245 
1246 /// Rewrite tensor.from_elements to linalg.generic.
1247 FailureOr<Operation *>
1249  tensor::FromElementsOp fromElementsOp);
1250 
1251 /// Rewrite tensor.generate to linalg.generic.
1252 FailureOr<Operation *>
1254  tensor::GenerateOp generateOp);
1255 
1256 /// Rewrite tensor.pad to linalg.generic + tensor.insert_slice.
1257 FailureOr<Operation *> rewriteInDestinationPassingStyle(RewriterBase &rewriter,
1258  tensor::PadOp padOp);
1259 
1260 /// Convert linalg.conv_2d_nhwc_hwcf into linalg.generic (for img2col packing)
1261 /// and linalg.matmul.
1262 ///
1263 /// A convolution operation can be written as a matrix-matrix multiplication by
1264 /// unfolding the cross-correlation between input and filter and explicitly copy
1265 /// overlapped sliding window inputs.
1266 ///
1267 /// Consider 2D input X with single channel input and output and 2x2 filter W:
1268 /// [x(0, 0) , x(0, 1) , ..., x(0, n) ]
1269 /// [x(1, 0) , x(1, 1) , ..., x(1, n) ]
1270 /// [. , . ,. , . ] [w(0, 0), w(0, 1)]
1271 /// [. , . , . , . ] (conv) [w(1, 0), w(1, 1)]
1272 /// [. , . , ., . ]
1273 /// [x(n-1, 0), x(n-1, 1), ..., x(n-1, n-1)]
1274 ///
1275 /// The packed input data (img2col) is a matrix with |rows| = output spatial
1276 /// size, |columns| = filter spatial size. To compute the output Y(i, j) we need
1277 /// to calculate the dot product between filter window at input X(x, y)) and the
1278 /// filter which will look like the following where r.h.s is the img2col matrix
1279 /// and l.h.s is the flattened filter:
1280 ///
1281 /// [x(0,0), x(0,1), x(1,0), x(1,1)]
1282 /// [x(0,1), x(1,1), x(0,2), x(1,2)] (matmul) [w(0,0), w(0,1), w(1,0), w(1,1)]
1283 /// [x(0,1), x(1,1), x(0,2), x(1,2)]
1284 /// [ . , . , . , . ]
1285 ///
1286 /// In general for 2D case with (N, H, W, C) input and (Kh, Kw, C, D) filter
1287 /// and output (N, Ho, Wo, D) the convolution is the following matrix-matrix
1288 /// multiplication (Ho x Wo, Kh x Kw x C) * (Kh x Kw x C, D) for each input in
1289 /// the N input. For the case where N > 1 its a batched matrix-matrix
1290 /// multiplication.
1291 ///
1292 /// On success, return both the operation that produces the img2col tensor and
1293 /// the final operation of the sequence that replaces the original convolution.
1294 FailureOr<std::pair<Operation *, Operation *>>
1295 rewriteInIm2Col(RewriterBase &rewriter, linalg::Conv2DNhwcHwcfOp convOp);
1296 
1297 /// Same as the above but for Fhwc channel orderings in the filter. In this case
1298 /// the matrix multiplication is actually a row-wise dot-product rather than a
1299 /// row-column dot-product. This is to avoid transposing the filter matrix which
1300 /// would be required for a regular matrix multiplication to produce the correct
1301 /// output dimensions.
1302 FailureOr<std::pair<Operation *, Operation *>>
1303 rewriteInIm2Col(RewriterBase &rewriter, linalg::Conv2DNhwcFhwcOp convOp);
1304 
1305 /// Similar to rewriteInIm2Col with linalg::Conv2DNhwcHwcfOp except there is no
1306 /// reduction among the input channels so each convolution can be a
1307 /// matrix-vector product and by transposing both input filter so channels are
1308 /// outer most the computation is a batched matrix-vector product.
1309 FailureOr<std::pair<Operation *, Operation *>>
1310 rewriteInIm2Col(RewriterBase &rewriter,
1311  linalg::DepthwiseConv2DNhwcHwcOp convOp);
1312 
1313 /// Similar to rewriteInIm2Col with linalg::Conv2DNhwcHwcfOp except because the
1314 /// channels are to the left of the image shape dimensions, the position of the
1315 /// contraction dimension in the resulting matmul is reversed. This swaps the
1316 /// LHS and RHS of the matmul when compared with nhwc (i.e. (D, C x Kh x Kw) *
1317 /// (C x Kh x Kw, Ho x Wo))
1318 FailureOr<std::pair<Operation *, Operation *>>
1319 rewriteInIm2Col(RewriterBase &rewriter, linalg::Conv2DNchwFchwOp convOp);
1320 
1321 /// Convert linalg.conv_2d_nhwc_fhwc(_q) to linalg.conv_2d_nhwc_hwcf(_q) by
1322 /// materializing transpose.
1323 FailureOr<Operation *> transposeConv2D(RewriterBase &rewriter,
1324  linalg::Conv2DNhwcFhwcOp op);
1325 FailureOr<Operation *> transposeConv2D(RewriterBase &rewriter,
1326  linalg::Conv2DNhwcFhwcQOp op);
1327 
1328 /// Convert Linalg matmul ops to transposed variants.
1329 FailureOr<Operation *> transposeMatmul(RewriterBase &rewriter,
1330  linalg::MatmulOp op,
1331  bool transposeLHS = true);
1332 FailureOr<Operation *> transposeBatchMatmul(RewriterBase &rewriter,
1333  linalg::BatchMatmulOp op,
1334  bool transposeLHS = true);
1335 
1336 /// Convert linalg.conv_2d_nhwc_fhwc to Winograd Conv2D algorithm
1337 /// F(m x m, r x r). m is the dimension size of output and r is the dimension
1338 /// size of filter.
1339 FailureOr<Operation *> winogradConv2D(RewriterBase &rewriter,
1340  linalg::Conv2DNhwcFhwcOp op, int64_t m,
1341  int64_t r);
1342 
1343 /// Rewrite linalg.winograd_filter_transform. The data layout of the filter is
1344 /// FHWC. The transformation matrix is 2-dimension. We need to extract H x W
1345 /// from FHWC first. We generate 2 levels of loops to iterate on F and C. After
1346 /// the rewriting, we get
1347 ///
1348 /// scf.for %f = lo_f to hi_f step 1
1349 /// scf.for %c = lo_c to hi_c step 1
1350 /// %extracted = extract filter<h x w> from filter<f x h x w x c>
1351 /// %ret = linalg.matmul G, %extracted
1352 /// %ret = linalg.matmul %ret, GT
1353 /// %inserted = insert %ret into filter<h x w x c x f>
1354 FailureOr<Operation *>
1356  linalg::WinogradFilterTransformOp op);
1357 
1358 /// Rewrite linalg.winograd_input_transform. The data layout of the input is
1359 /// NHWC. The transformation matrix is 2-dimension. We need to extract H x W
1360 /// from NHWC first. We generate 4 levels of loops to iterate on N, C, tileH,
1361 /// and tileW. After the rewriting, we get
1362 ///
1363 /// scf.for %h = 0 to tileH step 1
1364 /// scf.for %w = 0 to tileW step 1
1365 /// scf.for %n = 0 to N step 1
1366 /// scf.for %c = 0 to C step 1
1367 /// %extracted = extract %extracted<alphaH x alphaW> from
1368 /// %input<N x H x W x C>
1369 /// at [%n, (%h x m), (%w x m), %c]
1370 /// %ret = linalg.matmul BT, %extracted
1371 /// %ret = linalg.matmul %ret, B
1372 /// %inserted = insert %ret<alphaH x alphaW> into
1373 /// %output<alphaH x alphaW x tileH x tileW x N x C>
1374 /// at [0, 0, %h, %w, %n, %c]
1375 FailureOr<Operation *>
1377  linalg::WinogradInputTransformOp op);
1378 
1379 /// Rewrite linalg.winograd_output_transform. The data layout of the output is
1380 /// HWNF. The transformation matrix is 2-dimension. We need to extract H x W
1381 /// from HWNF first. We generate 4 levels of loops to iterate on N, F, tileH,
1382 /// and tileW. After the transformation, we get
1383 ///
1384 /// scf.for %h = 0 to tileH step 1
1385 /// scf.for %w = 0 to tileW step 1
1386 /// scf.for %n = 0 to N step 1
1387 /// scf.for %f = 0 to F step 1
1388 /// %extracted = extract %extracted<alphaH x alphaW> from
1389 /// %input<alphaH x alphaW x tileH x tileW x N x F>
1390 /// at [0, 0, %h, %w, %n, %f]
1391 /// %ret = linalg.matmul AT, %extracted
1392 /// %ret = linalg.matmul %ret, A
1393 /// %inserted = insert %ret<alphaH x alphaW> into
1394 /// output<N x H x W x F>
1395 /// at [%n, (%h x m), (%w x m), %f]
1396 FailureOr<Operation *>
1398  linalg::WinogradOutputTransformOp op);
1399 
1400 /// Method to deduplicate operands and remove dead results of `linalg.generic`
1401 /// operations. This is effectively DCE for a linalg.generic op. If there is
1402 /// deduplication of operands orremoval of results, replaces the `genericOp`
1403 /// with a new op and returns it. Returns the same operation if there is no
1404 /// deduplication/removal.
1405 FailureOr<linalg::GenericOp> deduplicateOperandsAndRemoveDeadResults(
1406  RewriterBase &rewriter, linalg::GenericOp genericOp, bool removeOutputs);
1407 
1408 //===----------------------------------------------------------------------===//
1409 // Rewrite patterns wrapping transformations.
1410 // TODO: every single such pattern should be a close to noop wrapper around a
1411 // functional-stye API call.
1412 //===----------------------------------------------------------------------===//
1413 
1414 /// Rewrites 2-D convolution ops with size-1 window dimensions into 1-D
1415 /// convolution ops.
1416 template <typename Conv2DOp, typename Conv1DOp>
1418  : public OpRewritePattern<Conv2DOp> {
1420 
1421  FailureOr<Conv1DOp> returningMatchAndRewrite(Conv2DOp convOp,
1422  PatternRewriter &rewriter) const;
1423 
1424  LogicalResult matchAndRewrite(Conv2DOp convOp,
1425  PatternRewriter &rewriter) const override {
1426  return returningMatchAndRewrite(convOp, rewriter);
1427  }
1428 };
1429 
1430 extern template struct DownscaleSizeOneWindowed2DConvolution<Conv2DNhwcHwcfOp,
1431  Conv1DNwcWcfOp>;
1432 extern template struct DownscaleSizeOneWindowed2DConvolution<Conv2DNchwFchwOp,
1433  Conv1DNcwFcwOp>;
1434 
1435 /// Rewrites 2-D depthwise convolution ops with size-1 (w, kw) or (h, kh)
1436 /// dimensions into 1-D depthwise convolution ops.
1438  : public OpRewritePattern<DepthwiseConv2DNhwcHwcOp> {
1440  PatternBenefit benefit = 1)
1441  : OpRewritePattern<DepthwiseConv2DNhwcHwcOp>(context, benefit) {}
1442 
1443  FailureOr<DepthwiseConv1DNwcWcOp>
1444  returningMatchAndRewrite(DepthwiseConv2DNhwcHwcOp convOp,
1445  PatternRewriter &rewriter) const;
1446 
1447  LogicalResult matchAndRewrite(DepthwiseConv2DNhwcHwcOp convOp,
1448  PatternRewriter &rewriter) const override {
1449  return returningMatchAndRewrite(convOp, rewriter);
1450  }
1451 };
1452 
1453 struct DownscaleConv2DOp final : public OpRewritePattern<Conv2DOp> {
1455  : OpRewritePattern<Conv2DOp>(context, benefit) {}
1456 
1457  FailureOr<Conv1DOp> returningMatchAndRewrite(Conv2DOp convOp,
1458  PatternRewriter &rewriter) const;
1459 
1460  LogicalResult matchAndRewrite(Conv2DOp convOp,
1461  PatternRewriter &rewriter) const override {
1462  return returningMatchAndRewrite(convOp, rewriter);
1463  }
1464 };
1465 
1466 ///
1467 /// Linalg generalization pattern.
1468 ///
1469 /// Apply the `generalization` transformation as a pattern.
1470 /// See `generalization` for more details.
1471 //
1472 // TODO: Automatic default pattern class that just unwraps a function
1473 // returning FailureOr<GenericOp>.
1475  : public OpInterfaceRewritePattern<LinalgOp> {
1477 
1478  /// `matchAndRewrite` implementation that returns the significant
1479  /// transformed pieces of IR.
1480  FailureOr<GenericOp>
1481  returningMatchAndRewrite(LinalgOp op, PatternRewriter &rewriter) const {
1482  return generalizeNamedOp(rewriter, op);
1483  }
1484 
1485  LogicalResult matchAndRewrite(LinalgOp op,
1486  PatternRewriter &rewriter) const override {
1487  return returningMatchAndRewrite(op, rewriter);
1488  }
1489 };
1490 
1491 struct LinalgSpecializationPattern : public OpRewritePattern<GenericOp> {
1493 
1494  FailureOr<GenericOp>
1495  returningMatchAndRewrite(GenericOp op, PatternRewriter &rewriter) const {
1496  return specializeGenericOp(rewriter, op);
1497  }
1498 
1499  LogicalResult matchAndRewrite(GenericOp op,
1500  PatternRewriter &rewriter) const override {
1501  return returningMatchAndRewrite(op, rewriter);
1502  }
1503 };
1504 
1505 /// Vectorization pattern for memref::CopyOp.
1506 struct CopyVectorizationPattern : public OpRewritePattern<memref::CopyOp> {
1508 
1509  LogicalResult matchAndRewrite(memref::CopyOp copyOp,
1510  PatternRewriter &rewriter) const override;
1511 };
1512 
1514  std::function<LogicalResult(RewriterBase &, tensor::PadOp, Value)>;
1515 
1516 /// Rewrite a tensor::PadOp into a sequence of EmptyOp, FillOp and
1517 /// InsertSliceOp. For now, only constant padding values are supported.
1518 struct DecomposePadOpPattern : public OpRewritePattern<tensor::PadOp> {
1520  : OpRewritePattern<tensor::PadOp>(context, benefit) {}
1521  LogicalResult matchAndRewrite(tensor::PadOp padOp,
1522  PatternRewriter &rewriter) const override;
1523 
1524 protected:
1525  Value createFillOrGenerateOp(RewriterBase &rewriter, tensor::PadOp padOp,
1526  Value dest,
1527  const SmallVector<Value> &dynSizes) const;
1528 };
1529 
1530 /// Rewrites a linalg::PackOp into a sequence of:
1531 /// * tensor::PadOp + linalg::TransposeOp + tensor::EmptyOp +
1532 /// tensor::InsertSliceOp ops.
1533 ///
1534 /// Requires that all the outer dims of the input linalg::PackOp are 1.
1535 ///
1536 /// Before:
1537 /// ```
1538 /// %packed = linalg.pack %input
1539 /// padding_value(%pad : f32)
1540 /// inner_dims_pos = [1, 0]
1541 /// inner_tiles = [2, %high]
1542 /// into %output : tensor<5x1xf32> -> tensor<1x1x2x?xf32>
1543 /// ```
1544 ///
1545 /// After:
1546 /// ```
1547 /// // PadOp
1548 /// %padded = tensor.pad %arg0 low[0, 0] high[%0, 1] {
1549 /// ^bb0(...):
1550 /// tensor.yield %arg2 : f32
1551 /// } : tensor<5x1xf32> to tensor<?x2xf32>
1552 /// // EmptyOp + TransposeOp
1553 /// %empty = tensor.empty(%arg3) : tensor<2x?xf32>
1554 /// %transposed = linalg.transpose
1555 /// ins(%extracted_slice : tensor<?x2xf32>)
1556 /// outs(%empty : tensor<2x?xf32>)
1557 /// permutation = [1, 0]
1558 /// // InsertSliceOp
1559 /// %inserted_slice = tensor.insert_slice %transposed
1560 /// into %arg1[0, 0, 0, 0] [1, 1, 2, %tile_dim_1] [1, 1, 1, 1]
1561 /// : tensor<2x?xf32> into tensor<1x1x2x?xf32>
1562 /// ```
1564  : public OpRewritePattern<linalg::PackOp> {
1566  LogicalResult matchAndRewrite(linalg::PackOp packOp,
1567  PatternRewriter &rewriter) const override;
1568 };
1569 
1570 /// Rewrites a linalg::UnPackOp into a sequence of rank-reduced
1571 /// * tensor::ExtractSliceOp + linalg::TransposeOp + tensor::InsertSliceOp
1572 ///
1573 /// Requires that all the outer dims of the input linalg::PackOp are 1.
1574 ///
1575 /// Before:
1576 /// ```
1577 /// %packed = linalg.unpack %input
1578 /// inner_dims_pos = [1, 0]
1579 /// inner_tiles = [2, 8]
1580 /// into %output : tensor<1x1x2x8xf32> -> tensor<5x1xf32>
1581 /// ```
1582 ///
1583 /// After:
1584 /// ```
1585 /// // Rank-reduced extract to obtain the tile
1586 /// %slice = tensor.extract_slice %arg0[0, 0, 0, 0] [1, 1, 2, 8] [1, 1, 1, 1]
1587 /// : tensor<1x1x2x8xf32> to tensor<2x8xf32>
1588 /// // EmptyOp + TransposeOp
1589 /// %init = tensor.empty() : tensor<8x2xf32>
1590 /// %transposed = linalg.transpose
1591 /// ins(%extracted_slice : tensor<2x8xf32>)
1592 /// outs(%0 : tensor<8x2xf32>) permutation = [1, 0]
1593 /// // Extract a slice matching the specified output size
1594 /// %result = tensor.extract_slice %transposed[0, 0] [5, 1] [1, 1]
1595 /// : tensor<8x2xf32> to tensor<5x1xf32>
1596 /// ```
1598  : public OpRewritePattern<linalg::UnPackOp> {
1600  LogicalResult matchAndRewrite(linalg::UnPackOp unpackOp,
1601  PatternRewriter &rewriter) const override;
1602 };
1603 
1604 /// Match and rewrite for the pattern:
1605 /// ```
1606 /// %alloc = ...
1607 /// [optional] %view = memref.view %alloc ...
1608 /// %subView = subview %allocOrView ...
1609 /// [optional] linalg.fill(%allocOrView, %cst) ...
1610 /// ...
1611 /// memref.copy(%in, %subView) ...
1612 /// vector.transfer_read %allocOrView[...], %cst ...
1613 /// ```
1614 /// into
1615 /// ```
1616 /// [unchanged] %alloc = ...
1617 /// [unchanged] [optional] %view = memref.view %alloc ...
1618 /// [unchanged] [unchanged] %subView = subview %allocOrView ...
1619 /// ...
1620 /// vector.transfer_read %in[...], %cst ...
1621 /// ```
1622 /// Where there is no interleaved use between memref.copy and transfer_read as
1623 /// well as no interleaved use between linalg.fill and memref.copy (if
1624 /// linalg.fill is specified).
1625 /// This is a custom rewrite to forward partial reads (with optional fills) to
1626 /// vector.transfer_read.
1628  : public OpRewritePattern<vector::TransferReadOp> {
1630 
1631  LogicalResult matchAndRewrite(vector::TransferReadOp xferOp,
1632  PatternRewriter &rewriter) const override;
1633 };
1634 
1635 /// Match and rewrite for the pattern:
1636 /// ```
1637 /// %alloc = ...
1638 /// [optional] %view = memref.view %alloc ...
1639 /// %subView = subview %allocOrView...
1640 /// ...
1641 /// vector.transfer_write %..., %allocOrView[...]
1642 /// memref.copy(%subView, %out)
1643 /// ```
1644 /// into
1645 /// ```
1646 /// [unchanged] %alloc = ...
1647 /// [unchanged] [optional] %view = memref.view %alloc ...
1648 /// [unchanged] %subView = subview %allocOrView...
1649 /// ...
1650 /// vector.transfer_write %..., %out[...]
1651 /// ```
1652 /// Where there is no interleaved use between transfer_write and memref.copy.
1653 /// This is a custom rewrite to forward partial writes to
1654 /// vector.transfer_write.
1656  : public OpRewritePattern<vector::TransferWriteOp> {
1658 
1659  LogicalResult matchAndRewrite(vector::TransferWriteOp xferOp,
1660  PatternRewriter &rewriter) const override;
1661 };
1662 
1663 /// Rewrite extract_slice(tensor.pad(x)) into tensor.pad(extract_slice(x)).
1665  : public OpRewritePattern<tensor::ExtractSliceOp> {
1666  /// A function to control pattern application and rewrite logic.
1667  ///
1668  /// The function will be given the slice op and should return:
1669  /// - std::nullopt: to fail the match and not apply the pattern;
1670  /// - true: to apply the pattern with zero slice guard;
1671  /// - false: to apply the pattern without zero slice guard.
1672  ///
1673  /// See the documentation for tensor::bubbleUpPadSlice regarding zero slice
1674  /// guard.
1675  using ControlFn = std::function<std::optional<bool>(tensor::ExtractSliceOp)>;
1676 
1678  ControlFn controlFn = nullptr,
1679  PatternBenefit benefit = 1)
1680  : OpRewritePattern(context, benefit), controlFn(std::move(controlFn)) {}
1681 
1682  LogicalResult matchAndRewrite(tensor::ExtractSliceOp sliceOp,
1683  PatternRewriter &rewriter) const override;
1684 
1685 private:
1686  ControlFn controlFn;
1687 };
1688 
1689 //===----------------------------------------------------------------------===//
1690 // Populate functions.
1691 //===----------------------------------------------------------------------===//
1692 
1693 /// Canonicalization patterns relevant to apply after tiling patterns. These
1694 /// are applied automatically by the tiling pass but need to be applied
1695 /// manually when tiling is called programmatically.
1698 
1699 /// Linalg generalization patterns
1700 
1701 /// Populates `patterns` with patterns to convert spec-generated named ops to
1702 /// linalg.generic ops.
1704 
1705 /// Populates `patterns` with patterns to convert linalg.generic ops to named
1706 /// ops where possible. A linalg.generic can represent wide range and complex
1707 /// computations for which equivalent linalg named op may not exist e.g.
1708 /// linalg.generic that takes a tensor and computes a polynomial such as:
1709 /// p(x) = an*x^n + ... + a1x + a0
1710 /// There is no equivalent named op to convert to. Many such cases exist.
1713 
1714 /// Populates `patterns` with patterns that fold operations like
1715 /// `linalg.transform` into elementwise op map.
1717 
1718 /// Linalg decompose convolutions patterns
1719 
1720 /// Populates patterns to decompose high-D convolution ops into low-D ones.
1721 /// This is a step in progressive lowering for convolution ops, afterwards we
1722 /// can vectorize the low-D convolution ops.
1724  PatternBenefit benefit = 1);
1725 
1726 /// Populates patterns to decompose linalg.pack and linalg.unpack Ops into e.g.
1727 /// tensor.pad, linalg.transpose, tensor.{insert|extract}_slice. Require all
1728 /// outer dims to be unit.
1730 
1731 /// Populates patterns to decompose tensor.pad into e.g.
1732 /// tensor.empty, linalg.fill, tensor.insert_slice.
1734 
1735 /// Populates patterns to transform linalg.conv_2d_xxx operations into
1736 /// linalg.generic (for img2col packing) and linalg.matmul.
1737 /// \see rewriteInIm2Col for more details.
1739 
1740 /// Populates `patterns` with patterns that vectorize tensor.pad.
1741 /// These patterns are meant to apply in a complementary fashion. Benefits
1742 /// are used to encode a certain ordering of pattern application. To avoid
1743 /// scattering magic constants throughout the code base, the patterns must be
1744 /// added with this function. `baseBenefit` can be used to offset the benefit
1745 /// of all tensor::PadOp vectorization patterns by a certain value.
1747  PatternBenefit baseBenefit = 1);
1748 
1749 /// Populate patterns for splitting a `LinalgOp` with multiple statements within
1750 /// its payload into multiple `GenericOp` that have a single statement.
1751 /// The option `removeDeadArgsAndResults` adds patterns to remove dead arguments
1752 /// and results from the generated decomposed ops. This is default `true` since
1753 /// the core decomposition patterns relies on these clean up patterns. It is set
1754 /// to false only for testing purposes.
1756  bool removeDeadArgsAndResults = true);
1757 
1758 /// Populate patterns that convert non-destination-style ops to destination
1759 /// style ops.
1761 
1762 /// Populate patterns for vectorizing low-D convolution ops. This is a step in
1763 /// progressive lowering for convolution ops, it assume high-D convolution ops
1764 /// were decomposed previously.
1766  PatternBenefit benefit = 1);
1767 
1768 /// Populate patterns that convert `ElementwiseMappable` ops to linalg
1769 /// parallel loops.
1771 
1772 /// Populate patterns that are only useful in the context of sparse tensors.
1774 
1775 /// Function type which is used to control when to stop fusion. It is expected
1776 /// that OpOperand is not modified in the callback. The OpOperand is not marked
1777 /// as const to allow callers to use non-const methods.
1778 using ControlFusionFn = std::function<bool(OpOperand *fusedOperand)>;
1779 
1780 /// Patterns for fusing linalg operation on tensors.
1781 
1782 /// Pattern to fuse `linalg.generic` -> `linalg.generic` operations
1783 /// when both operations are fusable elementwise operations.
1786  const ControlFusionFn &controlElementwiseOpFusion);
1787 
1788 /// Function type which is used to control propagation of linalg.pack/unpack
1789 /// ops.
1790 using ControlPropagationFn = std::function<bool(OpOperand *opOperand)>;
1791 
1792 /// Patterns to bubble up or down data layout ops across other operations.
1795  const ControlPropagationFn &controlPackUnPackPropagation);
1796 
1797 /// Pattern to remove dead operands and results of `linalg.generic` operations.
1798 /// This is a pattern wrapper for `deduplicateOperandsAndRemoveDeadResults`.
1800 
1801 /// Patterns to promote inputs to outputs and remove unused inputs of
1802 /// `linalg.generic` ops.
1804 
1805 /// Function type to control generic op dimension collapsing. It is expected
1806 /// to return an array of `ReassociationIndices` representing dimensions that
1807 /// should be merged.
1809  std::function<SmallVector<ReassociationIndices>(linalg::LinalgOp)>;
1810 
1811 /// Pattern to collapse dimensions in a linalg.generic op. This will collapse
1812 /// tensor operands when needed and expand back the result tensors.
1815  const GetCollapsableDimensionsFn &controlCollapseDimensions);
1816 
1817 /// Patterns to fold an expanding (collapsing) tensor_reshape operation with its
1818 /// producer (consumer) generic operation by expanding the dimensionality of the
1819 /// loop in the generic op.
1821  RewritePatternSet &patterns, const ControlFusionFn &controlFoldingReshapes);
1822 
1823 /// Patterns to fold an expanding tensor.expand_shape operation with its
1824 /// producer generic operation by collapsing the dimensions of the generic op.
1826  RewritePatternSet &patterns, const ControlFusionFn &controlFoldingReshapes);
1827 
1828 /// Patterns to constant fold Linalg operations.
1830  const ControlFusionFn &controlFn);
1831 
1832 /// Pattern to replace `linalg.add` when destination passing on a contraction op
1833 /// suffices for achieving the sum.
1835 
1836 /// Pattern to fuse a `tensor.pad` operation with the producer of its source,
1837 /// if the producer is a `linalg` operation with all parallel iterator types.
1840 
1841 /// Patterns to convert from one named op to another. These can be seen as
1842 /// canonicalizations of named ops into another named op.
1844 
1845 /// Patterns to fold unit-extent dimensions in operands/results of linalg ops on
1846 /// tensors via reassociative reshape ops.
1849 
1850 /// A pattern that converts init operands to input operands.
1852 
1853 /// Patterns that are used to inline constant operands into linalg generic ops.
1855 
1856 /// Patterns that are used to bubble up extract slice op above linalg op.
1858 
1859 /// Adds patterns that waps tensor.extract_slice(linalg.fill(%cst, %init)) into
1860 /// linalg.fill(%cst, tensor.extract_slice(%init)).
1862 
1863 /// Add patterns to make explicit broadcasts and transforms in the
1864 /// input operands of a genericOp.
1866 
1867 /// Patterns to apply `splitReduction` below.
1870  const ControlSplitReductionFn &controlSplitReductionFn,
1871  bool useAlloc = false);
1872 
1873 /// Patterns to convert Linalg matmul ops to transposed variants.
1875  bool transposeLHS = true);
1876 
1877 /// Patterns to block pack Linalg matmul ops.
1879  const ControlBlockPackMatmulFn &controlFn);
1880 
1881 /// Patterns to apply Winograd Conv2D algorithm F(m x m, r x r).
1883  int64_t r);
1884 
1885 /// Patterns to decompose Winograd operators.
1887 
1888 /// Adds patterns that reduce the rank of named contraction ops that have
1889 /// unit dimensions in the operand(s) by converting to a sequence of
1890 /// `collapse_shape`,
1891 /// `<corresponding linalg named op>`, `expand_shape` (if on tensors). For
1892 /// example a `linalg.batch_matmul` with unit batch size will convert to
1893 /// `linalg.matmul` and a `linalg.matvec` with with unit spatial dim in lhs will
1894 /// convert to a `linalg.dot`.
1896 
1897 /// Populates `patterns` with patterns that fold operations like `tensor.pad`
1898 /// and `tensor.extract_slice` into `tensor.pack` and `tensor.unpack` operations
1899 /// respectively.
1901 
1902 /// Populates `patterns` with patterns that fold operations like `linalg.pack`
1903 /// and `linalg.unpack` into `tensor.empty`.
1905 
1906 /// Populates `patterns` with patterns that simplify `tensor.pack` and
1907 /// `tensor.unpack` operations.
1909 
1910 } // namespace linalg
1911 } // namespace mlir
1912 
1913 #endif // MLIR_DIALECT_LINALG_TRANSFORMS_TRANSFORMS_H
static llvm::ManagedStatic< PassManagerOptions > options
A multi-dimensional affine map Affine map's are immutable like Type's, and they are uniqued.
Definition: AffineMap.h:46
Attributes are known-constant values of operations.
Definition: Attributes.h:25
The main mechanism for performing data layout queries.
This class defines the main interface for locations in MLIR and acts as a non-nullable wrapper around...
Definition: Location.h:76
MLIRContext is the top-level object for a collection of MLIR operations.
Definition: MLIRContext.h:60
This class helps build Operations.
Definition: Builders.h:205
This class represents a single result from folding an operation.
Definition: OpDefinition.h:271
This class represents an operand of an operation.
Definition: Value.h:257
Operation is the basic unit of execution within MLIR.
Definition: Operation.h:88
This class represents the benefit of a pattern match in a unitless scheme that ranges from 0 (very li...
Definition: PatternMatch.h:34
A special type of RewriterBase that coordinates the application of a rewrite pattern on the current I...
Definition: PatternMatch.h:749
This class coordinates the application of a rewrite on a set of IR, providing a way for clients to tr...
Definition: PatternMatch.h:358
This class represents an instance of an SSA value in the MLIR system, representing a computable value...
Definition: Value.h:96
FailureOr< PackingResult > buildPackingLoopNest(RewriterBase &rewriter, tensor::PadOp opToHoist, scf::ForOp outermostEnclosingForOp, ArrayRef< int64_t > transposeVector)
Build the packing loop nest required to hoist opToHoist above outermostEnclosingForOp.
void populateLinalgNamedOpConversionPatterns(RewritePatternSet &patterns)
Patterns to convert from one named op to another.
void populateMoveInitOperandsToInputPattern(RewritePatternSet &patterns)
A pattern that converts init operands to input operands.
void populateTransposeMatmulPatterns(RewritePatternSet &patterns, bool transposeLHS=true)
Patterns to convert Linalg matmul ops to transposed variants.
void populateContractionOpRankReducingPatterns(RewritePatternSet &patterns)
Adds patterns that reduce the rank of named contraction ops that have unit dimensions in the operand(...
LogicalResult rewriteAsPaddedOp(RewriterBase &rewriter, LinalgOp opToPad, const LinalgPaddingOptions &options, LinalgOp &paddedOp, SmallVector< Value > &replacements, SmallVector< tensor::PadOp > &padOps)
Pad the iterator dimensions paddingDimensions of all opToPad operands to a static bounding box.
Definition: Padding.cpp:153
void populateSplitReductionPattern(RewritePatternSet &patterns, const ControlSplitReductionFn &controlSplitReductionFn, bool useAlloc=false)
Patterns to apply splitReduction below.
void populateFuseTensorPadWithProducerLinalgOpPatterns(RewritePatternSet &patterns)
Pattern to fuse a tensor.pad operation with the producer of its source, if the producer is a linalg o...
FailureOr< std::pair< Operation *, Operation * > > rewriteInIm2Col(RewriterBase &rewriter, linalg::Conv2DNhwcHwcfOp convOp)
Convert linalg.conv_2d_nhwc_hwcf into linalg.generic (for img2col packing) and linalg....
bool areDimSequencesPreserved(ArrayRef< AffineMap > maps, ArrayRef< ReassociationIndices > dimSequences)
Return true if all sequences of dimensions specified in dimSequences are contiguous in all the ranges...
bool hasVectorizationImpl(Operation *)
Return true if there's dedicated logic in the Linalg Vectorizer to vectorize this Op,...
void populateBubbleUpExtractSliceOpPatterns(RewritePatternSet &patterns)
Patterns that are used to bubble up extract slice op above linalg op.
void transformIndexOps(RewriterBase &b, LinalgOp op, SmallVectorImpl< Value > &ivs, const LoopIndexToRangeIndexMap &loopIndexToRangeIndex)
All indices returned by IndexOp should be invariant with respect to tiling.
Definition: Tiling.cpp:79
std::function< std::optional< Value >(OpBuilder &b, memref::SubViewOp subView, ArrayRef< Value > boundingSubViewSize, DataLayout &layout)> AllocBufferCallbackFn
Callback function type used to perform the allocation for the promoted subView.
Definition: Transforms.h:340
void populateBlockPackMatmulPatterns(RewritePatternSet &patterns, const ControlBlockPackMatmulFn &controlFn)
Patterns to block pack Linalg matmul ops.
void populateConvertConv2DToImg2ColPatterns(RewritePatternSet &patterns)
Populates patterns to transform linalg.conv_2d_xxx operations into linalg.generic (for img2col packin...
FailureOr< Operation * > decomposeWinogradFilterTransformOp(RewriterBase &rewriter, linalg::WinogradFilterTransformOp op)
Rewrite linalg.winograd_filter_transform.
DenseMap< int, int > LoopIndexToRangeIndexMap
Creates a number of ranges equal to the number of non-zero in tileSizes.
Definition: Transforms.h:810
std::optional< Value > allocateWorkgroupMemory(OpBuilder &builder, memref::SubViewOp subview, ArrayRef< Value > sizeBounds, DataLayout &)
Allocate the subview in the GPU workgroup memory.
Definition: Promotion.cpp:469
FailureOr< PackTransposeResult > packTranspose(RewriterBase &rewriter, linalg::PackOp packOp, linalg::LinalgOp linalgOp, linalg::UnPackOp maybeUnPackOp, ArrayRef< int64_t > outerPerm, ArrayRef< int64_t > innerPerm)
Transpose a single PackOp -> LinalgOp -> UnPackOp chain and return the transposed PackOp -> LinalgOp ...
Definition: Transforms.cpp:678
Value bufferizeToAllocation(RewriterBase &rewriter, const BufferizeToAllocationOptions &options, tensor::PadOp padOp, Attribute memorySpace={}, Operation *insertionPoint=nullptr)
Materialize a buffer allocation for the given tensor.pad op and lower the op to linalg....
std::function< bool(OpOperand *fusedOperand)> ControlFusionFn
Function type which is used to control when to stop fusion.
Definition: Transforms.h:1778
bool isDimSequencePreserved(AffineMap map, ReassociationIndicesRef dimSequence)
Return true if a given sequence of dimensions are contiguous in the range of the specified indexing m...
FailureOr< Value > hoistPaddingOnTensors(RewriterBase &rewriter, tensor::PadOp opToHoist, int64_t numLoops, ArrayRef< int64_t > transposeVector, tensor::PadOp &hoistedOp, SmallVectorImpl< TransposeOp > &transposeOps)
Mechanically hoist padding operations on tensors by numLoops into a new, generally larger tensor.
void populateDecomposeProjectedPermutationPatterns(RewritePatternSet &patterns)
Add patterns to make explicit broadcasts and transforms in the input operands of a genericOp.
FailureOr< LinalgOp > specializeGenericOp(RewriterBase &rewriter, GenericOp genericOp)
Create a namedOp from the given GenericOp and replace the GenericOp.
Definition: Specialize.cpp:260
void populateFoldReshapeOpsByCollapsingPatterns(RewritePatternSet &patterns, const ControlFusionFn &controlFoldingReshapes)
Patterns to fold an expanding tensor.expand_shape operation with its producer generic operation by co...
LinalgTilingLoopType
The type of loops to be generated during tiling.
Definition: Utils.h:115
FailureOr< LowerUnPackOpResult > lowerUnPack(RewriterBase &rewriter, linalg::UnPackOp unPackOp, bool lowerUnpadLikeWithExtractSlice=true)
Rewrite pack as empty + transpose + reshape + extract_slice.
Definition: Transforms.cpp:359
std::function< LogicalResult(OpBuilder &b, Value buffer)> DeallocBufferCallbackFn
Callback function type used to deallocate the buffers used to hold the promoted subview.
Definition: Transforms.h:345
void populateDataLayoutPropagationPatterns(RewritePatternSet &patterns, const ControlPropagationFn &controlPackUnPackPropagation)
Patterns to bubble up or down data layout ops across other operations.
void populatePadOpVectorizationPatterns(RewritePatternSet &patterns, PatternBenefit baseBenefit=1)
Populates patterns with patterns that vectorize tensor.pad.
void populateLinalgTilingCanonicalizationPatterns(RewritePatternSet &patterns)
Definition: Tiling.cpp:861
void populateLinalgFoldIntoElementwisePatterns(RewritePatternSet &patterns)
Populates patterns with patterns that fold operations like linalg.transform into elementwise op map.
LogicalResult deallocateGPUPrivateMemory(OpBuilder &, Value)
In case of GPU private memory there is no need to deallocate since the memory is freed when going out...
Definition: Promotion.cpp:510
void populateSparseTensorRewriting(RewritePatternSet &patterns)
Populate patterns that are only useful in the context of sparse tensors.
FailureOr< Operation * > decomposeWinogradOutputTransformOp(RewriterBase &rewriter, linalg::WinogradOutputTransformOp op)
Rewrite linalg.winograd_output_transform.
FailureOr< ElementwiseOpFusionResult > fuseElementwiseOps(RewriterBase &rewriter, OpOperand *fusedOperand)
llvm::SmallDenseSet< int > getPreservedProducerResults(GenericOp producer, GenericOp consumer, OpOperand *fusedOperand)
Returns a set of indices of the producer's results which would be preserved after the fusion.
FailureOr< PromotionInfo > promoteSubviewAsNewBuffer(OpBuilder &b, Location loc, memref::SubViewOp subView, const AllocBufferCallbackFn &allocationFn, DataLayout &layout)
Definition: Promotion.cpp:238
std::optional< Value > allocateGPUPrivateMemory(OpBuilder &builder, memref::SubViewOp subview, ArrayRef< Value > sizeBounds, DataLayout &)
Allocate the subview in the GPU private memory.
Definition: Promotion.cpp:494
FailureOr< Operation * > rewriteInDestinationPassingStyle(RewriterBase &rewriter, tensor::FromElementsOp fromElementsOp)
Rewrite tensor.from_elements to linalg.generic.
FailureOr< DropUnitDimsResult > dropUnitDims(RewriterBase &rewriter, GenericOp genericOp, const ControlDropUnitDims &options)
FailureOr< PackResult > blockPackMatmul(RewriterBase &rewriter, linalg::LinalgOp linalgOp, const ControlBlockPackMatmulFn &controlPackMatmul)
Pack a matmul operation into blocked 4D layout.
void peelLoops(RewriterBase &rewriter, ArrayRef< scf::ForOp > loops)
Peel 'loops' and applies affine_min/max bounds simplification on the fly where relevant.
Definition: Transforms.cpp:76
FailureOr< Operation * > winogradConv2D(RewriterBase &rewriter, linalg::Conv2DNhwcFhwcOp op, int64_t m, int64_t r)
Convert linalg.conv_2d_nhwc_fhwc to Winograd Conv2D algorithm F(m x m, r x r).
void populateConvertToDestinationStylePatterns(RewritePatternSet &patterns)
Populate patterns that convert non-destination-style ops to destination style ops.
FailureOr< Operation * > transposeConv2D(RewriterBase &rewriter, linalg::Conv2DNhwcFhwcOp op)
Convert linalg.conv_2d_nhwc_fhwc(_q) to linalg.conv_2d_nhwc_hwcf(_q) by materializing transpose.
void populateFoldUnitExtentDimsPatterns(RewritePatternSet &patterns, ControlDropUnitDims &options)
Patterns to fold unit-extent dimensions in operands/results of linalg ops on tensors via reassociativ...
LogicalResult copyToWorkgroupMemory(OpBuilder &b, Value src, Value dst)
Create Memref copy operations and add gpu barrier guards before and after the copy operation to ensur...
Definition: Promotion.cpp:485
std::function< SmallVector< Value, 4 >(OpBuilder &, Operation *)> TileSizeComputationFunction
Definition: Transforms.h:187
std::function< LogicalResult(RewriterBase &, tensor::PadOp, Value)> OptimizeCopyFn
Definition: Transforms.h:1514
void populateElementwiseToLinalgConversionPatterns(RewritePatternSet &patterns)
Populate patterns that convert ElementwiseMappable ops to linalg parallel loops.
LogicalResult linalgOpAnchoredEmptyTensorEliminationStep(RewriterBase &rewriter, Operation *op, bufferization::OneShotAnalysisState &state)
Try to eliminate tensor::EmptyOps inside op that are anchored on a LinalgOp.
FailureOr< LinalgLoops > linalgOpToLoops(RewriterBase &rewriter, LinalgOp linalgOp)
Emit a loop nest of scf.for with the proper body for linalgOp.
Definition: Loops.cpp:368
LogicalResult vectorize(RewriterBase &rewriter, Operation *op, ArrayRef< int64_t > inputVectorSizes={}, ArrayRef< bool > inputScalableVecDims={}, bool vectorizeNDExtract=false, bool flatten1DDepthwiseConv=false)
Emit a suitable vector form for an operation.
FailureOr< GenericOp > generalizeNamedOp(RewriterBase &rewriter, LinalgOp linalgOp)
Create a GenericOp from the given named operation linalgOp and replace the given linalgOp.
std::tuple< SmallVector< Range, 4 >, LoopIndexToRangeIndexMap > makeTiledLoopRanges(RewriterBase &b, Location loc, AffineMap map, ArrayRef< OpFoldResult > allShapeSizes, ArrayRef< OpFoldResult > allTileSizes)
Definition: Tiling.cpp:50
FailureOr< Operation * > transposeBatchMatmul(RewriterBase &rewriter, linalg::BatchMatmulOp op, bool transposeLHS=true)
Pattern to replace.
LogicalResult promoteSubviewsPrecondition(Operation *op, LinalgPromotionOptions options)
Promote memref.subviews feeding linalg-on-buffers operations.
Definition: Promotion.cpp:398
LogicalResult copyToGPUPrivateMemory(OpBuilder &b, Value src, Value dst)
Normal copy to between src and dst.
Definition: Promotion.cpp:502
FailureOr< linalg::GenericOp > deduplicateOperandsAndRemoveDeadResults(RewriterBase &rewriter, linalg::GenericOp genericOp, bool removeOutputs)
Method to deduplicate operands and remove dead results of linalg.generic operations.
void populateDecomposeConvolutionPatterns(RewritePatternSet &patterns, PatternBenefit benefit=1)
Linalg decompose convolutions patterns.
void populateDecomposeWinogradOpsPatterns(RewritePatternSet &patterns)
Patterns to decompose Winograd operators.
void populateConvolutionVectorizationPatterns(RewritePatternSet &patterns, PatternBenefit benefit=1)
Populate patterns for vectorizing low-D convolution ops.
LogicalResult vectorizeCopy(RewriterBase &builder, memref::CopyOp copyOp)
Emit a suitable vector form for a Copy op with fully static shape.
LogicalResult vectorizeOpPrecondition(Operation *op, ArrayRef< int64_t > inputVectorSizes={}, ArrayRef< bool > inputScalableVecDims={}, bool vectorizeNDExtract=false, bool flatten1DDepthwiseConv=false)
Return success if the operation can be vectorized.
FailureOr< GenericOp > interchangeGenericOp(RewriterBase &rewriter, GenericOp genericOp, ArrayRef< unsigned > interchangeVector)
Interchange the iterator_types and iterator_maps dimensions and adapts the index accesses of op.
Definition: Interchange.cpp:50
void populateCollapseDimensions(RewritePatternSet &patterns, const GetCollapsableDimensionsFn &controlCollapseDimensions)
Pattern to collapse dimensions in a linalg.generic op.
bool areElementwiseOpsFusable(OpOperand *fusedOperand)
Return true if two linalg.generic operations with producer/consumer relationship through fusedOperand...
FailureOr< StaticMultiSizeSpecification > computeStaticMultiTileSizes(LinalgOp op, unsigned dimension, int64_t targetSize, int64_t divisor)
Definition: Tiling.cpp:243
FailureOr< LinalgLoops > linalgOpToAffineLoops(RewriterBase &rewriter, LinalgOp linalgOp)
Emit a loop nest of affine.for with the proper body for linalgOp.
Definition: Loops.cpp:363
void populateDecomposePackUnpackPatterns(RewritePatternSet &patterns)
Populates patterns to decompose linalg.pack and linalg.unpack Ops into e.g.
void populateEraseUnusedOperandsAndResultsPatterns(RewritePatternSet &patterns)
Pattern to remove dead operands and results of linalg.generic operations.
FailureOr< ContinuousTileSizeSpecification > computeContinuousTileSizes(OpBuilder &builder, TilingInterface op, unsigned dimension, OpFoldResult targetSize, bool emitAssertions)
Definition: Tiling.cpp:163
FailureOr< StaticContinuousTileSizeSpecification > computeStaticContinuousTileSizes(LinalgOp op, unsigned dimension, unsigned targetSize)
Definition: Tiling.cpp:112
std::function< LogicalResult(OpBuilder &b, Value src, Value dst)> CopyCallbackFn
Callback function type used to insert copy from original subview to subview of the promoted region fo...
Definition: Transforms.h:352
FailureOr< SplitReductionResult > splitReduction(RewriterBase &b, LinalgOp op, const ControlSplitReductionFn &controlSplitReductionFn, bool useAlloc=false)
void populateSimplifyPackAndUnpackPatterns(RewritePatternSet &patterns)
Populates patterns with patterns that simplify tensor.pack and tensor.unpack operations.
void populateFoldPackUnpackIntoTensorEmptyPatterns(RewritePatternSet &patterns)
Populates patterns with patterns that fold operations like linalg.pack and linalg....
FailureOr< LinalgOp > padAndHoistLinalgOp(RewriterBase &rewriter, LinalgOp linalgOp, const LinalgPaddingOptions &options)
Apply padding and hoisting to linalgOp according to the configuration specified in options.
Definition: Padding.cpp:265
void populateDecomposeLinalgOpsPattern(RewritePatternSet &patterns, bool removeDeadArgsAndResults=true)
Populate patterns for splitting a LinalgOp with multiple statements within its payload into multiple ...
std::function< bool(OpOperand *opOperand)> ControlPropagationFn
Function type which is used to control propagation of linalg.pack/unpack ops.
Definition: Transforms.h:1790
FailureOr< ForallReductionTilingResult > tileReductionUsingForall(RewriterBase &b, PartialReductionOpInterface op, ArrayRef< OpFoldResult > numThreads, ArrayRef< OpFoldResult > tileSizes={}, std::optional< ArrayAttr > mapping=std::nullopt)
Method to tile a reduction to parallel iterations computing partial reductions.
Definition: Tiling.cpp:595
FailureOr< PackResult > packMatmulGreedily(RewriterBase &rewriter, LinalgOp linalgOp, ArrayRef< OpFoldResult > mnkPackedSizes, ArrayRef< int64_t > mnkPaddedSizesNextMultipleOf, ArrayRef< int64_t > mnkOrder)
Pack a LinalgOp by greedily inferring matmul dimensions (m, n, k) where m and n are proper parallel d...
Definition: Transforms.cpp:769
FailureOr< PackResult > pack(RewriterBase &rewriter, linalg::LinalgOp linalgOp, ArrayRef< OpFoldResult > packedSizes)
Implement packing of a single LinalgOp by packedSizes.
Definition: Transforms.cpp:481
void populateEraseUnnecessaryInputsPatterns(RewritePatternSet &patterns)
Patterns to promote inputs to outputs and remove unused inputs of linalg.generic ops.
FailureOr< TiledLinalgOp > tileLinalgOp(RewriterBase &b, LinalgOp op, const LinalgTilingOptions &options)
Definition: Tiling.cpp:821
std::function< SmallVector< ReassociationIndices >(linalg::LinalgOp)> GetCollapsableDimensionsFn
Function type to control generic op dimension collapsing.
Definition: Transforms.h:1809
void populateFoldReshapeOpsByExpansionPatterns(RewritePatternSet &patterns, const ControlFusionFn &controlFoldingReshapes)
Patterns to fold an expanding (collapsing) tensor_reshape operation with its producer (consumer) gene...
void populateSwapExtractSliceWithFillPatterns(RewritePatternSet &patterns)
Adds patterns that waps tensor.extract_slice(linalg.fill(cst, init)) into linalg.fill(cst,...
void populateInlineConstantOperandsPatterns(RewritePatternSet &patterns)
Patterns that are used to inline constant operands into linalg generic ops.
FailureOr< LinalgOp > promoteSubViews(OpBuilder &b, LinalgOp op, const LinalgPromotionOptions &options)
Promote the subViews into a new buffer allocated at the insertion point b.
Definition: Promotion.cpp:420
void populateConstantFoldLinalgOperations(RewritePatternSet &patterns, const ControlFusionFn &controlFn)
Patterns to constant fold Linalg operations.
std::function< SplitReductionOptions(LinalgOp op)> ControlSplitReductionFn
Function signature to control reduction splitting.
Definition: Transforms.h:443
LogicalResult deallocateWorkgroupMemory(OpBuilder &, Value)
In case of GPU group memory there is no need to deallocate.
Definition: Promotion.cpp:478
FailureOr< Operation * > transposeMatmul(RewriterBase &rewriter, linalg::MatmulOp op, bool transposeLHS=true)
Convert Linalg matmul ops to transposed variants.
void populateLinalgNamedOpsGeneralizationPatterns(RewritePatternSet &patterns)
Linalg generalization patterns.
void populateLinalgGenericOpsSpecializationPatterns(RewritePatternSet &patterns)
Populates patterns with patterns to convert linalg.generic ops to named ops where possible.
Definition: Specialize.cpp:356
void populateWinogradConv2DPatterns(RewritePatternSet &patterns, int64_t m, int64_t r)
Patterns to apply Winograd Conv2D algorithm F(m x m, r x r).
std::function< std::optional< BlockPackMatmulOptions >(linalg::LinalgOp)> ControlBlockPackMatmulFn
Function type which is used to control matmul packing.
Definition: Transforms.h:1219
std::optional< vector::CombiningKind > getCombinerOpKind(Operation *combinerOp)
Return vector::CombiningKind for the given op.
SmallVector< Value > peelLoop(RewriterBase &rewriter, Operation *op)
Try to peel and canonicalize loop op and return the new result.
Definition: Transforms.cpp:60
RewritePatternSet getLinalgTilingCanonicalizationPatterns(MLIRContext *ctx)
Canonicalization patterns relevant to apply after tiling patterns.
Definition: Tiling.cpp:855
FailureOr< CollapseResult > collapseOpIterationDims(LinalgOp op, ArrayRef< ReassociationIndices > foldedIterationDims, RewriterBase &rewriter)
Collapses dimensions of linalg.generic/linalg.copy operation.
FailureOr< Operation * > decomposeWinogradInputTransformOp(RewriterBase &rewriter, linalg::WinogradInputTransformOp op)
Rewrite linalg.winograd_input_transform.
void populateDecomposePadPatterns(RewritePatternSet &patterns)
Populates patterns to decompose tensor.pad into e.g.
void populateFoldAddIntoDestPatterns(RewritePatternSet &patterns)
Pattern to replace linalg.add when destination passing on a contraction op suffices for achieving the...
std::pair< TilingInterface, TilingInterface > splitOp(RewriterBase &rewriter, TilingInterface op, unsigned dimension, OpFoldResult splitPoint)
Split the given op into two parts along the given iteration space dimension at the specified splitPoi...
Definition: Split.cpp:67
void populateFoldIntoPackAndUnpackPatterns(RewritePatternSet &patterns)
Populates patterns with patterns that fold operations like tensor.pad and tensor.extract_slice into t...
void populateElementwiseOpsFusionPatterns(RewritePatternSet &patterns, const ControlFusionFn &controlElementwiseOpFusion)
Patterns for fusing linalg operation on tensors.
FailureOr< SplitReductionResult > splitReductionByScaling(RewriterBase &b, LinalgOp op, const ControlSplitReductionFn &controlSplitReductionFn, bool useAlloc=false)
Scaling-based implementation of the split reduction transformation.
FailureOr< MultiSizeSpecification > computeMultiTileSizes(OpBuilder &builder, LinalgOp op, unsigned dimension, OpFoldResult targetSize, OpFoldResult divisor, bool emitAssertions=true)
Emits the IR computing the multi-sized tiling specification with two tile sizes not exceeding targetS...
Definition: Tiling.cpp:269
FailureOr< LowerPackResult > lowerPack(RewriterBase &rewriter, linalg::PackOp packOp, bool lowerPadLikeWithInsertSlice=true)
Rewrite pack as pad + reshape + transpose.
Definition: Transforms.cpp:224
FailureOr< LinalgLoops > linalgOpToParallelLoops(RewriterBase &rewriter, LinalgOp linalgOp)
Emit a loop nest of scf.parallel with the proper body for linalgOp.
Definition: Loops.cpp:375
Include the generated interface declarations.
ArrayRef< int64_t > ReassociationIndicesRef
const FrozenRewritePatternSet & patterns
OpInterfaceRewritePattern is a wrapper around RewritePattern that allows for matching and rewriting a...
Definition: PatternMatch.h:330
OpRewritePattern is a wrapper around RewritePattern that allows for matching and rewriting against an...
Definition: PatternMatch.h:314
SmallVector< int64_t, 3 > mnkOrder
Permutation of matmul (M, N, K) dimensions order.
Definition: Transforms.h:1199
SmallVector< int64_t, 3 > blockFactors
Minor block factors (mb, nb, kb) for packing relayout where mb, mn are the parallel dimensions and kb...
Definition: Transforms.h:1189
bool rhsTransposeOuterBlocks
Transpose RHS outer block layout [KB][NB] -> [NB][KB].
Definition: Transforms.h:1208
bool lhsTransposeInnerBlocks
Transpose LHS inner block layout [mb][kb] -> [kb][mb].
Definition: Transforms.h:1205
SmallVector< int64_t, 3 > mnkPaddedSizesNextMultipleOf
Next multiples of the packing sizes.
Definition: Transforms.h:1196
bool lhsTransposeOuterBlocks
Transpose LHS outer block layout [MB][KB] -> [KB][MB].
Definition: Transforms.h:1202
bool allowPadding
If true, allows packing of dimensions that only partially fit into the block factors.
Definition: Transforms.h:1193
bool rhsTransposeInnerBlocks
Transpose RHS inner block layout [kb][nb] -> [nb][kb].
Definition: Transforms.h:1211
bool bufferizeDestinationOnly
If set to "true", only the destination tensor operands are bufferized to a new allocation (and wrappe...
Definition: Transforms.h:65
bool emitDealloc
If set to "true", a memref.dealloc operation will be emitted for each allocated buffer.
Definition: Transforms.h:71
SmallVector< Value > results
Definition: Transforms.h:1102
Transformation to drop unit-extent dimensions from linalg.generic operations.
Definition: Transforms.h:474
RankReductionStrategy rankReductionStrategy
Definition: Transforms.h:477
std::function< SmallVector< unsigned >(Operation *)> ControlFnTy
Definition: Transforms.h:480
Vectorization pattern for memref::CopyOp.
Definition: Transforms.h:1506
LogicalResult matchAndRewrite(memref::CopyOp copyOp, PatternRewriter &rewriter) const override
Definition: Transforms.cpp:919
Rewrites a linalg::PackOp into a sequence of:
Definition: Transforms.h:1564
LogicalResult matchAndRewrite(linalg::PackOp packOp, PatternRewriter &rewriter) const override
Rewrites a linalg::UnPackOp into a sequence of rank-reduced.
Definition: Transforms.h:1598
LogicalResult matchAndRewrite(linalg::UnPackOp unpackOp, PatternRewriter &rewriter) const override
Rewrite a tensor::PadOp into a sequence of EmptyOp, FillOp and InsertSliceOp.
Definition: Transforms.h:1518
LogicalResult matchAndRewrite(tensor::PadOp padOp, PatternRewriter &rewriter) const override
Definition: Transforms.cpp:947
Value createFillOrGenerateOp(RewriterBase &rewriter, tensor::PadOp padOp, Value dest, const SmallVector< Value > &dynSizes) const
Filling dest using FillOp constant padding value if possible.
Definition: Transforms.cpp:926
DecomposePadOpPattern(MLIRContext *context, PatternBenefit benefit=1)
Definition: Transforms.h:1519
LogicalResult matchAndRewrite(Conv2DOp convOp, PatternRewriter &rewriter) const override
Definition: Transforms.h:1460
FailureOr< Conv1DOp > returningMatchAndRewrite(Conv2DOp convOp, PatternRewriter &rewriter) const
DownscaleConv2DOp(MLIRContext *context, PatternBenefit benefit=1)
Definition: Transforms.h:1454
Rewrites 2-D depthwise convolution ops with size-1 (w, kw) or (h, kh) dimensions into 1-D depthwise c...
Definition: Transforms.h:1438
FailureOr< DepthwiseConv1DNwcWcOp > returningMatchAndRewrite(DepthwiseConv2DNhwcHwcOp convOp, PatternRewriter &rewriter) const
LogicalResult matchAndRewrite(DepthwiseConv2DNhwcHwcOp convOp, PatternRewriter &rewriter) const override
Definition: Transforms.h:1447
DownscaleDepthwiseConv2DNhwcHwcOp(MLIRContext *context, PatternBenefit benefit=1)
Definition: Transforms.h:1439
Rewrites 2-D convolution ops with size-1 window dimensions into 1-D convolution ops.
Definition: Transforms.h:1418
LogicalResult matchAndRewrite(Conv2DOp convOp, PatternRewriter &rewriter) const override
Definition: Transforms.h:1424
FailureOr< Conv1DOp > returningMatchAndRewrite(Conv2DOp convOp, PatternRewriter &rewriter) const
SmallVector< Value > replacements
Definition: Transforms.h:494
Fuse two linalg.generic operations that have a producer-consumer relationship captured through fusedO...
Definition: Transforms.h:503
llvm::DenseMap< Value, Value > replacements
Definition: Transforms.h:505
Rewrite extract_slice(tensor.pad(x)) into tensor.pad(extract_slice(x)).
Definition: Transforms.h:1665
std::function< std::optional< bool >(tensor::ExtractSliceOp)> ControlFn
A function to control pattern application and rewrite logic.
Definition: Transforms.h:1675
LogicalResult matchAndRewrite(tensor::ExtractSliceOp sliceOp, PatternRewriter &rewriter) const override
Definition: Transforms.cpp:997
ExtractSliceOfPadTensorSwapPattern(MLIRContext *context, ControlFn controlFn=nullptr, PatternBenefit benefit=1)
Definition: Transforms.h:1677
Transformation information returned after reduction tiling.
Definition: Transforms.h:892
SmallVector< Operation * > mergeOps
The final reduction operation merging all the partial reductions.
Definition: Transforms.h:896
SmallVector< Value > initialValues
Initial values used for partial reductions.
Definition: Transforms.h:898
scf::ForallOp loops
The scf.forall operation that iterate over the tiles.
Definition: Transforms.h:900
SmallVector< Operation * > parallelTiledOps
The partial reduction tiled op generated.
Definition: Transforms.h:894
Match and rewrite for the pattern:
Definition: Transforms.h:1628
LogicalResult matchAndRewrite(vector::TransferReadOp xferOp, PatternRewriter &rewriter) const override
TODO: use interfaces, side-effects and aliasing analysis as appropriate, when available.
Match and rewrite for the pattern:
Definition: Transforms.h:1656
LogicalResult matchAndRewrite(vector::TransferWriteOp xferOp, PatternRewriter &rewriter) const override
TODO: use interfaces, side-effects and aliasing analysis as appropriate, when available.
Linalg generalization pattern.
Definition: Transforms.h:1475
LogicalResult matchAndRewrite(LinalgOp op, PatternRewriter &rewriter) const override
Definition: Transforms.h:1485
FailureOr< GenericOp > returningMatchAndRewrite(LinalgOp op, PatternRewriter &rewriter) const
matchAndRewrite implementation that returns the significant transformed pieces of IR.
Definition: Transforms.h:1481
Options that allow distribution of loops generated in Linalg transforms to processors while generatin...
Definition: Utils.h:316
SmallVector< Attribute > paddingValues
A padding value for every operand.
Definition: Transforms.h:281
LinalgPaddingOptions & setPadToMultipleOf(ArrayRef< int64_t > m)
Definition: Transforms.h:294
std::optional< SmallVector< int64_t > > padToMultipleOf
A list of multiples to which each padding dimension should be padded to.
Definition: Transforms.h:293
LinalgPaddingOptions & setNofoldFlags(ArrayRef< bool > pp)
Definition: Transforms.h:301
LinalgPaddingOptions & setPaddingDimensions(ArrayRef< int64_t > pd)
Definition: Transforms.h:288
LinalgPaddingOptions & setTransposePaddings(ArrayRef< SmallVector< int64_t >> tp)
Definition: Transforms.h:315
SmallVector< SmallVector< int64_t > > transposePaddings
A permutation vector for every operand used to transpose the packed PadOp results.
Definition: Transforms.h:313
LinalgPaddingOptions & setPaddingValues(ArrayRef< Attribute > pv)
Definition: Transforms.h:282
SmallVector< bool > nofoldFlags
A flag for every operand to mark the PadOp as nofold which enables packing for statically shaped oper...
Definition: Transforms.h:300
LinalgPaddingOptions & setCopyBackOp(CopyBackOp op)
Definition: Transforms.h:327
LinalgPaddingOptions & setHoistPaddings(ArrayRef< int64_t > hp)
Definition: Transforms.h:307
SmallVector< int64_t > hoistPaddings
A number of loops to hoist the PadOp out for every operand.
Definition: Transforms.h:306
SmallVector< int64_t > paddingDimensions
A list of iterator dimensions to pad.
Definition: Transforms.h:287
CopyBackOp copyBackOp
The op to be used for copying the padded result to the original destination tensor.
Definition: Transforms.h:326
std::optional< unsigned > alignment
Alignment of promoted buffer. If std::nullopt do not specify alignment.
Definition: Transforms.h:385
LinalgPromotionOptions & setUseFullTileBuffersByDefault(bool use)
Definition: Transforms.h:380
bool useAlloca
Use alloca with the default allocation scheme.
Definition: Transforms.h:398
LinalgPromotionOptions & setAlignment(unsigned align)
Definition: Transforms.h:386
std::optional< Attribute > memorySpace
Memory space of promoted buffer.
Definition: Transforms.h:392
std::optional< CopyCallbackFn > copyOutFn
Definition: Transforms.h:418
std::optional< CopyCallbackFn > copyInFn
Callback function to do the copy of data to and from the promoted subview.
Definition: Transforms.h:417
LinalgPromotionOptions & setUseAlloca(bool use)
Definition: Transforms.h:399
std::optional< DenseSet< unsigned > > operandsToPromote
Indices of subViews to promote.
Definition: Transforms.h:357
LinalgPromotionOptions & setCopyInOutFns(CopyCallbackFn const &copyIn, CopyCallbackFn const &copyOut)
Definition: Transforms.h:419
LinalgPromotionOptions & setUseFullTileBuffers(ArrayRef< bool > useFullTiles)
Definition: Transforms.h:369
std::optional< AllocBufferCallbackFn > allocationFn
Callback function to do the allocation of the promoted buffer.
Definition: Transforms.h:406
bool useFullTileBuffersDefault
If true all operands unspecified by useFullTileBuffers will use the full view, otherwise the partial ...
Definition: Transforms.h:379
std::optional< DeallocBufferCallbackFn > deallocationFn
Definition: Transforms.h:407
LinalgPromotionOptions & setMemorySpace(Attribute memorySpc)
Definition: Transforms.h:393
LinalgPromotionOptions & setAllocationDeallocationFns(AllocBufferCallbackFn const &allocFn, DeallocBufferCallbackFn const &deallocFn)
Definition: Transforms.h:409
std::optional< llvm::SmallBitVector > useFullTileBuffers
If ith element of useFullTiles is true the full view should be used for the promoted buffer of the it...
Definition: Transforms.h:368
LinalgPromotionOptions & setOperandsToPromote(ArrayRef< int64_t > operands)
Definition: Transforms.h:358
LogicalResult matchAndRewrite(GenericOp op, PatternRewriter &rewriter) const override
Definition: Transforms.h:1499
FailureOr< GenericOp > returningMatchAndRewrite(GenericOp op, PatternRewriter &rewriter) const
Definition: Transforms.h:1495
std::optional< LinalgLoopDistributionOptions > tileDistribution
When specified, specifies distribution of generated tile loops to processors.
Definition: Transforms.h:271
LinalgTilingAndFusionOptions & setTileSizes(ArrayRef< int64_t > ts)
Definition: Transforms.h:263
SmallVector< int64_t > tileInterchange
Tile interchange used to permute the tile loops.
Definition: Transforms.h:268
LinalgTilingAndFusionOptions & setDistributionOptions(LinalgLoopDistributionOptions distributionOptions)
Definition: Transforms.h:273
SmallVector< int64_t > tileSizes
Tile sizes used to tile the root operation.
Definition: Transforms.h:262
LinalgTilingOptions & setLoopType(LinalgTilingLoopType lt)
Definition: Transforms.h:227
LinalgTilingOptions & setDistributionTypes(ArrayRef< StringRef > types)
Definition: Transforms.h:245
LinalgTilingOptions & setInterchange(ArrayRef< unsigned > interchange)
Definition: Transforms.h:219
LinalgTilingLoopType loopType
The type of tile loops to generate.
Definition: Transforms.h:225
LinalgTilingOptions & setTileSizeComputationFunction(TileSizeComputationFunction fun)
Definition: Transforms.h:196
LinalgTilingOptions & setTileSizes(const SmallVector< Value, 4 > &ts)
Set the tileSizeComputationFunction to return the values ts.
Definition: Transforms.h:203
LinalgTilingOptions & setPeeledLoops(ArrayRef< int64_t > loops)
Definition: Transforms.h:253
SmallVector< int64_t > peeledLoops
Peel the specified loops.
Definition: Transforms.h:251
LinalgTilingOptions & setDistributionOptions(LinalgLoopDistributionOptions distributionOptions)
Definition: Transforms.h:237
SmallVector< unsigned, 4 > interchangeVector
The interchange vector to reorder the tiled loops.
Definition: Transforms.h:217
TileSizeComputationFunction tileSizeComputationFunction
Computation function that returns the tile sizes for each operation.
Definition: Transforms.h:193
LinalgTilingOptions & scalarizeDynamicDims()
Tile all dynamic dimensions by 1.
std::optional< LinalgLoopDistributionOptions > distribution
When specified, specifies distribution of generated tile loops to processors.
Definition: Transforms.h:234
SmallVector< StringRef, 2 > distributionTypes
Specification markers of how to distribute the linalg.tiled_loop.
Definition: Transforms.h:243
linalg::TransposeOp transposeOp
Definition: Transforms.h:1121
tensor::ExpandShapeOp expandShapeOp
Definition: Transforms.h:1120
tensor::ExtractSliceOp extractSliceOp
Definition: Transforms.h:1133
linalg::TransposeOp transposeOp
Definition: Transforms.h:1131
tensor::CollapseShapeOp collapseShapeOp
Definition: Transforms.h:1132
A description of a multi-size tiling comprising tile sizes and numbers of tiles, expressed as Values ...
Definition: Transforms.h:839
Struct to hold the result of a pack call.
Definition: Transforms.h:1142
SmallVector< linalg::UnPackOp > unPackOps
Definition: Transforms.h:1145
linalg::LinalgOp packedLinalgOp
Definition: Transforms.h:1144
SmallVector< linalg::PackOp > packOps
Definition: Transforms.h:1143
Struct to hold the result of a packTranspose call.
Definition: Transforms.h:1154
linalg::LinalgOp transposedLinalgOp
Definition: Transforms.h:1156
linalg::UnPackOp transposedUnPackOp
Definition: Transforms.h:1157
Create a new buffer using the allocationFn provided.
Definition: Transforms.h:719
Split Reduction options.
Definition: Transforms.h:428
Apply transformation to split the single linalg op reduction into a parallel and reduction dimension.
Definition: Transforms.h:1030
Perform standalone tiling of a single LinalgOp by tileSizes.
Definition: Transforms.h:680
SmallVector< Operation *, 8 > loops
Definition: Transforms.h:682
SmallVector< Value, 4 > tensorResults
Definition: Transforms.h:683
SmallVector< T > tripCounts
Number of tiles associated with each size.
Definition: Transforms.h:830
T lowTripCount
Number of tiles associated with each size.
Definition: Transforms.h:822
Helper struct to hold the results of building a packing loop nest.
Definition: Transforms.h:550
SmallVector< OpFoldResult > strides
Definition: Transforms.h:551
SmallVector< Value > leadingPackedTensorIndexings
Definition: Transforms.h:552
SmallVector< Value > clonedLoopIvs
Definition: Transforms.h:552
SmallVector< OpFoldResult > sizes
Definition: Transforms.h:551
SmallVector< OpFoldResult > offsets
Definition: Transforms.h:551