MLIR  20.0.0git
ReshapeOpsUtils.h
Go to the documentation of this file.
1 //===- ReshapeOpsUtils.h - Utilities used by reshape ops --*- C++ -*------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This header file defines utilities and common canonicalization patterns for
10 // reshape operations.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #ifndef MLIR_DIALECT_UTILS_RESHAPEOPSUTILS_H
15 #define MLIR_DIALECT_UTILS_RESHAPEOPSUTILS_H
16 
19 #include "mlir/IR/PatternMatch.h"
20 #include "mlir/Support/LLVM.h"
21 #include "llvm/ADT/StringRef.h"
22 #include <optional>
23 
24 namespace mlir {
25 
26 using ReassociationIndices = SmallVector<int64_t, 2>;
29 
30 /// Attribute name for the ArrayAttr which encodes reassociation indices.
31 constexpr StringRef getReassociationAttrName() { return "reassociation"; }
32 
33 /// Compose reassociation maps that are used in pair of reshape ops where one
34 /// is a producer and other is the consumer. Only valid to use this method when
35 /// both the producer and consumer are collapsing dimensions or both are
36 /// expanding dimensions.
37 ///
38 /// For example,
39 /// producerReassociation = [[0, 1], [2], [3, 4]]
40 /// consumerReassociation = [[0, 1], [2]]
41 ///
42 /// is folded into
43 ///
44 /// result = [[0, 1, 2], [3, 4]].
45 std::optional<SmallVector<ReassociationIndices>> composeReassociationIndices(
46  ArrayRef<ReassociationIndices> producerReassociations,
47  ArrayRef<ReassociationIndices> consumerReassociations,
48  MLIRContext *context);
49 
50 /// Convert reassociation indices to affine expressions.
51 SmallVector<SmallVector<AffineExpr, 2>, 2> convertReassociationIndicesToExprs(
52  MLIRContext *context, ArrayRef<ReassociationIndices> reassociationIndices);
53 
54 /// Constructs affine maps out of Array<Array<AffineExpr>>.
55 SmallVector<AffineMap, 4>
56 getSymbolLessAffineMaps(ArrayRef<ReassociationExprs> reassociation);
57 
58 /// Wraps a list of reassociations in an ArrayAttr.
59 ArrayAttr
61  ArrayRef<ReassociationIndices> reassociation);
62 
63 /// Convert Array<Array<AffineExpr>> to Array<Array<int64_t>>.
64 SmallVector<ReassociationIndices, 2> convertReassociationMapsToIndices(
65  ArrayRef<ReassociationExprs> reassociationExprs);
66 
67 /// Return the reassociations maps to use to reshape given the source type and
68 /// the target type when possible. Return std::nullopt when this computation
69 /// failed.
70 std::optional<SmallVector<ReassociationIndices>>
71 getReassociationIndicesForReshape(ShapedType sourceType, ShapedType targetType);
72 
73 /// Returns the reassociation maps to collapse `sourceShape` to `targetShape` if
74 /// possible.
75 std::optional<SmallVector<ReassociationIndices>>
76 getReassociationIndicesForCollapse(ArrayRef<int64_t> sourceShape,
77  ArrayRef<int64_t> targetShape);
78 
79 /// Return true if the reassociation specification is valid, false otherwise.
80 /// When false, the `invalidIndex` integer pointer is optionally filled with the
81 /// index of the offending reassociation map.
82 bool isReassociationValid(ArrayRef<AffineMap> reassociation,
83  int *invalidIndex = nullptr);
84 
85 template <typename ReshapeOpTy, typename InverseReshapeOpTy>
86 static OpFoldResult foldReshapeOp(ReshapeOpTy reshapeOp,
87  ArrayRef<Attribute> operands) {
88  // Fold identity reshape.
89  if (reshapeOp.getSrcType() == reshapeOp.getType())
90  return reshapeOp.getSrc();
91 
92  // Reshape of a constant can be replaced with a new constant.
93  if (auto elements = dyn_cast_or_null<DenseElementsAttr>(operands.front()))
94  return elements.reshape(cast<ShapedType>(reshapeOp.getResult().getType()));
95 
96  // Fold if the producer reshape source has the same shape with at most 1
97  // dynamic dimension.
98  auto reshapeSrcOp =
99  reshapeOp.getSrc().template getDefiningOp<InverseReshapeOpTy>();
100  if (!reshapeSrcOp)
101  return nullptr;
102  auto srcType = reshapeSrcOp.getSrcType();
103  auto resultType = reshapeOp.getResultType();
104  if (srcType != resultType)
105  return nullptr;
106 
107  if (llvm::count_if(srcType.getShape(), ShapedType::isDynamic) < 2) {
108  return reshapeSrcOp.getSrc();
109  }
110 
111  // Fold producer-consumer reshape ops when they are perfect inverses of each
112  // other:
113  // 1) Reassociation indices are equivalent.
114  // 2) Boundary types are equivalent.
115  // 3) No reassociations have more than 1 dynamic dimension, and reassociated
116  // shapes are equal for each reassociation.
117  auto reassociations = reshapeOp.getReassociationIndices();
118  if (reassociations != reshapeSrcOp.getReassociationIndices())
119  return nullptr;
120  // If the reshapes are expanding and then collapsing, the ops can be folded
121  // despite multiple dynamic dimensions.
122  if (srcType.getRank() < reshapeSrcOp.getResultType().getRank())
123  return reshapeSrcOp.getSrc();
124  if (llvm::all_of(reassociations, [&](auto reInd) {
125  ArrayRef<int64_t> srcSlice =
126  srcType.getShape().slice(reInd.front(), reInd.size());
127  return llvm::count_if(srcSlice, ShapedType::isDynamic) < 2;
128  })) {
129  return reshapeSrcOp.getSrc();
130  }
131  return nullptr;
132 }
133 
134 /// Common verifier for reshape-like types. Fills `expandedType` and
135 ///`collapsedType` with the proper `src` or `result` type.
136 template <typename Op, typename T>
137 static LogicalResult verifyReshapeLikeTypes(Op op, T expandedType,
138  T collapsedType, bool isExpansion) {
139 
140  unsigned expandedRank = expandedType.getRank();
141  unsigned collapsedRank = collapsedType.getRank();
142  if (expandedRank < collapsedRank)
143  return op.emitOpError("expected the expanded type, ")
144  << expandedType << " to have a higher (or same) rank "
145  << "than the collapsed type, " << collapsedType << '.';
146 
147  if (collapsedRank != op.getReassociation().size())
148  return op.emitOpError("expected collapsed rank (")
149  << collapsedRank << ") to equal the number of reassociation maps ("
150  << op.getReassociation().size() << ").";
151 
152  auto maps = op.getReassociationMaps();
153  for (auto it : llvm::enumerate(maps))
154  if (it.value().getNumDims() != expandedRank)
155  return op.emitOpError("expected reassociation map #")
156  << it.index() << " to have size equal to the expanded rank ("
157  << expandedRank << "), but it is " << it.value().getNumDims()
158  << '.';
159 
160  int invalidIdx = 0;
161  if (!isReassociationValid(maps, &invalidIdx))
162  return op.emitOpError("expected reassociation map #")
163  << invalidIdx << " to be valid and contiguous.";
164 
166  [&](const Twine &msg) { return op->emitOpError(msg); },
167  collapsedType.getShape(), expandedType.getShape(),
168  op.getReassociationIndices(), isExpansion);
169 }
170 
171 /// Verify that shapes of the reshaped types using following rule:
172 /// if a dimension in the collapsed type is static, then the corresponding
173 /// dimensions in the expanded shape should be
174 /// a) static
175 /// b) the product should be same as the collaped shape.
176 LogicalResult reshapeLikeShapesAreCompatible(
177  function_ref<LogicalResult(const Twine &)> emitError,
178  ArrayRef<int64_t> collapsedShape, ArrayRef<int64_t> expandedShape,
179  ArrayRef<ReassociationIndices> reassociationMaps, bool isExpandingReshape);
180 
181 /// Returns true iff the type is a MemRefType and has a non-identity layout.
182 bool hasNonIdentityLayout(Type type);
183 
185 
186 /// Pattern to collapse producer/consumer reshape ops that are both collapsing
187 /// dimensions or are both expanding dimensions.
188 template <typename ReshapeOpTy, ReshapeOpKind opKind>
189 struct ComposeReassociativeReshapeOps : public OpRewritePattern<ReshapeOpTy> {
191  LogicalResult matchAndRewrite(ReshapeOpTy reshapeOp,
192  PatternRewriter &rewriter) const override {
193  auto srcReshapeOp =
194  reshapeOp.getSrc().template getDefiningOp<ReshapeOpTy>();
195  if (!srcReshapeOp)
196  return failure();
197 
198  ShapedType resultType = reshapeOp.getResultType();
199 
200  if (hasNonIdentityLayout(srcReshapeOp.getSrc().getType()) ||
201  hasNonIdentityLayout(reshapeOp.getSrc().getType()) ||
202  hasNonIdentityLayout(reshapeOp.getResult().getType()))
203  return failure();
204 
205  std::optional<SmallVector<ReassociationIndices>> reassociationIndices =
206  composeReassociationIndices(srcReshapeOp.getReassociationIndices(),
207  reshapeOp.getReassociationIndices(),
208  rewriter.getContext());
209  if (!reassociationIndices)
210  return failure();
211 
212  if constexpr (opKind == ReshapeOpKind::kExpand) {
213  SmallVector<OpFoldResult> outputShape(
214  getMixedValues(reshapeOp.getStaticOutputShape(),
215  reshapeOp.getOutputShape(), rewriter));
216  rewriter.replaceOpWithNewOp<ReshapeOpTy>(
217  reshapeOp, resultType, srcReshapeOp.getSrc(), *reassociationIndices,
218  outputShape);
219  } else {
220  rewriter.replaceOpWithNewOp<ReshapeOpTy>(
221  reshapeOp, resultType, srcReshapeOp.getSrc(), *reassociationIndices);
222  }
223  return success();
224  }
225 };
226 
227 /// Pattern to compose
228 /// `collapse_shape(expand_shape(%src, reassociation_1), reassociation_2)`.
229 /// In that case both `srcType` and `resultType` can be expressed as a function
230 /// of `intermediateType`.
231 /// In order to demonstrate the approach, let's assume that `rank(srcType) >
232 /// `rank(resultType)`, i.e. the resulting operation should be `collapse_shape`.
233 /// In that case, we can iterate over every set of indices in `reassociation_2`
234 /// and try to find ids of sets of indices in `reassociation_1` that cover it
235 /// completely.
236 ///
237 /// Example:
238 ///
239 /// %0 = tensor.expand_shape %arg [[0], [1], [2, 3]]
240 /// : tensor<?x?x?xi64> into tensor<?x?x?x1xi64>
241 /// %1 = tensor.collapse_shape %0 [[0, 1], [2, 3]]
242 /// : tensor<?x?x?x1xi64> into tensor<?x?xi64>
243 ///
244 /// can be canonicalized into
245 ///
246 /// %0 = tensor.collapse_shape %arg [[0, 1], [2]]
247 /// : tensor<?x?x?xi64> into tensor<?x?xi64>
248 ///
249 /// because [0] and [1] from `expand_shape` reassociation cover completely
250 /// `[0, 1]` from `collapse_shape`. If it is impossible to find such union of
251 /// indices, then we fail.
252 //
253 /// When `rank(srcType) < rank(resultType)`, then we just swap `reassociation_1`
254 /// `reassociation_2` and produce `expand_shape`.
255 template <typename CollapseOpTy, typename ExpandOpTy, typename CastOpTy,
256  typename DimOpTy, typename TensorTy>
257 struct ComposeCollapseOfExpandOp : public OpRewritePattern<CollapseOpTy> {
259  LogicalResult matchAndRewrite(CollapseOpTy collapseOp,
260  PatternRewriter &rewriter) const override {
261  auto expandOp = collapseOp.getSrc().template getDefiningOp<ExpandOpTy>();
262  if (!expandOp)
263  return failure();
264 
265  ShapedType srcType = expandOp.getSrcType();
266  ShapedType resultType = collapseOp.getResultType();
267 
268  if (hasNonIdentityLayout(collapseOp.getSrc().getType()) ||
269  hasNonIdentityLayout(expandOp.getSrc().getType()) ||
270  hasNonIdentityLayout(expandOp.getResult().getType()))
271  return failure();
272 
273  int64_t srcRank = srcType.getRank();
274  int64_t resultRank = resultType.getRank();
275  if (srcType == resultType)
276  return failure();
277 
278  SmallVector<ReassociationIndices, 4> higherRankReassociation,
279  lowerRankReassociation;
280 
281  if (srcRank > resultRank) {
282  higherRankReassociation = expandOp.getReassociationIndices();
283  lowerRankReassociation = collapseOp.getReassociationIndices();
284  } else {
285  higherRankReassociation = collapseOp.getReassociationIndices();
286  lowerRankReassociation = expandOp.getReassociationIndices();
287  }
288 
289  size_t higherRankIndicesID = 0;
290  SmallVector<ReassociationIndices, 4> composedReassociation;
291  for (const auto &lowerRankIndices : lowerRankReassociation) {
292  ReassociationIndices composedIndices;
293  while (higherRankIndicesID < higherRankReassociation.size()) {
294  auto rightmostIndex =
295  higherRankReassociation[higherRankIndicesID].back();
296  if (rightmostIndex > lowerRankIndices.back())
297  return failure();
298  composedIndices.push_back(higherRankIndicesID++);
299  if (rightmostIndex == lowerRankIndices.back())
300  break;
301  }
302  composedReassociation.push_back(composedIndices);
303  }
304  if (srcRank > resultRank) {
305  rewriter.replaceOpWithNewOp<CollapseOpTy>(
306  collapseOp, resultType, expandOp.getSrc(), composedReassociation);
307  } else if (srcRank < resultRank) {
308  rewriter.replaceOpWithNewOp<ExpandOpTy>(
309  collapseOp, resultType, expandOp.getSrc(), composedReassociation);
310  } else {
311  // Collapses/expansions that do not change the rank are not allowed. Use
312  // a cast instead.
313  assert(llvm::equal(srcType.getShape(), resultType.getShape()) &&
314  "expected same shape");
315  rewriter.replaceOpWithNewOp<CastOpTy>(collapseOp, resultType,
316  expandOp.getSrc());
317  }
318  return success();
319  }
320 };
321 
322 template <typename ExpandOpTy, typename CollapseOpTy>
323 struct ComposeExpandOfCollapseOp : public OpRewritePattern<ExpandOpTy> {
325  LogicalResult matchAndRewrite(ExpandOpTy expandOp,
326  PatternRewriter &rewriter) const override {
327  auto collapseOp = expandOp.getSrc().template getDefiningOp<CollapseOpTy>();
328  if (!collapseOp)
329  return failure();
330 
331  ShapedType srcType = collapseOp.getSrcType();
332  ShapedType resultType = expandOp.getResultType();
333 
334  if (hasNonIdentityLayout(expandOp.getSrc().getType()) ||
335  hasNonIdentityLayout(collapseOp.getSrc().getType()) ||
336  hasNonIdentityLayout(collapseOp.getResult().getType()))
337  return failure();
338 
339  int64_t srcRank = srcType.getRank();
340  int64_t resultRank = resultType.getRank();
341  if (srcType == resultType)
342  return failure();
343 
344  auto srcReassociation = collapseOp.getReassociationIndices();
345  auto resultReassociation = expandOp.getReassociationIndices();
346  if (srcRank > resultRank) {
347  auto composedReassociation = findCollapsingReassociation(
348  srcReassociation, resultReassociation, srcType.getShape(),
349  resultType.getShape());
350  if (!composedReassociation)
351  return failure();
352 
353  rewriter.replaceOpWithNewOp<CollapseOpTy>(
354  expandOp, resultType, collapseOp.getSrc(), *composedReassociation);
355  return success();
356  }
357  auto composedReassociation =
358  findCollapsingReassociation(resultReassociation, srcReassociation,
359  resultType.getShape(), srcType.getShape());
360  if (!composedReassociation)
361  return failure();
362 
364  expandOp.getStaticOutputShape(), expandOp.getOutputShape(), rewriter));
365  rewriter.replaceOpWithNewOp<ExpandOpTy>(
366  expandOp, resultType, collapseOp.getSrc(), *composedReassociation,
367  outputShape);
368  return success();
369  }
370 
371 private:
372  // Attempts to find a way to collapse `srcShape` to `resultShape` by
373  // collapsing subshapes defined by the reassociation indices.
374  std::optional<SmallVector<ReassociationIndices>> findCollapsingReassociation(
375  ArrayRef<ReassociationIndices> srcReassociation,
376  ArrayRef<ReassociationIndices> resultReassociation,
377  ArrayRef<int64_t> srcShape, ArrayRef<int64_t> resultShape) const {
378  SmallVector<ReassociationIndices, 4> composedReassociation;
379 
380  if (srcReassociation.empty())
381  return {getReassociationIndicesForCollapse(srcShape, resultShape)};
382 
383  for (auto item : llvm::zip(srcReassociation, resultReassociation)) {
384  auto &srcIndices = std::get<0>(item);
385  auto &resultIndices = std::get<1>(item);
386  auto srcSubShape = srcShape.slice(srcIndices.front(), srcIndices.size());
387  auto resultSubShape =
388  resultShape.slice(resultIndices.front(), resultIndices.size());
389 
390  if (srcSubShape.size() == resultSubShape.size()) {
391  if (srcSubShape == resultSubShape &&
392  llvm::count_if(srcSubShape, ShapedType::isDynamic) < 2) {
393  composedReassociation.push_back(srcIndices);
394  } else {
395  return std::nullopt;
396  }
397  }
398 
399  // Find reassociation to collapse `srcSubShape` into `resultSubShape`.
400  auto subShapeReassociation =
401  getReassociationIndicesForCollapse(srcSubShape, resultSubShape);
402  if (!subShapeReassociation)
403  return std::nullopt;
404 
405  // Remap the subshape indices back to the original srcShape.
406  for (auto &subshape_indices : *subShapeReassociation) {
407  ReassociationIndices shape_indices;
408  for (int64_t index : subshape_indices)
409  shape_indices.push_back(srcIndices.front() + index);
410  composedReassociation.push_back(shape_indices);
411  }
412  }
413  return {std::move(composedReassociation)};
414  }
415 };
416 
417 /// The input parameters `offsets`, `sizes`, `strides` specify a rectangular
418 /// non rank-reducing slice of the collapse_shape output. Try to find which
419 /// dimensions have been sliced and which dimensions are not sliced (offset = 0,
420 /// size = dim, size = 1). Note that this conservative as it cannot detect if a
421 /// dynamic size corresponds to the full tensor dimension or not.
422 llvm::SmallBitVector getSlicedDimensions(ArrayRef<OpFoldResult> sliceInputShape,
423  ArrayRef<Range> sliceParams);
424 
425 /// Determine which dimensions are linearized by a `tensor.collapse_shape` op by
426 /// inspecting its reassociation indices.
427 llvm::SmallBitVector
428 getLinearizedDimensions(ArrayRef<ReassociationIndices> reassociationIndices);
429 
430 /// Given the parameters for both operations in a `CollapseShape->ExtractSlice`
431 /// chain and reified source and result shapes of the CollapseShapeOp, this
432 /// class provides two functions that assist with directly forming the result
433 /// of the extract slice by "tiling the CollapseShapeOp by 1".
434 //// Example:
435 // clang-format off
436 /// ```
437 /// %0 = linalg.generic ... -> tensor<3x7x11x10xf32>
438 /// %1 = tensor.collapse_shape %0 [[0, 1, 2], [3]] : ... to tensor<341x10xf32>
439 /// %2 = tensor.extract_slice %1 [13, 0] [10, 10] [2, 1] : .... tensor<10x10xf32>
440 /// ```
441 /// This class helps build the below IR to replace %2:
442 /// ```
443 /// %dest = tensor.empty() : tensor<10x10xf32>
444 /// %2 = scf.for %iv = %c0 to %c10 step %c1 iter_args(%arg0) -> tensor<10x10xf32> {
445 /// %linear_index = affine.apply affine_map<(d0)[]->(d0*2 + 11)>(%iv)
446 /// %3:3 = arith.delinearize_index %iv into (3, 7, 11)
447 ///
448 /// // This function takes %3 (multiIndices) and the parameters for the slice below.
449 /// %4 = tensor.extract_slice %0 [%3#0, %3#1, %3#2, 0] [1, 1, 1, 10] [1, 1, 1, 1] :
450 /// tensor<3x7x11x10xf32> to tensor<1x1x1x10xf32>
451 ///
452 /// %5 = tensor.collapse_shape %4 [[0, 1, 2], [3]] :
453 /// tensor<1x1x1x10xf32> into tensor<1x10xf32>
454 /// %6 = tensor.insert_slice %5 into %arg0 [%iv, 0] [1, 10] [1, 1] :
455 /// tensor<1x10xf32> into tensor<10x10xf32>
456 /// scf.yield %6 : tensor<10x10xf32>
457 /// }
458 /// ```
459 // clang-format on
460 class SliceFromCollapseHelper {
461 public:
462  SliceFromCollapseHelper(ArrayRef<ReassociationIndices> reassociationIndices,
463  ArrayRef<OpFoldResult> collapseShapeInputShape,
464  ArrayRef<OpFoldResult> collapseShapeOutputShape,
465  ArrayRef<Range> extractSliceParams)
466  : reassociationIndices(reassociationIndices),
467  collapseShapeInputShape(collapseShapeInputShape),
468  collapseShapeOutputShape(collapseShapeOutputShape),
469  sliceParams(extractSliceParams),
470  linearizedDimensions(getLinearizedDimensions(reassociationIndices)),
471  slicedDimensions(getSlicedDimensions(collapseShapeOutputShape,
472  extractSliceParams)) {}
473 
474  /// This function takes multi-indices and maps them to ExtractSlice parameters
475  /// in the index space of the CollapseShape's source tensor. This function's
476  /// signature can be described by `(D_0, D_1,.. D_{n-1}) -> (offsets, sizes,
477  /// strides)` where `n` the number of "tiled dimensions", which are the
478  /// dimensions of the output that are linearized by the collapse shape op and
479  /// are also sliced. Each `D_i` is a tuple that must represent a valid
480  /// multi-index for the `i-th` tiled dimension. In the example above, there is
481  /// only one tiled dimension (D_0) and `arith.delinearize_index` produces the
482  /// multi-index (%3) that would be passed to this function to generate the
483  /// parameters for the `tensor.extract_slice` op (%4).
484  SmallVector<Range> getExtractSliceParams(MLIRContext *ctx,
485  ArrayRef<ValueRange> multiIndices);
486 
487  /// This function takes indices in the index space of the "tiled dimensions"
488  /// described above and returns a set of Range variables that describe how the
489  /// slice should be inserted into the destination. In the example above, `%iv`
490  /// would be passed to this function to generate the parameters for the
491  /// `tensor.insert_slice` op producing %6.
492  SmallVector<Range> getInsertSliceParams(MLIRContext *ctx,
493  ValueRange tileIndices);
494 
495 private:
496  SmallVector<ReassociationIndices> reassociationIndices;
497  SmallVector<OpFoldResult> collapseShapeInputShape;
498  SmallVector<OpFoldResult> collapseShapeOutputShape;
499  SmallVector<Range> sliceParams;
500  llvm::SmallBitVector linearizedDimensions;
501  llvm::SmallBitVector slicedDimensions;
502 };
503 
504 /// Parameters required to simplify a collapsing reshape op with a rank-reducing
505 /// slice operation. See `getSimplifyCollapseShapeWithRankReducingSliceInfo`.
506 struct CollapseShapeRankReducingSliceSimplificationInfo {
507  /// The shape of the output of the rank-reducing slice.
508  RankedTensorType sliceResultType;
509  /// The reassociation indices for the new collapse shape op, if required. If
510  /// `std::nullopt`, the slice should replace the collapse shape op.
511  std::optional<SmallVector<ReassociationIndices>> newReassociationIndices;
512 };
513 
514 /// A collapsing reshape operation can sometimes be simplified or eliminated by
515 /// inserting a single rank-reducing slice operation between it and the source
516 /// tensor. The slice op will either take the place of the source, allowing for
517 /// a new, simpler reshape op to replace the original, or the reshape op will be
518 /// completely replaced by the slice result.
519 ///
520 /// This function returns the parameters required to implement this pattern. If
521 /// the pattern is not applicable, then failure is returned.
522 ///
523 /// ### Example:
524 /// ```
525 /// %result = tensor.collapse_shape %0 [[0, 1], [2, 3]]
526 /// : tensor<?x1x30x10xf32> to tensor<?x300xf32>
527 /// ```
528 /// can be transformed to
529 /// ```
530 /// %tmp = tensor.extract_slice %0 [0, 0, 0, 0]
531 /// [0, %dim1, 30, 30]
532 /// [1, 1, 1 1]
533 /// : tensor<?x1x30x10xf32> to tensor<?x30x10xf32>
534 /// %result = tensor.collapse_shape %tmp [[0], [1, 2]]
535 /// : tensor<?x30x10xf32> to tensor<?x300xf32>
536 /// ```
537 ///
538 /// ### Example:
539 /// ```
540 /// %result = tensor.collapse_shape %1 [[0, 1], [2]]
541 /// : tensor<?x1x30xf32> to tensor<?x30xf32>
542 /// ```
543 /// can be transformed to
544 /// ```
545 /// %result = tensor.extract_slice %1 [0, 0, 0]
546 /// [%dim2, 1, 30]
547 /// [1, 1, 1]
548 /// : tensor<?x1x30xf32> to tensor<?x30xf32>
549 /// ```
550 FailureOr<CollapseShapeRankReducingSliceSimplificationInfo>
551 getSimplifyCollapseShapeWithRankReducingSliceInfo(
552  RankedTensorType sourceType,
553  ArrayRef<ReassociationIndices> reassociationIndices);
554 
555 struct PackingMetadata {
556  SmallVector<int64_t> insertPositions;
557  SmallVector<int64_t> outerPositions;
558  SmallVector<ReassociationIndices> reassociations;
559 };
560 
561 /// Given a vector of `positions` indices representing desired packing insertion
562 /// points into a target vector (i.e. pack/unpack.inner_dim_pos), compute the
563 /// final positions in the target shape as well as the reshape reassociations.
564 // Note: This should not be called with a large positions array (or the
565 // implementation needs to be updated to use an N.log N sort instead of
566 // repeated N^2 counts).
567 PackingMetadata computePackingMetadata(int64_t packedRank,
568  ArrayRef<int64_t> innerDimPos);
569 } // namespace mlir
570 
571 #endif // MLIR_DIALECT_UTILS_RESHAPEOPSUTILS_H
static RankedTensorType sliceResultType(Type operandType, MeshOp mesh, ArrayRef< MeshAxis > meshAxes, int64_t sliceAxis)
Definition: MeshOps.cpp:1032
MLIRContext * getContext() const
Definition: Builders.h:56
This class represents a single result from folding an operation.
Definition: OpDefinition.h:268
InFlightDiagnostic emitOpError(const Twine &message={})
Emit an error with the op name prefixed, like "'dim' op " which is convenient for verifiers.
Definition: Operation.cpp:832
This provides public APIs that all operations should have.
A special type of RewriterBase that coordinates the application of a rewrite pattern on the current I...
Definition: PatternMatch.h:791
OpTy replaceOpWithNewOp(Operation *op, Args &&...args)
Replace the results of the given (original) op with a new op that is created without verification (re...
Definition: PatternMatch.h:542
constexpr void enumerate(std::tuple< Tys... > &tuple, CallbackT &&callback)
Definition: Matchers.h:344
Include the generated interface declarations.
llvm::function_ref< Fn > function_ref
Definition: LLVM.h:152
llvm::SmallBitVector getSlicedDimensions(ArrayRef< OpFoldResult > sliceInputShape, ArrayRef< Range > sliceParams)
The input parameters offsets, sizes, strides specify a rectangular non rank-reducing slice of the col...
constexpr StringRef getReassociationAttrName()
Attribute name for the ArrayAttr which encodes reassociation indices.
bool hasNonIdentityLayout(Type type)
Returns true iff the type is a MemRefType and has a non-identity layout.
static OpFoldResult foldReshapeOp(ReshapeOpTy reshapeOp, ArrayRef< Attribute > operands)
InFlightDiagnostic emitError(Location loc)
Utility method to emit an error message using this location.
SmallVector< AffineMap, 4 > getSymbolLessAffineMaps(ArrayRef< ReassociationExprs > reassociation)
Constructs affine maps out of Array<Array<AffineExpr>>.
SmallVector< ReassociationIndices, 2 > convertReassociationMapsToIndices(ArrayRef< ReassociationExprs > reassociationExprs)
Convert Array<Array<AffineExpr>> to Array<Array<int64_t>>.
static LogicalResult verifyReshapeLikeTypes(Op op, T expandedType, T collapsedType, bool isExpansion)
Common verifier for reshape-like types.
LogicalResult reshapeLikeShapesAreCompatible(function_ref< LogicalResult(const Twine &)> emitError, ArrayRef< int64_t > collapsedShape, ArrayRef< int64_t > expandedShape, ArrayRef< ReassociationIndices > reassociationMaps, bool isExpandingReshape)
Verify that shapes of the reshaped types using following rule: if a dimension in the collapsed type i...
std::optional< SmallVector< ReassociationIndices > > getReassociationIndicesForReshape(ShapedType sourceType, ShapedType targetType)
Return the reassociations maps to use to reshape given the source type and the target type when possi...
std::optional< SmallVector< ReassociationIndices > > getReassociationIndicesForCollapse(ArrayRef< int64_t > sourceShape, ArrayRef< int64_t > targetShape)
Returns the reassociation maps to collapse sourceShape to targetShape if possible.
ArrayRef< int64_t > ReassociationIndicesRef
ArrayAttr getReassociationIndicesAttribute(OpBuilder &b, ArrayRef< ReassociationIndices > reassociation)
Wraps a list of reassociations in an ArrayAttr.
SmallVector< SmallVector< AffineExpr, 2 >, 2 > convertReassociationIndicesToExprs(MLIRContext *context, ArrayRef< ReassociationIndices > reassociationIndices)
Convert reassociation indices to affine expressions.
bool isReassociationValid(ArrayRef< AffineMap > reassociation, int *invalidIndex=nullptr)
Return true if the reassociation specification is valid, false otherwise.
std::optional< SmallVector< ReassociationIndices > > composeReassociationIndices(ArrayRef< ReassociationIndices > producerReassociations, ArrayRef< ReassociationIndices > consumerReassociations, MLIRContext *context)
Compose reassociation maps that are used in pair of reshape ops where one is a producer and other is ...
SmallVector< OpFoldResult > getMixedValues(ArrayRef< int64_t > staticValues, ValueRange dynamicValues, Builder &b)
Return a vector of OpFoldResults with the same size a staticValues, but all elements for which Shaped...
llvm::SmallBitVector getLinearizedDimensions(ArrayRef< ReassociationIndices > reassociationIndices)
Determine which dimensions are linearized by a tensor.collapse_shape op by inspecting its reassociati...
SmallVector< int64_t, 2 > ReassociationIndices
Definition: Utils.h:27
Pattern to compose collapse_shape(expand_shape(src, reassociation_1), reassociation_2).
LogicalResult matchAndRewrite(CollapseOpTy collapseOp, PatternRewriter &rewriter) const override
LogicalResult matchAndRewrite(ExpandOpTy expandOp, PatternRewriter &rewriter) const override
Pattern to collapse producer/consumer reshape ops that are both collapsing dimensions or are both exp...
LogicalResult matchAndRewrite(ReshapeOpTy reshapeOp, PatternRewriter &rewriter) const override
OpRewritePattern is a wrapper around RewritePattern that allows for matching and rewriting against an...
Definition: PatternMatch.h:358