MLIR  20.0.0git
ReshapeOpsUtils.cpp
Go to the documentation of this file.
1 //===- ReshapeOpsUtils.cpp - Utilities used by structured ops -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
10 
11 #include "mlir/IR/AffineMap.h"
12 #include "mlir/IR/Builders.h"
13 
14 #include <numeric>
15 #include <optional>
16 
17 using namespace mlir;
18 
19 std::optional<SmallVector<ReassociationIndices>>
21  ShapedType targetType) {
22  if (sourceType.getRank() > targetType.getRank())
23  return getReassociationIndicesForCollapse(sourceType.getShape(),
24  targetType.getShape());
25  if (sourceType.getRank() < targetType.getRank())
26  return getReassociationIndicesForCollapse(targetType.getShape(),
27  sourceType.getShape());
28  return std::nullopt;
29 }
30 
31 std::optional<SmallVector<ReassociationIndices>>
33  ArrayRef<int64_t> targetShape) {
34  if (sourceShape.size() <= targetShape.size())
35  return std::nullopt;
36  unsigned sourceDim = 0;
37  SmallVector<ReassociationIndices> reassociationMap;
38  reassociationMap.reserve(targetShape.size());
39 
40  ReassociationIndices currIndices;
41  int64_t prodOfCollapsedDims = 1;
42  while (sourceDim < sourceShape.size()) {
43  unsigned targetDim = reassociationMap.size();
44  // If we have mapped all the target dimensions stop and handle the remaining
45  // tail of size-1 dimensions explicitly.
46  if (targetDim == targetShape.size())
47  break;
48 
49  int64_t currTargetShape = targetShape[targetDim];
50  while (sourceDim < (sourceShape.size() - 1) &&
51  sourceShape[sourceDim] != ShapedType::kDynamic &&
52  prodOfCollapsedDims * sourceShape[sourceDim] < currTargetShape) {
53  prodOfCollapsedDims *= sourceShape[sourceDim];
54  currIndices.push_back(sourceDim++);
55  }
56 
57  // If the current expanded dimension is dynamic, then the collapsed
58  // dimensions should also be dynamic and product of all previous unprocessed
59  // dimensions of the expanded shape should be 1.
60  if (sourceShape[sourceDim] == ShapedType::kDynamic &&
61  (currTargetShape != ShapedType::kDynamic || prodOfCollapsedDims != 1))
62  return std::nullopt;
63 
64  // If the collapsed dim is dynamic, the current expanded dim should also
65  // be dynamic.
66  if (currTargetShape == ShapedType::kDynamic &&
67  sourceShape[sourceDim] != ShapedType::kDynamic)
68  return std::nullopt;
69 
70  // For static shapes, if the product of dimensions of the expanded shape
71  // should match the collapsed dimension shape.
72  if (prodOfCollapsedDims * sourceShape[sourceDim] != currTargetShape)
73  return std::nullopt;
74 
75  currIndices.push_back(sourceDim++);
76  reassociationMap.emplace_back(ReassociationIndices{});
77  std::swap(reassociationMap.back(), currIndices);
78  prodOfCollapsedDims = 1;
79  }
80  // All the dimensions in the target must have been processed.
81  if (reassociationMap.size() != targetShape.size())
82  return std::nullopt;
83  // Process any remaining entries in the source shape. They all need to be
84  // 1 or dynamic.
85  for (; sourceDim < sourceShape.size(); sourceDim++) {
86  if (sourceShape[sourceDim] != ShapedType::kDynamic &&
87  sourceShape[sourceDim] != 1)
88  return std::nullopt;
89  // The map is empty when the target type is a scalar.
90  if (!reassociationMap.empty())
91  reassociationMap.back().push_back(sourceDim);
92  }
93  return reassociationMap;
94 }
95 
96 std::optional<SmallVector<ReassociationIndices>>
98  ArrayRef<ReassociationIndices> producerReassociations,
99  ArrayRef<ReassociationIndices> consumerReassociations,
100  MLIRContext *context) {
101  SmallVector<ReassociationIndices> composedIndices;
102  // Make the producer the larger sized vector. If they are of same size, the
103  // resulting reshape is not a supported reshape op.
104  if (producerReassociations.size() == consumerReassociations.size())
105  return std::nullopt;
106  if (producerReassociations.size() < consumerReassociations.size())
107  std::swap(producerReassociations, consumerReassociations);
108 
109  // Handle the corner case of the result being a rank 0 shaped type. Return an
110  // empty reassociation.
111  if (consumerReassociations.empty())
112  return composedIndices;
113 
114  size_t consumerDims = std::accumulate(
115  consumerReassociations.begin(), consumerReassociations.end(), 0,
116  [](size_t all, ReassociationIndicesRef indices) {
117  return all + indices.size();
118  });
119  if (producerReassociations.size() != consumerDims)
120  return std::nullopt;
121 
122  for (ReassociationIndicesRef consumerIndices : consumerReassociations) {
123  ReassociationIndices reassociations;
124  for (int64_t consumerIndex : consumerIndices) {
125  llvm::append_range(reassociations, producerReassociations[consumerIndex]);
126  }
127  composedIndices.push_back(std::move(reassociations));
128  }
129  return composedIndices;
130 }
131 
134  MLIRContext *context, ArrayRef<ReassociationIndices> reassociationIndices) {
135  SmallVector<SmallVector<AffineExpr, 2>, 2> reassociationMaps;
136  for (const auto &indices : reassociationIndices) {
137  SmallVector<AffineExpr, 2> reassociationMap;
138  reassociationMap.reserve(indices.size());
139  for (int64_t index : indices)
140  reassociationMap.push_back(mlir::getAffineDimExpr(index, context));
141  reassociationMaps.push_back(std::move(reassociationMap));
142  }
143  return reassociationMaps;
144 }
145 
146 template <typename AffineExprTy>
148  unsigned pos = 0;
149  for (const auto &exprs : exprArrays) {
150  for (auto expr : exprs) {
151  expr.walk([&pos](AffineExpr e) {
152  if (auto d = dyn_cast<AffineExprTy>(e))
153  pos = std::max(pos, d.getPosition());
154  });
155  }
156  }
157  return pos;
158 }
159 
161  OpBuilder &b, ArrayRef<ReassociationIndices> reassociation) {
162  SmallVector<Attribute, 4> reassociationAttr =
163  llvm::to_vector<4>(llvm::map_range(
164  reassociation, [&](const ReassociationIndices &indices) -> Attribute {
165  return cast<Attribute>(b.getI64ArrayAttr(indices));
166  }));
167  return b.getArrayAttr(reassociationAttr);
168 }
169 
171  ArrayRef<ReassociationExprs> reassociationExprs) {
172  SmallVector<ReassociationIndices, 2> reassociationIndices;
173  for (const auto &exprs : reassociationExprs) {
174  ReassociationIndices indices;
175  indices.reserve(exprs.size());
176  for (const auto &expr : exprs)
177  indices.push_back(cast<AffineDimExpr>(expr).getPosition());
178  reassociationIndices.push_back(indices);
179  }
180  return reassociationIndices;
181 }
182 
185  unsigned maxDim = getMaxPosOfType<AffineDimExpr>(reassociation);
186  assert(getMaxPosOfType<AffineSymbolExpr>(reassociation) == 0 &&
187  "Expected symbol-less expressions");
189  maps.reserve(reassociation.size());
190  for (const auto &exprs : reassociation) {
191  assert(!exprs.empty());
192  maps.push_back(AffineMap::get(maxDim + 1, 0, exprs, exprs[0].getContext()));
193  }
194  return maps;
195 }
196 
198  int *invalidIndex) {
199  if (reassociation.empty())
200  return true;
201  unsigned nDims = reassociation[0].getNumDims();
202  unsigned nextExpectedDim = 0;
203  for (const auto &it : llvm::enumerate(reassociation)) {
204  auto m = it.value();
205  if (m.getNumDims() != nDims || m.getNumSymbols() != 0) {
206  if (invalidIndex)
207  *invalidIndex = it.index();
208  return false;
209  }
210  for (auto e : m.getResults()) {
211  auto d = dyn_cast<AffineDimExpr>(e);
212  if (!d || d.getPosition() != nextExpectedDim++) {
213  if (invalidIndex)
214  *invalidIndex = it.index();
215  return false;
216  }
217  }
218  }
219  if (nextExpectedDim != nDims) {
220  if (invalidIndex)
221  *invalidIndex = reassociation.size() - 1;
222  return false;
223  }
224  return true;
225 }
226 
228  function_ref<LogicalResult(const Twine &)> emitError,
229  ArrayRef<int64_t> collapsedShape, ArrayRef<int64_t> expandedShape,
230  ArrayRef<ReassociationIndices> reassociationMaps, bool isExpandingReshape) {
231  unsigned expandedDimStart = 0;
232  for (const auto &map : llvm::enumerate(reassociationMaps)) {
233  bool foundDynamicShape = false;
234  int64_t linearizedStaticShape = 1;
235 
236  for (const auto &dim : llvm::enumerate(
237  expandedShape.slice(expandedDimStart, map.value().size()))) {
238  if (ShapedType::isDynamic(dim.value()))
239  foundDynamicShape = true;
240  else
241  linearizedStaticShape *= dim.value();
242  }
243  if (foundDynamicShape) {
244  if (!ShapedType::isDynamic(collapsedShape[map.index()])) {
245  return emitError(
246  "expected dimension " + Twine(map.index()) +
247  " of collapsed type to be dynamic since one or more of the "
248  "corresponding dimensions in the expanded type is dynamic");
249  }
250  } else {
251  if (collapsedShape[map.index()] != linearizedStaticShape) {
252  return emitError("expected dimension " + Twine(map.index()) +
253  " of collapsed type to be static value of " +
254  Twine(linearizedStaticShape));
255  }
256  }
257  expandedDimStart += map.value().size();
258  }
259  return success();
260 }
261 
263  if (auto memrefType = dyn_cast<MemRefType>(type))
264  return !memrefType.getLayout().isIdentity();
265  return false;
266 }
267 
268 llvm::SmallBitVector
270  ArrayRef<Range> sliceParams) {
271  assert(sliceParams.size() == sliceInputShape.size() &&
272  "only supports non rank-reducing case");
273  llvm::SmallBitVector mask(sliceInputShape.size());
274  unsigned idx = 0;
275  for (const auto &[offset, size, stride] : sliceParams) {
276  std::optional<int64_t> offsetConst = getConstantIntValue(offset);
277  std::optional<int64_t> strideConst = getConstantIntValue(stride);
278  mask[idx] = !isEqualConstantIntOrValue(size, sliceInputShape[idx]) ||
279  (!strideConst || *strideConst != 1) ||
280  (!offsetConst || *offsetConst != 0);
281  idx++;
282  }
283  return mask;
284 }
285 
286 llvm::SmallBitVector mlir::getLinearizedDimensions(
287  ArrayRef<ReassociationIndices> reassociationIndices) {
288  llvm::SmallBitVector result(reassociationIndices.size());
289  for (const auto &it : llvm::enumerate(reassociationIndices))
290  result[it.index()] = it.value().size() > 1;
291  return result;
292 }
293 
294 SmallVector<Range> SliceFromCollapseHelper::getExtractSliceParams(
295  MLIRContext *ctx, ArrayRef<ValueRange> multiIndices) {
296  unsigned loopIdx = 0;
297  auto oneAttr = IntegerAttr::get(IndexType::get(ctx), 1);
298  auto zeroAttr = IntegerAttr::get(IndexType::get(ctx), 0);
299  SmallVector<Range> offsetsSizesAndStrides;
300  offsetsSizesAndStrides.reserve(collapseShapeInputShape.size());
301  for (const auto &it : llvm::enumerate(reassociationIndices)) {
302  // Case 1: Linearized dimensions that have also been sliced. These
303  // are size of 1 because we are iterating over these dimensions. The
304  // offsets are exactly the de-linearized multi-indices.
305  if (slicedDimensions[it.index()] && linearizedDimensions[it.index()]) {
306  llvm::append_range(
307  offsetsSizesAndStrides,
308  llvm::map_range(multiIndices[loopIdx++], [&](Value v) -> Range {
309  return Range{getAsOpFoldResult(v), oneAttr, oneAttr};
310  }));
311  continue;
312  }
313 
314  // Case 2: One or possibly multiple combined input dimensions, but we
315  // have proven that these are not sliced. In this case we just take
316  // the full extent of each dimension in the reassociation list.
317  if (linearizedDimensions[it.index()]) {
318  llvm::append_range(
319  offsetsSizesAndStrides,
320  llvm::map_range(it.value(), [&](int64_t idx) -> Range {
321  return {zeroAttr, collapseShapeInputShape[idx], oneAttr};
322  }));
323  continue;
324  }
325 
326  // Case 3: A single index, but it may be sliced.
327  offsetsSizesAndStrides.push_back(sliceParams[it.index()]);
328  }
329  return offsetsSizesAndStrides;
330 }
331 
333 SliceFromCollapseHelper::getInsertSliceParams(MLIRContext *ctx,
334  ValueRange tileIndices) {
335  auto one = IntegerAttr::get(IndexType::get(ctx), 1);
336  auto zero = IntegerAttr::get(IndexType::get(ctx), 0);
337  SmallVector<Range> insertParams;
338  insertParams.reserve(linearizedDimensions.size());
339  unsigned loopIdx = 0;
340  for (unsigned i = 0; i < linearizedDimensions.size(); i++) {
341  if (linearizedDimensions[i] && slicedDimensions[i]) {
342  insertParams.push_back(Range{tileIndices[loopIdx++], one, one});
343  continue;
344  }
345  insertParams.push_back(Range{zero, sliceParams[i].size, one});
346  }
347  return insertParams;
348 }
349 
350 /// Returns the index of the only non-unit dimension among `indices` of `shape`,
351 /// if such a dimension exists and `indices` has more than one element.
352 /// Otherwise, return std::nullopt.
353 static std::optional<int64_t> getUniqueNonUnitDim(ArrayRef<int64_t> indices,
354  ArrayRef<int64_t> shape) {
355  // Return false if more than one of the dimensions in this group are not 1.
356  std::optional<int64_t> dimIndex;
357  if (indices.size() < 2)
358  return std::nullopt;
359  for (int64_t idx : indices) {
360  if (shape[idx] != 1) {
361  if (dimIndex != std::nullopt)
362  return std::nullopt;
363  dimIndex = idx;
364  }
365  }
366  return dimIndex;
367 }
368 
369 // For each segment in the reassociation indices, check whether we can
370 // simplify that segment with a rank-reducing extract slice. We can do this if
371 // all but (exactly) one of the corresponding source dims is 1.
373  RankedTensorType sourceType,
374  ArrayRef<ReassociationIndices> reassociationIndices) {
375  SmallVector<std::optional<int64_t>> trivialSegments;
376  for (const auto &indices : reassociationIndices)
377  trivialSegments.push_back(
378  getUniqueNonUnitDim(indices, sourceType.getShape()));
379  return trivialSegments;
380 }
381 
382 /// Returns true if any of the segments of the reassociation indices for a
383 /// collapsing reshape can be simplified using a rank-reducing slice.
384 static FailureOr<SmallVector<std::optional<int64_t>>>
386  RankedTensorType sourceType,
387  ArrayRef<ReassociationIndices> reassociationIndices) {
388  SmallVector<std::optional<int64_t>> trivialSegments =
389  getCollapseShapeTrivialSegments(sourceType, reassociationIndices);
390  if (!llvm::any_of(trivialSegments, [](const std::optional<int64_t> &idx) {
391  return idx.has_value();
392  }))
393  return failure();
394  return trivialSegments;
395 }
396 
397 FailureOr<CollapseShapeRankReducingSliceSimplificationInfo>
398 mlir::getSimplifyCollapseShapeWithRankReducingSliceInfo(
399  RankedTensorType sourceType,
400  ArrayRef<ReassociationIndices> reassociationIndices) {
401  FailureOr<SmallVector<std::optional<int64_t>>> trivialSegments =
403  reassociationIndices);
404  if (failed(trivialSegments))
405  return failure();
406 
407  // Create the expected result shape of the rank-reducing slice.
408  SmallVector<int64_t> sliceShape;
409  for (const auto &[nonUnitDim, indices] :
410  llvm::zip(*trivialSegments, reassociationIndices)) {
411  if (nonUnitDim) {
412  sliceShape.push_back(sourceType.getDimSize(*nonUnitDim));
413  continue;
414  }
415  llvm::append_range(sliceShape, llvm::map_range(indices, [&](int64_t idx) {
416  return sourceType.getDimSize(idx);
417  }));
418  }
419  auto sliceType =
420  RankedTensorType::get(sliceShape, sourceType.getElementType());
421 
422  // If the rank-reducing slice simplified every segment, then we are done.
423  if (sliceShape.size() == reassociationIndices.size())
424  return CollapseShapeRankReducingSliceSimplificationInfo{sliceType,
425  std::nullopt};
426 
427  // Otherwise, we need to create a new collapse_shape op for the segments that
428  // weren't covered by the slice. By design, the new reassociation indices has
429  // the same number of groups as the old reassociation indices.
430  SmallVector<ReassociationIndices> newReassociationIndices;
431  SmallVector<int64_t, 2> reassociation;
432  int64_t groupIdx = 0;
433  for (int64_t dimIdx = 0; dimIdx < sliceType.getRank(); dimIdx++) {
434  reassociation.push_back(dimIdx);
435  if ((*trivialSegments)[groupIdx] ||
436  reassociation.size() == reassociationIndices[groupIdx].size()) {
437  newReassociationIndices.push_back(reassociation);
438  reassociation.clear();
439  groupIdx++;
440  }
441  }
442 
443  return CollapseShapeRankReducingSliceSimplificationInfo{
444  sliceType, newReassociationIndices};
445 }
446 
447 PackingMetadata mlir::computePackingMetadata(int64_t packedRank,
448  ArrayRef<int64_t> innerDimPos) {
449  PackingMetadata res;
450  res.insertPositions.reserve(innerDimPos.size());
451  // The pack insert position is the position + the number of previously
452  // inserted positions + offset.
453  // The offset controls whether the packing dimension is the first or last.
454  //
455  // Example
456  // =======
457  // Consider packing from a hypothetical ABCD layout to ABCDba whose
458  // pack.inner_dims is [1, 0]. The first step consists in undoing the
459  // permutation and producing AaBbCD. This is achieved purely by computing the
460  // insert positions of `b` and `a` into `ABCD`, starting from [1, 0]. One
461  // possibility, is to produce insert positions [2, 0], this would result in an
462  // aAbBCD layout (i.e. offset 0). The other possibility, is to produce insert
463  // positions [3, 1], this would result in an AaBbCD layout (i.e. offset 1).
464  // The latter is what we expect from packing.
465  int64_t offset = 1;
466  for (int64_t pos : innerDimPos) {
467  int64_t numInsertedBefore = llvm::count_if(
468  innerDimPos, [&pos](int64_t pos2) { return pos > pos2; });
469  res.insertPositions.push_back(pos + numInsertedBefore + offset);
470  }
471 
472  DenseSet<int64_t> posSet(res.insertPositions.begin(),
473  res.insertPositions.end());
474  res.reassociations.reserve(packedRank);
475  for (int64_t i = 1; i <= packedRank; ++i) {
476  res.outerPositions.push_back(i - 1);
477  if (!posSet.contains(i)) {
478  res.reassociations.push_back(ReassociationIndices{i - 1});
479  continue;
480  }
481  res.reassociations.push_back(ReassociationIndices{i - 1, i});
482  ++i;
483  }
484  return res;
485 }
static MLIRContext * getContext(OpFoldResult val)
static Value max(ImplicitLocOpBuilder &builder, Value value, Value bound)
unsigned getMaxPosOfType(ArrayRef< ReassociationExprs > exprArrays)
static SmallVector< std::optional< int64_t > > getCollapseShapeTrivialSegments(RankedTensorType sourceType, ArrayRef< ReassociationIndices > reassociationIndices)
static std::optional< int64_t > getUniqueNonUnitDim(ArrayRef< int64_t > indices, ArrayRef< int64_t > shape)
Returns the index of the only non-unit dimension among indices of shape, if such a dimension exists a...
static FailureOr< SmallVector< std::optional< int64_t > > > canCollapseShapeBeSimplifiedByRankReducingSlice(RankedTensorType sourceType, ArrayRef< ReassociationIndices > reassociationIndices)
Returns true if any of the segments of the reassociation indices for a collapsing reshape can be simp...
Base type for affine expression.
Definition: AffineExpr.h:68
static AffineMap get(MLIRContext *context)
Returns a zero result affine map with no dimensions or symbols: () -> ().
Attributes are known-constant values of operations.
Definition: Attributes.h:25
ArrayAttr getArrayAttr(ArrayRef< Attribute > value)
Definition: Builders.cpp:306
ArrayAttr getI64ArrayAttr(ArrayRef< int64_t > values)
Definition: Builders.cpp:321
MLIRContext is the top-level object for a collection of MLIR operations.
Definition: MLIRContext.h:60
This class helps build Operations.
Definition: Builders.h:216
Instances of the Type class are uniqued, have an immutable identifier and an optional mutable compone...
Definition: Types.h:74
This class provides an abstraction over the different types of ranges over Values.
Definition: ValueRange.h:381
This class represents an instance of an SSA value in the MLIR system, representing a computable value...
Definition: Value.h:96
constexpr void enumerate(std::tuple< Tys... > &tuple, CallbackT &&callback)
Definition: Matchers.h:344
Include the generated interface declarations.
llvm::SmallBitVector getSlicedDimensions(ArrayRef< OpFoldResult > sliceInputShape, ArrayRef< Range > sliceParams)
The input parameters offsets, sizes, strides specify a rectangular non rank-reducing slice of the col...
bool hasNonIdentityLayout(Type type)
Returns true iff the type is a MemRefType and has a non-identity layout.
std::optional< int64_t > getConstantIntValue(OpFoldResult ofr)
If ofr is a constant integer or an IntegerAttr, return the integer.
bool isEqualConstantIntOrValue(OpFoldResult ofr1, OpFoldResult ofr2)
Return true if ofr1 and ofr2 are the same integer constant attribute values or the same SSA value.
InFlightDiagnostic emitError(Location loc)
Utility method to emit an error message using this location.
SmallVector< AffineMap, 4 > getSymbolLessAffineMaps(ArrayRef< ReassociationExprs > reassociation)
Constructs affine maps out of Array<Array<AffineExpr>>.
SmallVector< ReassociationIndices, 2 > convertReassociationMapsToIndices(ArrayRef< ReassociationExprs > reassociationExprs)
Convert Array<Array<AffineExpr>> to Array<Array<int64_t>>.
LogicalResult reshapeLikeShapesAreCompatible(function_ref< LogicalResult(const Twine &)> emitError, ArrayRef< int64_t > collapsedShape, ArrayRef< int64_t > expandedShape, ArrayRef< ReassociationIndices > reassociationMaps, bool isExpandingReshape)
Verify that shapes of the reshaped types using following rule: if a dimension in the collapsed type i...
std::optional< SmallVector< ReassociationIndices > > getReassociationIndicesForReshape(ShapedType sourceType, ShapedType targetType)
Return the reassociations maps to use to reshape given the source type and the target type when possi...
std::optional< SmallVector< ReassociationIndices > > getReassociationIndicesForCollapse(ArrayRef< int64_t > sourceShape, ArrayRef< int64_t > targetShape)
Returns the reassociation maps to collapse sourceShape to targetShape if possible.
ArrayRef< int64_t > ReassociationIndicesRef
ArrayAttr getReassociationIndicesAttribute(OpBuilder &b, ArrayRef< ReassociationIndices > reassociation)
Wraps a list of reassociations in an ArrayAttr.
SmallVector< SmallVector< AffineExpr, 2 >, 2 > convertReassociationIndicesToExprs(MLIRContext *context, ArrayRef< ReassociationIndices > reassociationIndices)
Convert reassociation indices to affine expressions.
bool isReassociationValid(ArrayRef< AffineMap > reassociation, int *invalidIndex=nullptr)
Return true if the reassociation specification is valid, false otherwise.
std::optional< SmallVector< ReassociationIndices > > composeReassociationIndices(ArrayRef< ReassociationIndices > producerReassociations, ArrayRef< ReassociationIndices > consumerReassociations, MLIRContext *context)
Compose reassociation maps that are used in pair of reshape ops where one is a producer and other is ...
auto get(MLIRContext *context, Ts &&...params)
Helper method that injects context only if needed, this helps unify some of the attribute constructio...
OpFoldResult getAsOpFoldResult(Value val)
Given a value, try to extract a constant Attribute.
llvm::SmallBitVector getLinearizedDimensions(ArrayRef< ReassociationIndices > reassociationIndices)
Determine which dimensions are linearized by a tensor.collapse_shape op by inspecting its reassociati...
AffineExpr getAffineDimExpr(unsigned position, MLIRContext *context)
These free functions allow clients of the API to not use classes in detail.
Definition: AffineExpr.cpp:617
Represents a range (offset, size, and stride) where each element of the triple may be dynamic or stat...
OpFoldResult size