MLIR  20.0.0git
ConvertToDestinationStyle.cpp
Go to the documentation of this file.
1 //===- ConvertToDestinationStyle.cpp - Convert non-DPS to DPS ops ---------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains patterns to convert non-DPS ops to DPS ops. New
10 // tensor.empty ops are inserted as a destination. Such tensor.empty can be
11 // eliminated with "empty tensor elimination", allowing them to bufferize
12 // without an allocation (assuming there are no further conflicts).
13 //
14 //===----------------------------------------------------------------------===//
15 //
24 #include "mlir/IR/Matchers.h"
25 #include "mlir/IR/PatternMatch.h"
26 #include "llvm/ADT/STLExtras.h"
27 #include "llvm/Support/Debug.h"
28 
29 using namespace mlir;
30 using namespace mlir::tensor;
31 
32 // Implements backtracking to traverse indices of the output buffer while
33 // iterating over op.elements().
34 static Value createInserts(RewriterBase &rewriter, Location loc, int dim,
35  Value destination, ArrayRef<int64_t> shape,
36  ArrayRef<Value> constants,
37  OperandRange::iterator &elementIt,
38  SmallVectorImpl<Value> &indices) {
39  if (dim == static_cast<int>(shape.size()) - 1) {
40  for (int i = 0; i < shape.back(); ++i) {
41  indices.back() = constants[i];
42  destination = rewriter.create<tensor::InsertOp>(loc, *elementIt,
43  destination, indices);
44  ++elementIt;
45  }
46  return destination;
47  }
48  for (int i = 0; i < shape[dim]; ++i) {
49  indices[dim] = constants[i];
50  destination = createInserts(rewriter, loc, dim + 1, destination, shape,
51  constants, elementIt, indices);
52  }
53  return destination;
54 }
55 
56 /// Create a memcpy from the given source tensor to the given destination
57 /// memref. The copy op type can be specified in the `options`.
58 static void createMemcpy(OpBuilder &b, Location loc, Value tensorSource,
59  Value memrefDest,
61  auto tensorType = dyn_cast<RankedTensorType>(tensorSource.getType());
62  assert(tensorType && "expected ranked tensor");
63  assert(isa<MemRefType>(memrefDest.getType()) && "expected ranked memref");
64 
65  switch (options.memcpyOp) {
68  // Note: This is the preferred way of memcpy'ing because no layout map
69  // and/or memory space must be specified for the source.
70  auto materializeOp = b.create<bufferization::MaterializeInDestinationOp>(
71  loc, tensorSource, memrefDest);
72  materializeOp.setWritable(true);
73  } break;
75  // TODO: Support custom memory space on source.
76  // We do not know the layout map of the source yet, so use a fully dynamic
77  // layout for best compatibility.
78  Value toMemref = b.create<bufferization::ToMemrefOp>(
80  tensorSource, /*readOnly=*/true);
81  b.create<memref::CopyOp>(loc, toMemref, memrefDest);
82  } break;
84  // TODO: Support custom memory space on source.
85  // We do not know the layout map of the source yet, so use a fully dynamic
86  // layout for best compatibility.
87  Value toMemref = b.create<bufferization::ToMemrefOp>(
89  tensorSource, /*readOnly=*/true);
90  b.create<linalg::CopyOp>(loc, toMemref, memrefDest);
91  } break;
92  };
93 }
94 
96  Location loc, PadOp padOp,
97  Value dest) {
98  OpBuilder::InsertionGuard g(rewriter);
99  RankedTensorType resultType = padOp.getResultType();
100 
101  // Examine the yielded value to decide if a linalg.generic is neede or a
102  // linalg.fill is sufficient.
103  Value yieldedValue =
104  cast<tensor::YieldOp>(padOp.getBody()->getTerminator()).getValue();
105  Attribute constYieldedValue;
106  // Is the yielded value a bbArg defined outside of the PadOp?
107  bool outsideBbArg =
108  isa<BlockArgument>(yieldedValue) &&
109  cast<BlockArgument>(yieldedValue).getOwner()->getParentOp() !=
110  padOp.getOperation();
111  // Is the yielded value an OpResult defined outside of the PadOp?
112  bool outsideOpResult =
113  isa<OpResult>(yieldedValue) &&
114  yieldedValue.getDefiningOp()->getParentOp() != padOp.getOperation();
115  bool invariantYieldedValue = outsideBbArg || outsideOpResult;
116  if (matchPattern(yieldedValue, m_Constant(&constYieldedValue))) {
117  // Padding with a constant: Create linalg.fill.
118  Dialect *arithDialect =
119  rewriter.getContext()->getLoadedDialect<arith::ArithDialect>();
120  Value fillValue =
121  arithDialect
122  ->materializeConstant(rewriter, constYieldedValue,
123  yieldedValue.getType(), yieldedValue.getLoc())
124  ->getResult(0);
125  auto fillOp = rewriter.create<linalg::FillOp>(loc, ValueRange(fillValue),
126  ValueRange(dest));
127  return fillOp;
128  }
129 
130  if (invariantYieldedValue) {
131  // Padding with an invariant value.
132  auto fillOp = rewriter.create<linalg::FillOp>(loc, ValueRange(yieldedValue),
133  ValueRange(dest));
134  return fillOp;
135  }
136 
137  // Create linalg.generic.
138  SmallVector<utils::IteratorType> iteratorTypes(resultType.getRank(),
139  utils::IteratorType::parallel);
140  SmallVector<AffineMap> indexingMaps(
141  1, rewriter.getMultiDimIdentityMap(resultType.getRank()));
142  auto genericOp = rewriter.create<linalg::GenericOp>(
143  loc, resultType, /*inputs=*/ValueRange(),
144  /*outputs=*/ValueRange{dest}, /*indexingMaps=*/
145  indexingMaps, iteratorTypes);
146  Block *body = rewriter.createBlock(&genericOp->getRegion(0), {},
147  resultType.getElementType(), loc);
148  rewriter.setInsertionPointToStart(body);
149  SmallVector<Value> bbArgReplacements;
150  for (int64_t i = 0; i < resultType.getRank(); ++i)
151  bbArgReplacements.push_back(rewriter.create<linalg::IndexOp>(loc, i));
152  rewriter.mergeBlocks(padOp.getBody(), body, bbArgReplacements);
153 
154  // Update terminator.
155  auto yieldOp = cast<tensor::YieldOp>(body->getTerminator());
156  rewriter.replaceOpWithNewOp<linalg::YieldOp>(yieldOp, yieldOp.getValue());
157  return genericOp;
158 }
159 
161  Value value) {
162  auto tensorType = cast<RankedTensorType>(value.getType());
163  if (tensorType.hasStaticShape())
164  return {};
165 
166  // Try to reify dynamic sizes.
167  ReifiedRankedShapedTypeDims reifiedShape;
168  if (isa<OpResult>(value) &&
169  succeeded(reifyResultShapes(b, value.getDefiningOp(), reifiedShape))) {
170  SmallVector<Value> dynSizes;
171  for (int64_t i = 0; i < tensorType.getRank(); ++i) {
172  if (tensorType.isDynamicDim(i))
173  dynSizes.push_back(cast<Value>(
174  reifiedShape[cast<OpResult>(value).getResultNumber()][i]));
175  }
176  return dynSizes;
177  }
178 
179  // Create tensor.dim ops.
180  SmallVector<Value> dynSizes;
181  for (int64_t i = 0; i < tensorType.getRank(); ++i) {
182  if (tensorType.isDynamicDim(i))
183  dynSizes.push_back(
184  b.create<DimOp>(value.getLoc(), value,
185  b.create<arith::ConstantIndexOp>(value.getLoc(), i)));
186  }
187  return dynSizes;
188 }
189 
190 static Value
193  Attribute memorySpace = {}) {
194  OpBuilder::InsertionGuard g(rewriter);
195  auto tensorType = cast<RankedTensorType>(value.getType());
196 
197  // Create buffer allocation.
198  auto memrefType =
200  tensorType, memorySpace));
201  SmallVector<Value> dynamicSizes = reifyOrComputeDynamicSizes(rewriter, value);
202 
203  Value alloc;
204  if (options.allocOp ==
206  alloc = rewriter.create<memref::AllocOp>(loc, memrefType, dynamicSizes);
207  if (options.emitDealloc) {
208  // Place deallocation at the end of the block.
209  rewriter.setInsertionPoint(rewriter.getInsertionBlock()->getTerminator());
210  rewriter.create<memref::DeallocOp>(loc, alloc);
211  }
212  } else if (options.allocOp ==
214  alloc = rewriter.create<memref::AllocaOp>(loc, memrefType, dynamicSizes);
215  // No dealloc is needed.
216  }
217 
218  return alloc;
219 }
220 
223  PadOp padOp, Attribute memorySpace, Operation *insertionPoint) {
224  // tensor.pad does not have a destination operand.
225  assert(!options.bufferizeDestinationOnly && "invalid options");
226 
227  OpBuilder::InsertionGuard g(rewriter);
228  rewriter.setInsertionPoint(insertionPoint ? insertionPoint : padOp);
229  Location loc = padOp.getLoc();
230 
231  // Create buffer allocation.
232  Value alloc = createAllocationForTensor(rewriter, loc, padOp.getResult(),
233  options, memorySpace);
234  rewriter.setInsertionPoint(padOp);
235 
236  if (!padOp.hasZeroLowPad() || !padOp.hasZeroHighPad()) {
237  // Create linalg.fill or linalg.generic. Not needed if there is no padding.
238  Operation *fillOp =
239  movePaddingToFillOrGenericOp(rewriter, loc, padOp, alloc);
240  rewriter.setInsertionPointAfter(fillOp);
241  }
242 
243  // Create memcpy.
245  getMixedSizes(rewriter, loc, padOp.getSource());
246  SmallVector<OpFoldResult> strides(padOp.getResultType().getRank(),
247  rewriter.getIndexAttr(1));
248  Value subview = rewriter.create<memref::SubViewOp>(
249  loc, alloc, /*offsets=*/padOp.getMixedLowPad(), sizes, strides);
250  createMemcpy(rewriter, loc, padOp.getSource(), subview, options);
251 
252  // Create bufferization.to_tensor with "restrict" and "writable". The returned
253  // tensor is a new buffer allocation, so it does not alias with any buffer.
254  Value toTensorOp = rewriter.create<bufferization::ToTensorOp>(
255  loc, alloc, /*restrict=*/true, /*writable=*/true);
256  rewriter.replaceOp(padOp, toTensorOp);
257  return alloc;
258 }
259 
262  vector::MaskOp maskOp, Attribute memorySpace, Operation *insertionPoint) {
263  assert(llvm::range_size(maskOp.getMaskBlock()->without_terminator()) == 1 &&
264  "expected single masked op");
265  OpBuilder::InsertionGuard g(rewriter);
266  bufferization::BufferizationOptions bufferizationOptions;
267  Operation *yieldOp = maskOp.getMaskRegion().front().getTerminator();
268  assert(isa<vector::YieldOp>(yieldOp) && "expected yield op terminator");
269 
270  // Bufferize maskable op. By default, place the buffer allocation right before
271  // the mask op.
273  rewriter, options, maskOp.getMaskableOp(), memorySpace,
274  /*insertionPoint=*/insertionPoint ? insertionPoint : maskOp);
275 
276  if (options.bufferizeDestinationOnly)
277  return alloc;
278 
279  // Bufferize terminator.
280  rewriter.setInsertionPoint(yieldOp);
281  if (failed(cast<bufferization::BufferizableOpInterface>(yieldOp).bufferize(
282  rewriter, bufferizationOptions)))
283  return nullptr;
284 
285  // Erase dead to_tensor ops inside of the mask op. This is necessary because
286  // there only be one op (apart from the terminator) inside the mask op.
287  // TODO: Remove dead to_tensor ops more aggressively during bufferization.
288  SmallVector<Operation *> toTensorOps;
289  maskOp.walk([&](bufferization::ToTensorOp toTensorOp) {
290  if (toTensorOp->getUses().empty())
291  toTensorOps.push_back(toTensorOp.getOperation());
292  });
293  for (Operation *op : toTensorOps)
294  rewriter.eraseOp(op);
295 
296  // Bufferize mask op.
297  SmallVector<OpOperand *> resultUses;
298  for (Value result : maskOp.getResults())
299  if (isa<TensorType>(result.getType()))
300  for (OpOperand &use : result.getUses())
301  resultUses.push_back(&use);
302  rewriter.setInsertionPoint(maskOp);
303  if (failed(cast<bufferization::BufferizableOpInterface>(maskOp.getOperation())
304  .bufferize(rewriter, bufferizationOptions)))
305  return nullptr;
306 
307  // Set "restrict" attribute, indicating that no other tensor aliases with
308  // this tensor. That is because we just allocated a new buffer for the tensor.
309  for (OpOperand *resultUse : resultUses) {
310  auto toTensorOp =
311  resultUse->get().getDefiningOp<bufferization::ToTensorOp>();
312  assert(toTensorOp && "expected to_tensor op");
313  rewriter.modifyOpInPlace(toTensorOp, [&]() {
314  toTensorOp.setRestrict(true);
315  toTensorOp.setWritable(true);
316  });
317  }
318 
319  return alloc;
320 }
321 
324  bufferization::AllocTensorOp allocTensorOp, Attribute memorySpace,
325  Operation *insertionPoint) {
326  Location loc = allocTensorOp.getLoc();
327  OpBuilder::InsertionGuard g(rewriter);
328  rewriter.setInsertionPoint(insertionPoint ? insertionPoint : allocTensorOp);
329  bufferization::BufferizationOptions bufferizationOptions;
330 
331  // Create buffer allocation.
333  rewriter, loc, allocTensorOp.getResult(), options, memorySpace);
334 
335  // Create bufferization.to_tensor with "restrict" and "writable". The returned
336  // tensor is a new buffer allocation, so it does not alias with any buffer.
337  Value toTensorOp = rewriter.create<bufferization::ToTensorOp>(
338  loc, alloc, /*restrict=*/true, /*writable=*/true);
339  rewriter.replaceOp(allocTensorOp, toTensorOp);
340  return alloc;
341 }
342 
343 /// Lower tensor.from_elements to a sequence of chained tensor.insert.
345  RewriterBase &rewriter, tensor::FromElementsOp fromElementsOp) {
346  Location loc = fromElementsOp.getLoc();
347  RankedTensorType tensorType =
348  cast<RankedTensorType>(fromElementsOp.getType());
349  auto shape = tensorType.getShape();
350 
351  // Create tensor.empty.
352  auto emptyOp = rewriter.create<EmptyOp>(loc, tensorType, ValueRange());
353 
354  // Case: tensor<elem_type>.
355  if (shape.empty()) {
356  Operation *res = rewriter.replaceOpWithNewOp<tensor::InsertOp>(
357  fromElementsOp, fromElementsOp.getElements().front(),
358  emptyOp.getResult(), ValueRange());
359  return res;
360  }
361 
362  // Create constants for the range of possible indices [0, max{shape_i}).
363  auto maxDim = *llvm::max_element(shape);
364  SmallVector<Value, 2> constants;
365  constants.reserve(maxDim);
366  for (int i = 0; i < maxDim; ++i)
367  constants.push_back(rewriter.create<arith::ConstantIndexOp>(loc, i));
368 
369  // Traverse all elements and create tensor.insert ops.
370  auto elementIt = fromElementsOp.getElements().begin();
371  SmallVector<Value, 2> indices(tensorType.getRank(), constants[0]);
372  Value result = createInserts(rewriter, loc, /*dim=*/0, emptyOp.getResult(),
373  shape, constants, elementIt, indices);
374 
375  // Replace tensor.from_elements.
376  rewriter.replaceOp(fromElementsOp, result);
377  return result.getDefiningOp();
378 }
379 
380 /// Lower tensor.generate to linalg.generic.
381 FailureOr<Operation *>
383  tensor::GenerateOp generateOp) {
384  // Only ops with exactly one block are supported.
385  if (!generateOp.getBody().hasOneBlock())
386  return failure();
387 
388  Location loc = generateOp.getLoc();
389  RankedTensorType tensorType = cast<RankedTensorType>(generateOp.getType());
390 
391  // Create tensor.empty.
392  auto emptyOp =
393  rewriter.create<EmptyOp>(loc, tensorType, generateOp.getDynamicExtents());
394 
395  // Create linalg.generic.
396  SmallVector<utils::IteratorType> iteratorTypes(tensorType.getRank(),
397  utils::IteratorType::parallel);
398  SmallVector<AffineMap> indexingMaps(
399  1, rewriter.getMultiDimIdentityMap(tensorType.getRank()));
400  auto genericOp = rewriter.create<linalg::GenericOp>(
401  loc, tensorType, /*inputs=*/ValueRange(),
402  /*outputs=*/ValueRange{emptyOp.getResult()}, /*indexingMaps=*/
403  indexingMaps, iteratorTypes);
404  Block *body = rewriter.createBlock(&genericOp->getRegion(0), {},
405  tensorType.getElementType(), loc);
406  rewriter.setInsertionPointToStart(body);
407  SmallVector<Value> bbArgReplacements;
408  for (int64_t i = 0; i < tensorType.getRank(); ++i)
409  bbArgReplacements.push_back(rewriter.create<linalg::IndexOp>(loc, i));
410  rewriter.mergeBlocks(&generateOp.getBody().front(), body, bbArgReplacements);
411 
412  // Update terminator.
413  auto yieldOp = cast<tensor::YieldOp>(body->getTerminator());
414  rewriter.replaceOpWithNewOp<linalg::YieldOp>(yieldOp, yieldOp.getValue());
415 
416  // Replace tensor.generate.
417  rewriter.replaceOp(generateOp, genericOp->getResult(0));
418  return genericOp.getOperation();
419 }
420 
421 /// Lower tensor.pad to linalg.generic + tensor.insert_slice.
422 FailureOr<Operation *>
424  tensor::PadOp padOp) {
425  // Only ops with exactly one block are supported.
426  if (!padOp.getBodyRegion().hasOneBlock())
427  return failure();
428 
429  // Create tensor.empty.
430  Location loc = padOp.getLoc();
431  RankedTensorType resultType = padOp.getResultType();
432  ReifiedRankedShapedTypeDims reifiedShape;
433  if (failed(reifyResultShapes(rewriter, padOp, reifiedShape)))
434  return rewriter.notifyMatchFailure(
435  padOp, "failed to reify tensor.pad op result shape");
436  SmallVector<Value> dynamicSizes;
437  for (int64_t i = 0; i < resultType.getRank(); ++i)
438  if (resultType.isDynamicDim(i))
439  dynamicSizes.push_back(cast<Value>(reifiedShape[0][i]));
440 
441  // If the `padOp` has a nofold attribute and all paddings are known to be 0,
442  // explicitly insert a `linalg.copy`.
443  if (padOp.getNofoldAttr() &&
444  llvm::all_of(padOp.getMixedLowPad(), isZeroIndex) &&
445  llvm::all_of(padOp.getMixedHighPad(), isZeroIndex)) {
446  using bufferization::AllocTensorOp;
447  Value allocated =
448  rewriter.create<AllocTensorOp>(loc, resultType, dynamicSizes);
449  auto copyOp = rewriter.replaceOpWithNewOp<linalg::CopyOp>(
450  padOp, padOp.getSource(), allocated);
451  return copyOp.getOperation();
452  }
453 
454  Value empty = rewriter.create<EmptyOp>(loc, resultType, dynamicSizes);
455  // Create linalg.fill or linalg.generic.
456  Operation *fillOp = movePaddingToFillOrGenericOp(rewriter, loc, padOp, empty);
457  rewriter.setInsertionPointAfter(fillOp);
458 
459  // Create tensor::InsertSliceOp.
460  SmallVector<OpFoldResult> sliceSizes =
461  getMixedSizes(rewriter, loc, padOp.getSource());
462  SmallVector<OpFoldResult> sliceStrides(resultType.getRank(),
463  rewriter.getIndexAttr(1));
464  auto insertSliceOp = rewriter.replaceOpWithNewOp<tensor::InsertSliceOp>(
465  padOp, padOp.getSource(), fillOp->getResult(0),
466  /*offsets=*/padOp.getMixedLowPad(), sliceSizes, sliceStrides);
467  return insertSliceOp.getOperation();
468 }
469 
472  Operation *op, Attribute memorySpace, Operation *insertionPoint) {
473  using namespace bufferization;
474 
475  // Call specialized overload for certain ops.
476  if (auto padOp = dyn_cast<tensor::PadOp>(op))
477  return bufferizeToAllocation(rewriter, options, padOp, memorySpace);
478  if (auto maskOp = dyn_cast<vector::MaskOp>(op))
479  return bufferizeToAllocation(rewriter, options, maskOp, memorySpace);
480  if (auto allocTensorOp = dyn_cast<bufferization::AllocTensorOp>(op))
481  return bufferizeToAllocation(rewriter, options, allocTensorOp, memorySpace);
482 
483  // Only bufferizable ops are supported.
484  auto bufferizableOp = dyn_cast<BufferizableOpInterface>(op);
485  if (!bufferizableOp)
486  return nullptr;
487  BufferizationOptions bufferizationOptions;
488  AnalysisState state(bufferizationOptions);
489 
490 #ifndef NDEBUG
491  if (!options.bufferizeDestinationOnly) {
492  // Ops with nested tensor ops are not supported yet. At the moment, this
493  // function just bufferizes the given op itself, but not its body.
494  op->walk([&](Operation *nestedOp) {
495  if (op == nestedOp)
496  return;
497  if (llvm::any_of(nestedOp->getOperands(),
498  [](Value v) { return isa<TensorType>(v.getType()); }))
499  llvm_unreachable("ops with nested tensor ops are not supported yet");
500  if (llvm::any_of(nestedOp->getResults(),
501  [](Value v) { return isa<TensorType>(v.getType()); }))
502  llvm_unreachable("ops with nested tensor ops are not supported yet");
503  });
504  }
505 #endif // NDEBUG
506 
507  // Gather tensor results.
508  SmallVector<OpResult> tensorResults;
509  for (OpResult result : op->getResults()) {
510  if (!isa<TensorType>(result.getType()))
511  continue;
512  // Unranked tensors are not supported
513  if (!isa<RankedTensorType>(result.getType()))
514  return nullptr;
515  // Ops that bufferize to an allocation are not supported.
516  if (bufferizableOp.bufferizesToAllocation(result))
517  return nullptr;
518  tensorResults.push_back(result);
519  }
520 
521  // Gather all operands that should bufferize to a new allocation. I.e.,
522  // bufferize out-of-place.
523  SmallVector<OpOperand *> outOfPlaceOperands, resultUses;
524  auto addOutOfPlaceOperand = [&](OpOperand *operand) {
525  if (!llvm::is_contained(outOfPlaceOperands, operand))
526  outOfPlaceOperands.push_back(operand);
527  };
528  for (OpResult result : tensorResults) {
529  AliasingOpOperandList aliasingOperands =
530  state.getAliasingOpOperands(result);
531  for (const AliasingOpOperand &operand : aliasingOperands) {
532  addOutOfPlaceOperand(operand.opOperand);
533  for (OpOperand &resultUse : result.getUses())
534  resultUses.push_back(&resultUse);
535  }
536  }
537  for (OpOperand &operand : op->getOpOperands()) {
538  if (!state.bufferizesToMemoryWrite(operand))
539  continue;
540  if (!isa<RankedTensorType>(operand.get().getType()))
541  continue;
542  addOutOfPlaceOperand(&operand);
543  }
544  // TODO: Support multiple buffers.
545  if (outOfPlaceOperands.size() != 1)
546  return nullptr;
547 
548  // Allocate buffers.
549  OpBuilder::InsertionGuard g(rewriter);
550  rewriter.setInsertionPoint(insertionPoint ? insertionPoint : op);
551  SmallVector<Value> allocs;
552  for (OpOperand *operand : outOfPlaceOperands) {
554  rewriter, op->getLoc(), operand->get(), options, memorySpace);
555  allocs.push_back(alloc);
556  if (!state.findDefinitions(operand->get()).empty()) {
557  // Initialize buffer with a copy of the operand data. Not needed if the
558  // tensor is uninitialized.
559  createMemcpy(rewriter, op->getLoc(), operand->get(), alloc, options);
560  }
561  rewriter.modifyOpInPlace(op, [&]() {
562  auto toTensorOp = rewriter.create<ToTensorOp>(op->getLoc(), alloc);
563  operand->set(toTensorOp);
564  if (options.bufferizeDestinationOnly) {
565  rewriter.modifyOpInPlace(toTensorOp, [&]() {
566  toTensorOp.setRestrict(true);
567  toTensorOp.setWritable(true);
568  });
569  }
570  });
571  }
572 
573  if (options.bufferizeDestinationOnly)
574  return allocs.front();
575 
576  // Bufferize the op.
577  rewriter.setInsertionPoint(op);
578  if (failed(bufferizableOp.bufferize(rewriter, bufferizationOptions)))
579  return nullptr;
580 
581  // Set "restrict" attribute, indicating that no other tensor aliases with
582  // this tensor. That is because we just allocated a new buffer for the tensor.
583  for (OpOperand *resultUse : resultUses) {
584  auto toTensorOp = resultUse->get().getDefiningOp<ToTensorOp>();
585  assert(toTensorOp && "expected to_tensor op");
586  rewriter.modifyOpInPlace(toTensorOp, [&]() {
587  toTensorOp.setRestrict(true);
588  toTensorOp.setWritable(true);
589  });
590  }
591  return allocs.front();
592 }
593 
594 namespace {
595 
596 template <typename OpTy>
597 LogicalResult rewriteOpInDestinationPassingStyle(OpTy op,
598  PatternRewriter &rewriter) {
599  return linalg::rewriteInDestinationPassingStyle(rewriter, op);
600 }
601 
602 } // namespace
603 
606  patterns.add(rewriteOpInDestinationPassingStyle<tensor::FromElementsOp>);
607  patterns.add(rewriteOpInDestinationPassingStyle<tensor::GenerateOp>);
608  patterns.add(rewriteOpInDestinationPassingStyle<tensor::PadOp>);
609 }
static Operation * movePaddingToFillOrGenericOp(RewriterBase &rewriter, Location loc, PadOp padOp, Value dest)
static Value createAllocationForTensor(RewriterBase &rewriter, Location loc, Value value, const linalg::BufferizeToAllocationOptions &options, Attribute memorySpace={})
static void createMemcpy(OpBuilder &b, Location loc, Value tensorSource, Value memrefDest, const linalg::BufferizeToAllocationOptions &options)
Create a memcpy from the given source tensor to the given destination memref.
static SmallVector< Value > reifyOrComputeDynamicSizes(OpBuilder &b, Value value)
static Value createInserts(RewriterBase &rewriter, Location loc, int dim, Value destination, ArrayRef< int64_t > shape, ArrayRef< Value > constants, OperandRange::iterator &elementIt, SmallVectorImpl< Value > &indices)
static llvm::ManagedStatic< PassManagerOptions > options
Base class for generic analysis states.
Attributes are known-constant values of operations.
Definition: Attributes.h:25
Block represents an ordered list of Operations.
Definition: Block.h:33
Operation * getTerminator()
Get the terminator operation of this block.
Definition: Block.cpp:246
IntegerAttr getIndexAttr(int64_t value)
Definition: Builders.cpp:148
AffineMap getMultiDimIdentityMap(unsigned rank)
Definition: Builders.cpp:427
MLIRContext * getContext() const
Definition: Builders.h:56
Dialects are groups of MLIR operations, types and attributes, as well as behavior associated with the...
Definition: Dialect.h:38
virtual Operation * materializeConstant(OpBuilder &builder, Attribute value, Type type, Location loc)
Registered hook to materialize a single constant operation from a given attribute value with the desi...
Definition: Dialect.h:83
This class defines the main interface for locations in MLIR and acts as a non-nullable wrapper around...
Definition: Location.h:66
Dialect * getLoadedDialect(StringRef name)
Get a registered IR dialect with the given namespace.
RAII guard to reset the insertion point of the builder when destroyed.
Definition: Builders.h:357
This class helps build Operations.
Definition: Builders.h:216
void setInsertionPointToStart(Block *block)
Sets the insertion point to the start of the specified block.
Definition: Builders.h:440
void setInsertionPoint(Block *block, Block::iterator insertPoint)
Set the insertion point to the specified location.
Definition: Builders.h:407
Block * createBlock(Region *parent, Region::iterator insertPt={}, TypeRange argTypes=std::nullopt, ArrayRef< Location > locs=std::nullopt)
Add new block with 'argTypes' arguments and set the insertion point to the end of it.
Definition: Builders.cpp:470
Operation * create(const OperationState &state)
Creates an operation given the fields represented as an OperationState.
Definition: Builders.cpp:497
void setInsertionPointAfter(Operation *op)
Sets the insertion point to the node after the specified operation, which will cause subsequent inser...
Definition: Builders.h:421
Block * getInsertionBlock() const
Return the block the current insertion point belongs to.
Definition: Builders.h:451
This class represents an operand of an operation.
Definition: Value.h:267
This is a value defined by a result of an operation.
Definition: Value.h:457
Operation is the basic unit of execution within MLIR.
Definition: Operation.h:88
std::enable_if_t< llvm::function_traits< std::decay_t< FnT > >::num_args==1, RetT > walk(FnT &&callback)
Walk the operation by calling the callback for each nested operation (including this one),...
Definition: Operation.h:798
Location getLoc()
The source location the operation was defined or derived from.
Definition: Operation.h:223
Operation * getParentOp()
Returns the closest surrounding operation that contains this operation or nullptr if this is a top-le...
Definition: Operation.h:234
MutableArrayRef< OpOperand > getOpOperands()
Definition: Operation.h:383
operand_range getOperands()
Returns an iterator on the underlying Value's.
Definition: Operation.h:378
result_range getResults()
Definition: Operation.h:415
A special type of RewriterBase that coordinates the application of a rewrite pattern on the current I...
Definition: PatternMatch.h:791
This class coordinates the application of a rewrite on a set of IR, providing a way for clients to tr...
Definition: PatternMatch.h:400
std::enable_if_t<!std::is_convertible< CallbackT, Twine >::value, LogicalResult > notifyMatchFailure(Location loc, CallbackT &&reasonCallback)
Used to notify the listener that the IR failed to be rewritten because of a match failure,...
Definition: PatternMatch.h:724
virtual void replaceOp(Operation *op, ValueRange newValues)
Replace the results of the given (original) operation with the specified list of values (replacements...
void mergeBlocks(Block *source, Block *dest, ValueRange argValues=std::nullopt)
Inline the operations of block 'source' into the end of block 'dest'.
virtual void eraseOp(Operation *op)
This method erases an operation that is known to have no uses.
void modifyOpInPlace(Operation *root, CallableT &&callable)
This method is a utility wrapper around an in-place modification of an operation.
Definition: PatternMatch.h:636
OpTy replaceOpWithNewOp(Operation *op, Args &&...args)
Replace the results of the given (original) op with a new op that is created without verification (re...
Definition: PatternMatch.h:542
This class provides an abstraction over the different types of ranges over Values.
Definition: ValueRange.h:381
This class represents an instance of an SSA value in the MLIR system, representing a computable value...
Definition: Value.h:96
Type getType() const
Return the type of this value.
Definition: Value.h:129
Location getLoc() const
Return the location of this value.
Definition: Value.cpp:26
Operation * getDefiningOp() const
If this value is the result of an operation, return the operation that defines it.
Definition: Value.cpp:20
Specialization of arith.constant op that returns an integer of index type.
Definition: Arith.h:93
BaseMemRefType getMemRefTypeWithStaticIdentityLayout(TensorType tensorType, Attribute memorySpace=nullptr)
Return a MemRef type with a static identity layout (i.e., no layout map).
AliasList< AliasingOpOperand > AliasingOpOperandList
A list of possible aliasing OpOperands.
BaseMemRefType getMemRefTypeWithFullyDynamicLayout(TensorType tensorType, Attribute memorySpace=nullptr)
Return a MemRef type with fully dynamic layout.
Value bufferizeToAllocation(RewriterBase &rewriter, const BufferizeToAllocationOptions &options, tensor::PadOp padOp, Attribute memorySpace={}, Operation *insertionPoint=nullptr)
Materialize a buffer allocation for the given tensor.pad op and lower the op to linalg....
FailureOr< Operation * > rewriteInDestinationPassingStyle(RewriterBase &rewriter, tensor::FromElementsOp fromElementsOp)
Rewrite tensor.from_elements to linalg.generic.
void populateConvertToDestinationStylePatterns(RewritePatternSet &patterns)
Populate patterns that convert non-destination-style ops to destination style ops.
SmallVector< OpFoldResult > getMixedSizes(OpBuilder &builder, Location loc, Value value)
Return the dimensions of the given tensor value.
Definition: TensorOps.cpp:66
Include the generated interface declarations.
bool matchPattern(Value value, const Pattern &pattern)
Entry point for matching a pattern over a Value.
Definition: Matchers.h:490
bool isZeroIndex(OpFoldResult v)
Return true if v is an IntegerAttr with value 0 of a ConstantIndexOp with attribute with value 0.
LogicalResult reifyResultShapes(OpBuilder &b, Operation *op, ReifiedRankedShapedTypeDims &reifiedReturnShapes)
Reify the shape of the result of an operation (typically in terms of the shape of its operands).
const FrozenRewritePatternSet & patterns
detail::constant_op_matcher m_Constant()
Matches a constant foldable operation.
Definition: Matchers.h:369
Options for BufferizableOpInterface-based bufferization.